Answer:
algebraic expression is Y = 2x + 20
where x is the earning for last year
Y is the earning for this year
Step-by-step explanation:
Let the earning of club in last year be x
given
The club earned$20 more than twice what it earned last year
twice the earning of last year = 2x
$20 more than twice the earning of last year = 2x +20
Earning this year = 2x +20
where x is the earning for last year
let the earning for this year be y
Y = 2x +20
Thus, algebraic expression is Y = 2x + 20
x(x-2y)-(y-x)2=
the answer is
Answer:
-y^2
Step-by-step explanation:
x(x-2y)-(y-x)^2=
Distribute
x^2 -2xy -(y-x)^2=
Foil
x^2 -2xy -(y^2 -2xy+x^2)=
Distribute the minus sign
x^2 -2xy -y^2 +2xy-x^2=
Combine like terms
-y^2
Kylie drew a circle with a diameter of 8 cm. Paige drew a circle with a radius of 3 cm. Approximately how much larger is the area of Kylie’s circle than the area of Paige’s circle? Use 3.14 for Pi and round to the nearest whole number.
━━━━━━━☆☆━━━━━━━
▹ Answer
Kylie's circle is approximately 22 cm larger than the area of Paige's circle.
▹ Step-by-Step Explanation
Kylie's Circle - 8 cm diameter → 4 cm radius
Paige's Circle - 3 cm radius
Kylie's Circle
A= πr²
A = 3.14(4)²
A = 50.24 ≈ 50 cm²
Paige's Circle
A = πr²
A = 3.14(3)²
A = 28.26 ≈ 28 cm²
50 - 28 = 22 cm
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Hello!
Answer:[tex]\boxed{ \bf The~area~of~Kylie's~circle~is~approximately~22~cm^2~larger~than~Paige's.}[/tex]
__________________________________________________Explanation:We'll start by calculating the areas of Kylie and Paige's circles.
Kylie's Circle:
A = πr²
Since we need the radius for the formula, we must divide the diameter in half to get it.
r = d ÷ 2
r = 8 ÷ 2
r = 4
Now, let's substitute our values into the formula.
A = 3.14 × 4²
A = 3.14 × 16
A = 50.24 cm²
Paige's Circle:
A = πr²
A = 3.14 × 3²
A = 3.14 × 9
A = 28.26 cm²
We can round both of these areas to the nearest whole number. Then, we must subtract Paige's circle area by Kylie's.
50 - 28 = 22
One positive number is
6 more than twice another. If their product is
1736, find the numbers.
Answer:
[tex]\Large \boxed{\sf \ \ 28 \ \text{ and } \ 62 \ \ }[/tex]
Step-by-step explanation:
Hello, let's note a and b the two numbers.
We can write that
a = 6 + 2b
ab = 1736
So
[tex](6+2b)b=1736\\\\ \text{***Subtract 1736*** } <=> 2b^2+6b-1736=0\\\\ \text{***Divide by 2 } <=> b^2+3b-868=0 \\ \\ \text{***factorize*** } <=> b^2 +31b-28b-868=0 \\ \\ <=> b(b+31) -28(b+31)=0 \\ \\ <=> (b+31)(b-28) =0 \\ \\ <=> b = 28 \ \ or \ \ b = -31[/tex]
We are looking for positive numbers so the solution is b = 28
and then a = 6 +2*28 = 62
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
vertex form of x^2+6x+3
Answer:
y = (x + 3)^2 - 6.
Step-by-step explanation:
The vertex formula is Y = a(x - h)^2 + k.
To find the vertex formula, we need to find h and k, by finding the vertex of x^2 + 6x + 3.
h = -b/2a
a = 1, b = 6.
h = -6 / 2 * 1 = -6 / 2 = -3
k = (-3)^2 + 6(-3) + 3 = 9 - 18 + 3 = -9 + 3 = -6
So far, we have Y = a(x - (-3))^2 + -6, so y = a(x + 3)^2 - 6.
In this case, the coefficient of x^2 of the given formula is 1, which means that a will be 1.
The vertex form of x^2 + 6x + 3 is y = (x + 3)^2 - 6.
To check our work...
y = (x + 3)^2 - 6
= x^2 + 3x + 3x + 9 - 6
= x^2 + 6x + 3
Hope this helps!
Making handcrafted pottery generally takes two major steps: wheel throwing and firing. The time of wheel throwing and the time of firing are normally distributed random variables with means of 40 minutes and 60 minutes and standard deviations of 2 minutes and 3 minutes, respectively. Assume the time of wheel throwing and time of firing are independent random variables. (d) What is the probability that a piece of pottery will be finished within 95 minutes
Answer:
The probability that a piece of pottery will be finished within 95 minutes is 0.0823.
Step-by-step explanation:
We are given that the time of wheel throwing and the time of firing are normally distributed variables with means of 40 minutes and 60 minutes and standard deviations of 2 minutes and 3 minutes, respectively.
Let X = time of wheel throwing
So, X ~ Normal([tex]\mu_x=40 \text{ min}, \sigma^{2}_x = 2^{2} \text{ min}[/tex])
where, [tex]\mu_x[/tex] = mean time of wheel throwing
[tex]\sigma_x[/tex] = standard deviation of wheel throwing
Similarly, let Y = time of firing
So, Y ~ Normal([tex]\mu_y=60 \text{ min}, \sigma^{2}_y = 3^{2} \text{ min}[/tex])
where, [tex]\mu_y[/tex] = mean time of firing
[tex]\sigma_y[/tex] = standard deviation of firing
Now, let P = a random variable that involves both the steps of throwing and firing of wheel
SO, P = X + Y
Mean of P, E(P) = E(X) + E(Y)
[tex]\mu_p=\mu_x+\mu_y[/tex]
= 40 + 60 = 100 minutes
Variance of P, V(P) = V(X + Y)
= V(X) + V(Y) - Cov(X,Y)
= [tex]2^{2} +3^{2}-0[/tex]
{Here Cov(X,Y) = 0 because the time of wheel throwing and time of firing are independent random variables}
SO, V(P) = 4 + 9 = 13
which means Standard deviation(P), [tex]\sigma_p[/tex] = [tex]\sqrt{13}[/tex]
Hence, P ~ Normal([tex]\mu_p=100, \sigma_p^{2} = (\sqrt{13})^{2}[/tex])
The z-score probability distribution of the normal distribution is given by;
Z = [tex]\frac{P- \mu_p}{\sigma_p}[/tex] ~ N(0,1)
where, [tex]\mu_p[/tex] = mean time in making pottery = 100 minutes
[tex]\sigma_p[/tex] = standard deviation = [tex]\sqrt{13}[/tex] minutes
Now, the probability that a piece of pottery will be finished within 95 minutes is given by = P(P [tex]\leq[/tex] 95 min)
P(P [tex]\leq[/tex] 95 min) = P( [tex]\frac{P- \mu_p}{\sigma_p}[/tex] [tex]\leq[/tex] [tex]\frac{95-100}{\sqrt{13} }[/tex] ) = P(Z [tex]\leq[/tex] -1.39) = 1 - P(Z < 1.39)
= 1 - 0.9177 = 0.0823
The above probability is calculated by looking at the value of x = 1.39 in the z table which has an area of 0.9177.
What does 0 = 0 indicate about the solutions of the system?
Answer:
it indicates that it is infinitely many solutions
Reed made a lasagna for dinner. That night, he ate1/4
% of the lasagna. His brother and sister ate 2/3 of
the lasagna. How much of the lasagna did they eat
in all?
Answer: 11/12
Step-by-step explanation:
First find the LCM of 4 and 3(12). Then make the denominator of both fractions 12(3/12 and 8/12). Then add the fractions to get that they ate 11/2 of the lasagna.
Hope it helps <3
If 3x + 9y = 21 , find the value of 4(x + 3y)
Answer:
25
Step-by-step explanation:
The method that should be used is substitution:
Do this by taking 3x+9y=21 and transforming it to be [tex]y=-\frac{1}{2} x+\frac{7}{3}[/tex]
Once you have this, substitute the value of y that we just found into 3x+9y=21 to find the value of x: [tex]3x+9(-\frac{1}{2} +\frac{7}{3} ) =21[/tex]
Solve for x. You should get 1.5
Once you have this, Plug in 1.5 for the value of x into the y= equation that we found in the beginning: [tex]y=-\frac{1}{2} (1.5)+\frac{7}{3}[/tex]
Solve for y. You should get 1.583 (19/12)
Plug in the values of x and y that we found into the last equation to find its value: 4(1.5+3(1.583))
Tommy is thinking of a number between 800 and 900 He divides it by 4 and there is a remainder of 1 He divides it by 5 and there is a remainder of 1 He divides it by 6 and there is a remainder of 1 He divides it by 7 and there is a remainder of 1
What is Tommy's number?
Answer:
841
Step-by-step explanation:
If the number is divided by 4 and the remainder is 1, the last digit must be 1, 3, 5, 7 or 9.
If the number is divided by 5 and the remainder is 1, the last digit must be 6 or 1.
So we already know the last digit must be 1.
The numbers between 800 and 900, with last digit 1, that divided by 6 have a remainder of 1 are:
811, 841, 871
The numbers between 800 and 900, with last digit 1, that divided by 7 have a remainder of 1 is just 841
So Tommy's number is 841.
Tommy's number is 841.
In this question we must determine first the least common number of 4, 5, 6 and 7, which is the product of these four numbers, that is to say:
[tex]x = 4\times 5\times 6 \times 7[/tex]
[tex]x = 840[/tex]
This is the least number that is divisible both for 4, 5, 6 and 7. Now we add this number by 1 to determine what number Tommy thought:
[tex]y = x + 1[/tex]
[tex]y = 841[/tex]
Tommy's number is 841.
To learn more on divisibility, we kindly invite to check the following verified question: https://brainly.com/question/369266
Given the parametric equations below, eliminate the parameter t to obtain an equation for y as a function of x { x ( t ) = 5 √ t y ( t ) = 7 t + 4
Answer:
y(x) = (7/25)x^2 + 4
Step-by-step explanation:
Given:
x = 5*sqrt(t) .............(1)
y = 7*t+4 ..................(2)
solution:
square (1) on both sides
x^2 = 25t
solve for t
t = x^2 / 25 .........(3)
substitute (3) in (2)
y = 7*(x^2/25) +4
y= (7/25)x^2 + 4
the depth D, in inches, od wsnow in my yard t hours after it started snowing this morning is given by D=1.5t + 4. if the depth of the snow is 7 inches now, what will be the depth one hour from now?
Answer:
8.5 inches
Step-by-step explanation:
First let's find the time t when the depth of the snow is 7 inches.
To do this, we just need to use the value of D = 7 then find the value of t:
[tex]7 = 1.5t + 4[/tex]
[tex]1.5t = 3[/tex]
[tex]t = 2\ hours[/tex]
We want to find the depth of snow one hour from now, so we just need to use the value of t = 3 to calculate D:
[tex]D = 1.5*3 + 4[/tex]
[tex]D = 4.5 + 4 = 8.5\ inches[/tex]
The depth of snow one hour from now will be 8.5 inches.
The depth of the snow one hour from now is 8.5 inches.
Let D represent the depth of snow in inches at time t. It is given by the relationship:
D=1.5t + 4
Since the depth of the snow is 7 inches now, hence, the time now is:
7 = 1.5t + 4
1.5t = 3
t = 2 hours
One hour from now, the time would be t = 2 + 1 = 3 hours. Hence the depth at this time is:
D = 1.5(3) + 4 = 8.5 inches
Therefore the depth of the snow one hour from now is 8.5 inches.
Find out more at: https://brainly.com/question/13911928
Please answer this correctly
Answer:
[tex] \frac{1}{6} [/tex]
Step-by-step explanation:
the ways of choosing 2 cards out of 4, is calculator by
[tex] \binom{4}{2} = 6[/tex]
so, 6 ways to select 2 cards.
but in only one way we can have 2 even cards. thus, the answer is
[tex] \frac{1}{6} [/tex]
Juan y maria mezclan cafe de colombia, cafe de brazil, cafe de guinea y cafe de venezuela en paquetes de un kilo. Observa la fraccion de kilo que utilizan de cada tipo de cafe y calcula la fraccion de kilo que representa el cafe de colombia
Answer:
Step-by-step explanation:
Ya que mezclan café colombiano, brasileño, guineano y venezolano en un paquete de un kilo. Igualmente deben agregar los cafés juntos.
Para encontrar la cantidad igual para cada café en 1 kilo, divida 1 kilo y los 4 cafés. Entonces la cantidad sería 1/4 (o 0.25) de café por kilo. La respuesta significa que cada uno de los cuatro cafés pesa 1/4 kilo.
Como cada café representa 1/4 kilo, el café colombiano representa 1/4 kilo.
Si necesita ayuda adicional, comente a continuación.
Add: (−2x^2 + 9x − 3) + (7x^2 − 4x + 2)
Answer:
5x^2+5x-1
Step-by-step explanation:
-2x^2+9x-3+7x^2-4x+2=5x^2+5x-1
the coordinates of the vertices of a polygon are shown below
D(-4,5),E(-1,5),F(1,2), and G(-1,-1)
what type of polygon is this figure?
heptagon
hexagon
octagon
quadrilateral
Answer:
Option D.
Step-by-step explanation:
The given vertices of a polygon are D(-4,5),E(-1,5),F(1,2), and G(-1,-1).
Here, number of vertices is 4.
In heptagon, number of vertices = 7
In hexagon, number of vertices = 6
In octagon, number of vertices = 8
In quadrilateral, number of vertices = 4
Since the given polygon has 4 vertices, therefore it is a quadrilateral.
Hence, option D is correct.
Answer:
d
Step-by-step explanation:
What is the solution for xin the equation?
4x-3 + 5 = 2x + 7 - 8x
Answer:
x = 1/2
Step-by-step explanation:
4x-3 + 5 = 2x + 7 - 8x
Combine like terms
4x +2 = 7-6x
Add 6x to each side
4x+2+6x = 7-6x+6x
10x+2 = 7
Subtract 2 from each side
10x+2-2 = 7-2
10x = 5
Divide by 10
10x/10 = 5/10
x = 1/2
Answer:
4x-3+5=2x+7-8x
4x-3+5=7-6x
4x+2=7-6x
4x+6x=7-2
10x=5
x=1/2
The time X(mins) for Ayesha to prepare breakfast for her family is believed to have a uniform
distribution with A=25 and B=35.
a) Determine the pdf of X and draw its density curve.
b) What is the probability that time taken by Ayesha to prepare breakfast exceeds 33 mins?
c) What is the probability that cooking or preparation time is within 2 mins of the mean time?
(Hint: Identify mean from the graph of f(x))
Answer:
(c) [tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]
(b) The probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.
(c) The probability that cooking or preparation time is within 2 mins of the mean time is 0.40.
Step-by-step explanation:
The random variable X follows a Uniform (25, 35).
(a)
The probability density function of an Uniform distribution is:
[tex]f_{X}(x)=\left \{ {{\frac{1}{B-A};\ A<X<B} \atop {0;\ Otherwise}} \right.[/tex]
Then the probability density function of the random variable X is:
[tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]
(b)
Compute the value of P (X > 33) as follows:
[tex]P(X>33)=\int\limits^{35}_{33} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{35}_{33} {1} \, dx \\\\=\frac{1}{10}\times [x]^{35}_{33}\\\\=\frac{35-33}{10}\\\\=\frac{2}{10}\\\\=0.20[/tex]
Thus, the probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.
(c)
Compute the mean of X as follows:
[tex]\mu=\frac{A+B}{2}=\frac{25+35}{2}=30[/tex]
Compute the probability that cooking or preparation time is within 2 mins of the mean time as follows:
[tex]P(30-2<X<30+2)=P(28<X<32)[/tex]
[tex]=\int\limits^{32}_{28} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{32}_{28}{1} \, dx \\\\=\frac{1}{10}\times [x]^{32}_{28}\\\\=\frac{32-28}{10}\\\\=\frac{4}{10}\\\\=0.40[/tex]
Thus, the probability that cooking or preparation time is within 2 mins of the mean time is 0.40.
-12
Natural
Whole
Integers
Rationals
Irrationals
Real
Answer:
the answer is integers if helpful please give 5 star
Which algebraic expression represents the phrase below? five times the sum of a number and eleven, divided by three times the sum of the number and eight 5(x + 11) + 3(x + 8) 5 x + 11 Over 3 x + 8 Start Fraction 5 (x + 11) Over 3 (x + 8) 5x + 11 + 3x + 8
Answer:
85
Step-by-step explanation:
im new↑∵∴∵∴∞
replace each star with a digit to make the problem true.Is there only one answer to each problem? ****-***=2
Answer: We have two solutions:
1000 - 998 = 2
1001 - 999 = 2
Step-by-step explanation:
So we have the problem:
****-*** = 2
where each star is a different digit, so in this case, we have a 4 digit number minus a 3 digit number, and the difference is 2.
we know that if we have a number like 99*, we can add a number between 1 and 9 and we will have a 4-digit as a result:
So we could write this as:
1000 - 998 = 2
now, if we add one to each number, the difference will be the same, and the number of digits in each number will remain equal:
1000 - 998 + 1 - 1 = 2
(1000 + 1) - (998 + 1) = 2
1001 - 999 = 2
now, there is a trivial case where we can find other solutions where the digits can be zero, like:
0004 - 0002 = 2
But this is trivial, so we can ignore this case.
Then we have two different solutions.
cuanto es log3 27 + log3 1 =
Which of the following statements are true? I. The sampling distribution of ¯ x x¯ has standard deviation σ √ n σn even if the population is not normally distributed. II. The sampling distribution of ¯ x x¯ is normal if the population has a normal distribution. III. When n n is large, the sampling distribution of ¯ x x¯ is approximately normal even if the the population is not normally distributed. I and II I and III II and III I, II, and III None of the above gives the complete set of true responses.
Complete Question
Which of the following statements are true?
I. The sampling distribution of [tex]\= x[/tex] has standard deviation [tex]\frac{\sigma}{\sqrt{n} }[/tex] even if the population is not normally distributed.
II. The sampling distribution of [tex]\= x[/tex] is normal if the population has a normal distribution.
III. When n is large, the sampling distribution of [tex]\= x[/tex] is approximately normal even if the the population is not normally distributed.
A I and II
B I and III
C II and III
D I, II, and III
None of the above gives the complete set of true responses.
Answer:
The correct option is D
Step-by-step explanation:
Generally the mathematically equation for evaluating the standard deviation of the mean([tex]\= x[/tex]) of samples is [tex]\frac{\sigma}{\sqrt{n} }[/tex] hence the the first statement is correct
Generally the second statement is true, that is the sampling distribution of the mean ([tex]\= x[/tex]) is normal given that the population distribution is normal
Now according to central limiting theorem given that the sample size is large the distribution of the mean ([tex]\= x[/tex]) is approximately normal notwithstanding the distribution of the population
Gwen has $20, $10, and $5 bills in her purse worth a total of $220. She has 15 bills in all. There are 3 more $20 bills than there are $10 bills. How many of each does she have?
Answer:
x = 8 ( 20$ bills)
y = 5 ( 10 $ bills)
z = 2 ( 5 $ bills)
Step-by-step explanation:
Let call x, y, and z the number of bill of 20, 10, and 5 $ respectively
then according to problem statement, we can write
20*x + 10*y + 5*z = 220 (1)
We also know the total number of bills (15), then
x + y + z = 15 (2)
And that quantity of 20 $ bill is equal to
x = 3 + y (3)
Now we got a three equation system we have to solve for x, y, and z for which we can use any valid procedure.
As x = 3 + y by substitution in equation (2) and (1)
( 3 + y ) + y + z = 15 ⇒ 3 + 2*y + z = 15 ⇒ 2*y + z = 12
20* ( 3 + y ) + 10*y + 5*z = 220 ⇒ 60 + 20*y + 10*y + 5*z = 220
30*y + 5*z = 160 (a)
Now we have only 2 equations
2*y + z = 12 ⇒ z = 12 - 2*y
30*y + 5*z = 160 30*y + 5* ( 12 - 2*y) = 160
30*y + 60 - 10*y = 160
20*y = 100
y = 100/20 y = 5 Then by substitution in (a)
30*y + 5*z = 160
30*5 + 5*z = 160
150 + 5*z = 160 ⇒ 5*z = 10 z = 10/5 z = 2
And x
x + y + z = 15
x + 5 + 2 = 15
x = 8
Answer:
x=8 y=5 x=2
Step-by-step explanation:
Sarah and Sunil are racing to see who is a faster dishwasher. Sarah cleaned 18 dishes in 10 minutes. Sunil cleaned 30 in 18 minutes. What was Sarah and Sunil's rate?
Answer:
1.8 dishes per minute (Sarah)
1.67 dishes per minute (Sunil)
Step-by-step explanation:
We can find the rate by dividing the number of dishes by the number of minutes:
18/10 = 1.8 dishes per minute
30/18 = 1.67 dishes per minute
If ∠1 and ∠2 are complementary and m∠1 = 17º, what is m∠2
Answer:
m<2 = 73
Step-by-step explanation:
Since <1 and <2 are complementary (which means that they equal 90), all you have to do is subtract 17 from 90 to find your answer:
90 - 17 = 73
thus, m<2 = 73
Answer:
73
Step-by-step explanation:
Several terms of a sequence StartSet a Subscript n EndSet Subscript n equals 1 Superscript infinity are given below. {1, negative 5, 25, negative 125, 625, ...} a. Find the next two terms of the sequence. b. Find a recurrence relation that generates the sequence (supply the initial value of the index and the first term of the sequence). c. Find an explicit formula for the general nth term of the sequence.
Answer:
(a) -3125, 15625
(b)
[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]
(c)[tex]a_n=(-5)^{n-1}[/tex]
Step-by-step explanation:
The sequence [tex]a_n$ _{n=1}^\infty[/tex] is given as:
[tex]\{1,-5,25,-125,625,\cdots\}[/tex]
(a)The next two terms of the sequence are:
625 X -5 = - 3125
-3125 X -5 =15625
(b)Recurrence Relation
The recurrence relation that generates the sequence is:
[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]
(c)Explicit Formula
The sequence is an alternating geometric sequence where:
Common Ratio, r=-5First Term, a=1Therefore, an explicit formula for the sequence is:
[tex]a_n=1\times (-5)^{n-1}\\a_n=(-5)^{n-1}[/tex]
On a Cartesian coordinate plane, points $(2,1)$ and $(3, 4)$ are adjacent points on a square. What is the area of the square?
Hey there! :)
Answer:
A = 10 units².
Step-by-step explanation:
To solve this, we need to find the distance between the two points to derive the side-lengths of the square. Use the distance formula:
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]
Plug in points into the formula to find the distance:
[tex]d = \sqrt{(3 - 2)^2 + (4-1)^2}[/tex]
Simplify:
[tex]d = \sqrt{(1)^2 + (3)^2}[/tex]
[tex]d = \sqrt{(1) + (9)}[/tex]
[tex]d = \sqrt{10}[/tex]
Find the area of the square using the formula A = s² where s = √10:
A = (√10)²
A = 10 units².
Answer:
10
Step-by-step explanation:
We use the distance formula to find the distance between the two points, which is the side length of the square.. Therefore, the area of the square is 10.
Select the correct answer.
Which graph represents a proportional relationship
If the relationship between two quantities is a proportional relationship, this relationship can be represented by the graph of a straight line through the origin with a slope equal to the unit rate. For each point (x, y) on the graph, ž is equal to k, where k is the unit rate. The point (1, k) is a point on the graph.
Hope this helps...
Which of the following is the
graph of
(x - 3)2 + (y - 1)2 = 9 ?
Answer:
Answer is A
Step-by-step explanation:
The equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.
What does the equation of a circle represent?The general equation of a circle is of the form (x - h)² + (y - k)² = r², where (h, k) is the point where the center of the given circle lies, and r is the radius of this given circle.
How to solve the question?In the question, we are asked to find the graph from the given options which represents the equation (x - 3)² + (y - 1)² = 9.
Comparing the given equation, (x - 3)² + (y - 1)² = 9, to the general equation, (x - h)² + (y - k)² = r², we can say that h = 3, k = 1, and r = 3.
Thus the center of the given circle lies at the point (3, 1) and its radius is 3 units.
Now we check the options to find the matching circle:
Option A: The center is at the point (3, -1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Option B: The center is at the point (3, 1), and the radius is 3 units, which is similar to the equation (x - 3)² + (y - 1)² = 9. Thus, this is the right choice.Option C: The center is at the point (-3, 1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Therefore, the equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.
Learn more about circles at
https://brainly.com/question/1559324
#SPJ2
Find the magnitudes of sides x and y.
Answer:
x ≈ 13.8 units
y ≈ 22.0 units
Step-by-step explanation:
We must use trigonometry to address this problem.
First, we know that y is the side opposite to the labelled angle, and x is the side adjacent to the labelled angle. 26 is the length of the hypotenuse.
We use cosine to find x (because cosine = adjacent / hypotenuse) and sine to find y (because sine = opposite / hypotenuse).
cos(58) = x/26
x = 26 * cos(58) ≈ 13.8
sin(58) = y/26
y = 26 * sin(58) ≈ 22.0
Thus, x ≈ 13.8 units and y ≈ 22.0 units.
~ an aesthetics lover