Answer:
The only true statement is statement 2.
On most days the temperature varied about 4.3 degrees from the mean temperature.
Step-by-step explanation:
The MAD is known as the Mean Absolute Deviation for any given dataset.
The absolute deviation is a measure of dispersion which quantifies the spread of the variables in the dataset from the mean.
It gives the only the positive value of the deviations of each variable from the mean.
The mean absolute deviation now signifies the average of the sum of all of these positive deviations of each variable from the mean.
Hence, the MAD value only gives how much the variables will varubfrom the mean on average.
Looking at the statements, it is evident that the MAD temperature value of 4.3 doesn't directly give the maximum or minimum variation from the mean temperature or the highest variation from the mean, rather it does show that 'On most days the temperature varied about 4.3 degrees from the mean temperature'.
Hope this Helps!!!
Answer:
a c e
Step-by-step explanation:
My question is probably obvious but I don't know it. What is the z axis
Answer:
z-Axis. The axis in three-dimensional Cartesian coordinates which is usually oriented vertically. Cylindrical coordinates are defined such that the -axis is the axis about which the azimuth coordinate. is measured.
Step-by-step explanation:
Adding and subtracting function if (x)=4x^2+1and g(x)=x^2-5, find (f+g) (x)
Answer:
(f+g)(x) = 5x^2 -4
Step-by-step explanation:
[tex](f+g)(x)=f(x)+g(x)\\\\=(4x^2+1)+(x^2-5)=(4+1)x^2+(1-5)\\\\\boxed{(f+g)(x)=5x^2-4}[/tex]
Please answer this correctly
Answer:
80%
Step-by-step explanation:
The numbers 5 or even are 4, 5, 6, and 8.
4 numbers out of 5.
4/5 = 0.8
Convert to percentage.
0.8 × 100 = 80
P(5 or even) = 80%
Answer:
80% chance
Step-by-step explanation:
There are 4 numbers that fit the rule, 4, 5, 6, and 8. There is a 4/5 chance spinning one of those numbers or 80% chance.
if a^2+b^2+c^2=169. find a, given that b=2√2, 3√c=9.
Answer:
a = ±4√5
Step-by-step explanation:
Solve for c.
3√c = 9
√c = 9/3
√c = 3
c = 3²
c = 9
Put b=2√2 and c=9, solve for a.
a² + (2√2)² + 9² = 169
a² + 8 + 81 = 169
a² = 169 - 81 - 8
a² = 80
a = ±√80
a = ±4√5
4b • 0.5a 2ab 2a2b 2ab2 2a2b2
Answer:
(4b)•(0.5a) = (4•0.5)(a)(b) = 2ab
Step-by-step explanation:
Solve the system of equations. {y=30x+20 y=10x2−80
Answer:
(x, y) = (-8/3, -60)
Step-by-step explanation:
y = 30x + 20
y = 10 * 2 - 80 → y = 20 - 80
y = 30x + 20
y = -60
30x + 20 = -60
x = -8/3
(x, y) = (-8/3, -60)
Hope this helps! :)
a. dashed line, shade below
b. dashed line, shaded above
c. solid line, shade above
d. solid line, shade below
Answer:
the answer is A
Step-by-step explanation:
Find the surface area of the solid shown or described. If necessary, round to the nearest tenth. A.348m^2 B.484m^2 C.180.7m^2 D.262m^2
Answer: 484m²
Step-by-step explanation: This is a question on solid shape.
The surface area of a cone is the same thing as the perimeter of the cone ie, the materials required to construct the cone.
Formula for the surface area of the cone = πrl + πr², ( the circular base )
From.the diagram,
r = 7.1m , l = 14.6m, π = 3.142
Now substitute for those values in.the formula above
SA = πrl + πr²
= 3.142 × 7.1 × 14.6 + 3.142 × 7.1²
= 325.6997 + 158.388
= 484.09
Now to the nearest tenth meter,
SA = 484m²
the figure below shows a square ABCD and an equilateral triangle DPC:
Answer: c) SAS Postulate
Step-by-step explanation:
DP = PC Sides are congruent
∠ADP ≡ ∠BCP Angles are congruent (angles are between the sides)
AD = BC Sides are congruent
To finish the proof, we can state that ΔADP ≡ ΔBCP by the Side-Angle-Side (SAS) Postulate
The perimeter of a rectangular city park is 1,428 feet. The length is 78 feet more than twice the width. Find the length and width of the park.
Answer:
Length = 502 ft
Width = 212 ft
Step-by-step explanation:
Recall the formula for the perimeter of a rectangle of length "L" and width "W":
Perimeter = 2 L + 2 W = 1428 ft
Now, since the length is 78 ft more than twice the width, then we can write this in mathematical form as:
L = 2 W +78
so, 2 W = L -7 8
and now replace "2 W" with it equivalent "L - 78" in the first perimeter equation and solve for "L":
2 L + L - 78 = 1428
3 L = 1428 + 78
3 L = 1506
L = 1506/3
L = 502 ft
Then the width W can be obtained via:
2 W = L - 78
2 w = 502 -78
2 W = 424
w = 212 ft
C equals 2 pi r; Cequals62.8 (Circumference of a circle)
Answer:
about 10
Step-by-step explanation:
62.8 = 2 pi r/2
62.8/2 = pi r
31.4/pi = pi r/pi
about 10 = r
(matching type) given f(x)= x+4 and g(x) = 2x + 1 match the expression to its simplication operation
choose
x+4 / 2x+1
Answer 1
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x+1 / x+4
Answer 2
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
3x + 5
Answer 3
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x + 5
Answer 4
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
-x + 3
Answer 5
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x2 + 9x + 12
pa help po
Answer:
1) [tex]h(x) = \frac{f(x)}{g(x)}[/tex], 2) [tex]h(x) = \frac{g(x)}{f(x)}[/tex], 3) [tex]h(x) = f(x) + g(x)[/tex], 4) [tex]h (x) = f [g (x)][/tex], 5) [tex]h(x) = f(x) - g(x)[/tex]
Step-by-step explanation:
1) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h (x) = \frac{x+4}{2\cdot x + 1}[/tex], then:
[tex]h(x) = \frac{f(x)}{g(x)}[/tex]
2) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = \frac{2\cdot x + 1}{x+4}[/tex], then:
[tex]h(x) = \frac{g(x)}{f(x)}[/tex]
3) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = 3\cdot x + 5[/tex], then:
[tex]h(x) = 3\cdot x + 5[/tex]
[tex]h (x) = (1 + 2)\cdot x + (4+1)[/tex]
[tex]h(x) = x + 2\cdot x + 4 +1[/tex]
[tex]h(x) = (x+4) + (2\cdot x + 1)[/tex]
[tex]h(x) = f(x) + g(x)[/tex]
4) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = 2\cdot x + 5[/tex], then:
[tex]h(x) = 2\cdot x + 5[/tex]
[tex]h(x) = 2\cdot x + 1 + 4[/tex]
[tex]h(x) = (2\cdot x +1)+4[/tex]
[tex]h (x) = f [g (x)][/tex]
5) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = -x + 3[/tex], then:
[tex]h(x) = -x + 3[/tex]
[tex]h(x) = (1 - 2)\cdot x + 4 - 1[/tex]
[tex]h(x) = x - 2\cdot x + 4 - 1[/tex]
[tex]h(x) = x + 4 - (2\cdot x + 1)[/tex]
[tex]h(x) = f(x) - g(x)[/tex]
A piggy bank contains pennies, nickels, and dimes. The number of dimes is 15 more than the number of nickels, and there are 140 coins altogether totaling $7.17. Find the number of nickels in the bank.
Answer:
Option D is correct.
There are 34 nickels in the piggy bank.
Step-by-step explanation:
A piggy bank contains pennies, nickels and dimes.
Let the number of pennies be p
Let the number of nickels be n
Let the number of dimes be d
Also, note that 1 penny = $0.01
1 nickel = $0.05
1 dime = $0.10
- The number of dimes is 15 more than the number of nickels.
d = 15 + n
- There are 140 coins altogether totaling $7.17.
p + n + d = 140
0.01p + 0.05n + 0.1d = 7.17
Bringing the 3 equations together
d = 15 + n (eqn 1)
p + n + d = 140 (eqn 2)
0.01p + 0.05n + 0.1d = 7.17 (eqn 3)
Substitute (eqn 1) into (eqn 2)
p + n + d = 140
p + n + (15 + n) = 140
p + 2n + 15 = 140
p = 140 - 15 - 2n = 125 - 2n
p = 125 - 2n (eqn 4)
Substitute (eqn 1) and (eqn 4) into (eqn 3)
0.01p + 0.05n + 0.1d = 7.17
0.01(125 - 2n) + 0.05n + 0.1(15 + n) = 71.7
1.25 - 0.02n + 0.05n + 1.5 + 0.1n = 7.17
0.1n + 0.05n - 0.02n + 1.5 + 1.25 = 7.17
0.13n + 2.75 = 7.17
0.13n = 7.17 - 2.75 = 4.42
0.13n = 4.42
n = (4.42/0.13) = 34
d = 15 + n = 15 + 34 = 49
p = 125 -2n = 125 - (2×34) = 125 - 68 = 57
Hence, there are 57 pennies, 34 nickels and 49 dimes in the piggy bank.
Hope this Helps!!!
The U.S. Department of Agriculture guarantees dairy producers that they will receive at least $1.00 per pound of butter they supply to the market. Below is the current monthly demand and supply schedule for wholesale butter (in millions of pounds per month). Wholesale Butter Market
Price (dollars per pound) Quantity of Butter Demanded Quantity of Butter Supplied
(millions of pounds) (millions of pounds)
$0.80 107 63 0
.90 104 71
1.00 101 79
1.10 98 87
1.20 95 95
1.30 92 103
1.40 89 111
1.50 86 119
1.60 83 127
1.70 80 135
1.80 77 143
a. In the butter market, the monthly equilibrium quantity is million pounds and the equilibrium price is $ per pound.
b. What is the monthly surplus created in the wholesale butter market due to the price support (price floor) program? 22 million pounds 79 million pounds Zero 11 million pounds Suppose that a decrease in the cost of feeding cows shifts the supply schedule to the right by 40 million pounds at every price.
Answer:
a. In the butter market, the monthly equilibrium quantity is 95 million pounds and the equilibrium price is $1.2 per pound.
b. The correct option is zero.
c. See the attached excel file for the new supply schedule.
d. The monthly surplus created by the price support program is 18 million pounds given the new supply of butter.
Step-by-step explanation:
Note: This question is not complete. A complete question is therefore provided in the attached Microsoft word file.
a. In the butter market, the monthly equilibrium quantity is million pounds and the equilibrium price is $ per pound.
At equilibrium, quantity demanded must be equal with the quantity supplied.
In this question, equilibrium occurs at the price of $1.20 per pound and quantity of 95 million pounds.
Therefore, in the butter market, the monthly equilibrium quantity is 95 million pounds and the equilibrium price is $1.2 per pound.
b. What is the monthly surplus created in the wholesale butter market due to the price support (price floor) program?
Price floor refers to a government price control on the lowest price that can be charged for a commodity.
It should be noted that for a price floor to be binding, it has to be fixed above the equilibrium price.
Since the price floor of $1 per pound is lower than the equilibrium price of $1.2 per pound, the price floor will therefore not be binding. As a result, the market will still be at the equilibrium point and the monthly surplus created in the wholesale butter market due to the price support (price floor) program will be zero.
Therefore, the correct option is zero.
c. Fill in the new supply schedule given the change in the cost of feeding cows.
Since a decrease in the cost of feeding cows shifts the supply schedule to the right by 40 million pounds at every price, this implies that there will be an increase in supply by 40 million at each price.
Note: Find attached the excel file for the new supply schedule.
d. Given the new supply of butter, what is the monthly surplus of butter created by the price support program?
Since the price floor has been fixed at $1 per pound by the price support program, we can observe that the quantity demanded is 101 million pounds and quantity supplied is 119 million pounds at this price floor of $1. The surplus created is then the difference between the quantity demanded and quantity supplied as follows:
Surplus created = Quantity supplied - Quantity demanded = 119 - 101 = 18 million pounds
Therefore, the monthly surplus created by the price support program is 18 million pounds given the new supply of butter.
Mary is 5 feet tall and Alice is 1.6 meters tall. Who is taller? By how many inches?
Answer:
Alice
Step-by-step explanation:
5 feet is approximately 1.5 meters so we can say Alice is taller than Mary by 10cm
Answer:
Mary, by 3 inches.
Step-by-step explanation:
Convert the unit to inches.
5 feet = 60 inches
1.6 meters = 63 inches
63 - 60 = 3
Mary is taller than Alice by 3 inches.
Bikram spends Rs 5400 every month which is 60% of his monthly income what is his monthly income?
Answer:
324000000000000000000000
Answer:
His monthly income is 9000 Rs
I hat is the length of leg s in the right triangle shown
Answer:
s=5
Step-by-step explanation:
This triangle is right and with two equal sides since it has two congruent angle so we will use the pythagorian theorem:
s²+s² = (5[tex]\sqrt{2}[/tex])²2s² = 25*2 divide both sides by 2s² = 25s = 5List price is 45$ if the sales tax rate is 7% how much is the sales tax in dollars
Answer:
3.15 dollars
Step-by-step explanation:
The sales tax rate is 7% = 0.07
So, we need to multiply the listed price and the sales tax rate.
= 45 * 0.07 = 3.150 (3.15)
Hope this helps and please mark as the brainliest
Solve the problem. The scores on a certain test are normally distributed with a mean score of 60 and a standard deviation of 5. What is the probability that a sample of 90 students will have a mean score of at least 60.527? Write your answer as a decimal rounded to 4 places.
Answer:
15.87%
Step-by-step explanation:
We have to calculate the value of z:
z = (x - m) / (sd / n ^ (1/2))
where x is the value to evaluate, m is the mean, n is the sample size and sd is the standard deviation, we replace:
p (x <60,527) = z = (x - m) / (sd / n ^ (1/2))
p (x <60,527) = z = (60,527 - 60) / (5/90 ^ (1/2))
z = 1
if we look in the attached table, for z = 1 it is 0.8413
p (x> 60,527) = 1 - 0.8413
p (x> 60,527) = 0.1587
Therefore the probability is 15.87%
The probability of rolling two dice at the same time and getting a 4 with either die or the sum of the dice is 6
Answer:
Suppose that the first die we roll comes up as a 1. The other die roll could be a 1, 2, 3, 4, 5, or 6. Now suppose that the first die is a 2. The other die roll again could be a 1, 2, 3, 4, 5, or 6. We have already found 12 potential outcomes, and have yet to exhaust all of the possibilities of the first die. But with a second dice, there will be 24 different possibilities.
Step-by-step explanation:
1 2 3 4 5 6
1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
ABCD is a kite.
B
O
y = [?]
A 40°
C
Х
Enter the number
that belongs in
the green box.
D
Answer:
50°
Step-by-step explanation:
ABCD is a kite.
Therefore, AB = BC
[tex]\therefore m\angle BCA= m\angle BAC = 40\degree \\
\because BD \perp AC.. (Diagonals \: of\: kite) \\
\therefore y + 90\degree + m\angle BCA = 180\degree \\
\therefore y + 90\degree + 40\degree = 180\degree \\
\therefore y = 180\degree - 130\degree \\
\huge\red {\boxed {y = 50\degree}} [/tex]
how do you get the answer after you have an equation?
Evaluate the function rule for the given value y=12•3x for x=-2
Answer:
-72
Step-by-step explanation:
We just have to plug in -2 for x so the answer is 12 * 3 * (-2) = -72.
What does csc x cot x (1-cos^2 x) equal
Answer:
Step-by-step explanation:
A boat, which moves at 13 miles per hour in water without a current, goes 80 miles upstream and 80 miles back again in 13 hours. Find the speed of the current to the nearest tenth.
Answer:
Speed of current is 3 miles per hour.
Step-by-step explanation:
Speed of boat without current, u = 13 miles/hr
Let speed of current = v miles/hr
Speed upstream = (13 - v) miles/hr
Speed downstream = (13 + v) miles/hr
Distance traveled upstream, [tex]D_1[/tex] = 80 miles
Distance traveled downstream, [tex]D_2[/tex] = 80 miles
Total time taken, T ([tex]T_1+T_2[/tex]) = 13 hours
Formula for Total Time taken:
[tex]Time= \dfrac{Distance}{Speed}[/tex]
Time taken in Upstream:
[tex]T_1 = \dfrac{80}{13-v}\ hours[/tex]
Time taken in Downstream:
[tex]T_2 = \dfrac{80}{13+v}\ hours[/tex]
[tex]T = T_1+T_2 = 13\ hours\\\Rightarrow 13 = \dfrac{80}{13-v}+\dfrac{80}{13+v}\\\Rightarrow 13 = 80(\dfrac{13+v+13-v}{13^2-v^2})\\\Rightarrow 13^2-v^2 = \dfrac{80(26)}{13}\\\Rightarrow 169-v^2 = 80\times 2\\\Rightarrow v^2 = 169-160 = 9\\\Rightarrow v = 3\ miles/hr[/tex]
So, speed of current is 3 miles/hr
f(x) = 9 + 4x f(0) = f(-1) = Find the value of x for which f(x) =6 x=
Answer: x=-3/4
Step-by-step explanation:
Since we know f(x)=6, we can set it equal to the equation.
6=9+4x [subtract 9 on both sides]
-3=4x [divide both sides by 4]
x=-3/4
I need help on question 8.
Answer:
50.18°
Step-by-step explanation:
∠BAD = ∠BAC +∠CAD
102° = (8x+17)° +(9x+11)° . . . . . substitute given values
102 = 17x +28 . . . . . . . . . . simplify, divide by degrees
x = (102 -28)/17 = 74/17 . . . . . solve for x
Then the angle of interest is ...
∠CAD = (9x +11)° = (9(74/17) +11)° = 50 3/17°
∠CAD ≈ 50.18°
The straight line L has equation y = 1/2x+7 The straight line M is parallel to L and passes through the point (0, 3). Write down an equation for the line M.
Answer:
y = [tex]\frac{1}{2}[/tex] x + 3
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = [tex]\frac{1}{2}[/tex] x + 7 ← is in slope- intercept form
with slope m = [tex]\frac{1}{2}[/tex]
Parallel lines have equal slopes
line M crosses the y- axis at (0, 3) ⇒ c = 3
y = [tex]\frac{1}{2}[/tex] x + 3 ← equation of line M
the intersection of the two legs of the right triangle and the red segment is the _________ of the triangle shown
Answer:
b median
Step-by-step explanation:
Answer:
orthocenter
Step-by-step explanation:
The red segment is an altitude of the triangle, as are the two legs. The intersection point of the altitudes is the orthocenter.
__
This is basically a vocabulary question.
altitude - the perpendicular segment from a vertex to the opposite side (or its extension)median - the segment joining a vertex with the midpoint of the opposite sidecentroid - the point where medians meetorthocenter - the point where altitudes meetIf A and Bare dependent events, which of these conditions must be true?
Answer:
Two events are said to be dependent if the outcome or occurrence of the first affects the outcome or occurrence of the second so that the probability is changed.
Also, Two events are said to be independent if the outcome or occurrence of the first does not affects the outcome or occurrence of the second so that the probability is not changed.
Read more on Brainly.com
Answer:E. P(B\A)≠P(B)
Step-by-step explanation: