Answer:
Option B is the correct answer (Neptune has more methane)Explanation:
From the options given,
The atmospheric features of Neptune are easier to see than those of Uranus because Neptune has more methane
Neptune has small amount of methane and water which gives it blue colour and white patches which distinguish it from uranus
For more information, visit
http://abyss.uoregon.edu/~js/ast121/lectures/lec20.html
After 60 days, 100g of a certain element has decayed to only 12.5g.
What is the half- life of this element?
А
30 days
B.
8 days
С
20 days
D
5 days
Answer:
8 days
Explanation:
The diagram below shows a person swinging a hammer.
Which position has the least amount of kinetic energy?
A-1
B-2
C-3
D-4
Two parallel slits are illuminated by light composed of two wavelengths, one of which is 657 nm. On a viewing screen, the light whose wavelength is known produces its third dark fringe at the same place where the light whose wavelength is unknown produces its fourth-order bright fringe. The fringes are counted relative to the central or zeroth-order bright fringe. What is the unknown wavelength
Answer:
λ = 5.75 10⁻⁷ mm
Explanation:
This is a slit interference exercise, we analyze each wavelength separately
λ = 657 nm indicate that the third dark pattern
a sin θ = (m + ½) lam
a sin θ = (3 + ½) 657 10⁻⁹
a sin θ = 2299.5 10⁻⁹ nm
for the other wavelength in the same place we have m = 4 bright
a sin θ = m lam
we substitute
2299.5 10⁻⁹ = 4 λ
λ = [tex]\frac{2299.5 \ 10^9 }{ 4}[/tex]
λ = 5.75 10⁻⁷ mm
HELP PLZ
Calculate the resistivity of a metal of length 2m at 20°C having the resistance
of 20 ohm and diameter 0.3mm?
Answer:
40*C
Explanation:
A child moving at constant velocity carries a 2 N ice-cream cone 1 m across a level surface. What is the net work done on the ice-cream cone?
Answer:
2 Joule
Explanation:
Work=force *dISPLACMENT
2N*1M
2 JOUL
g a mass of 1.3 kg is pushed horizontally against a massless spring with a spring constant of 58 n/m until the spring compresses 19.5 cm if the mass is then released what is the kinetic energy of the mass when it is no longer in contact with the spring ignore friction
Answer: [tex]1.102\ J[/tex]
Explanation:
Given
Mass [tex]m=1.3\ kg[/tex]
Spring constant [tex]k=58\ N/m[/tex]
Compression in the spring [tex]x=19.5\ cm\ or\ 0.195\ m[/tex]
When the mass leaves the spring, the elastic potential energy of spring is being converted into kinetic energy of mass i.e.
[tex]\Rightarrow \dfrac{1}{2}kx^2=\dfrac{1}{2}mv^2\\\\\Rightarrow \dfrac{1}{2}\cdot 58\cdot (0.195)^2=\dfrac{1}{2}mv^2\\\\\Rightarrow \dfrac{1}{2}mv^2=1.102\ J[/tex]
The kinetic energy of the mass is 1.102 J.
Describe each of the FITT training principles. (Site 1
Answer:
The FITT principles are an exercise prescription to help participants understand how long and how hard they should exercise. FITT is acronym that stands for Frequency, Intensity, Time, and Type. FITT can be applied to exercise in general or specific components of exercise.
Explanation:
How long does it take for a 3.5 kW electric water heater to heat 40 kg of water? from 20 ° C to 75 ° C? The specific heat capacity of water is 4190 J/kgK PLEASE HURRY ITS A TEST
Answer:
2633.7 s
Explanation:
From the question,
Heat lost by the water heater = Heat gained by the water
Applying,
P = cm(t₂-t₁)/t.................. Equation 1
Where P = power of the heat, c = specific heat capacity of water, m = mass of water, t₁ = initial temperature, t₂ = final temperature, t = time
make t the subject of the equation
t = cm(t₂-t₁)/P.............. Equation 2
From the question,
Given: c = 4190 J/kgK, P = 3.5 kW = 3500 W, m = 40 kg, t₁ = 20°C, t₂ = 75°C
Substitute these values into equation 2
t = 4190×40(75-20)/3500
t = 9218000/3500
t = 2633.7 s
is it possible to have rainbows during the fine sunny day? Explain your answer.
Answer:
As long as there is rain, a rainbow is possible. Rain is possible on a sunny day, and is known as a sunshower.The rainbow can be observed in a sunny day if the water droplets are present in air and the sun rays pass through it reaches the eye of the observer. In this situation, the observer can see a rainbow.
or
If you happened to look up at the sky this past weekend, you might have noticed a rare and beautiful sight: iridescent rainbow clouds, but not a drop of rain in sight. This phenomenon is known, fittingly, as cloud iridescence or irisation. The effect is not unlike seeing a rainbow painted on the clouds.
A chemist measures the flow of charged ions through a circuit. Which of these would increase the current? Select all that apply.
Help me with this please
Answer:
check out of phase
Explanation:
this is my answer
Which of the following means that an
image is real?
A. +do
B. +di
c. -di
D.-do
Answer:
B
Explanation:
A boat that can travel at 4.60 km/h in still water crosses a river with a current of 1.80 km/h. At what angle must the boat be pointed upstream to travel straight across the river
Answer:
The angle the boat must be pointed upstream is 69⁰
Explanation:
Check the image uploaded for the diagram;
Given;
speed of the boat on still water, = 4.6 km/h
speed of the boat on a river with current, = 1.8 km/h
The angle the boat must be pointed upstream is calculated as follows
[tex]tan(\theta) = \frac{4.6}{1.8} \\\\tan(\theta) = 2.556\\\\\theta = tan^{-1}(2.556)\\\\\theta = 68.63^0\\\\\theta = 69^0[/tex]
7) The coefficient of performance (COP) of a refrigerator is defined as the ratio of A) the heat removed from the inside to the heat expelled (dismissed) to the outside. B) the heat expelled (dismissed) to the outside to the heat removed from the inside. C) the heat removed from the inside to the work done to remove the heat. D) the heat expelled (dismissed) to the outside to the work done to remove the heat
Answer:
C) the heat removed from the inside to the work done to remove the heat.
Explanation:
Refrigerator is a heat engine working in reverse direction . Heat from cold source is taken out , some work is done to remove them and total heat and work energy is thrown into outside surrounding .
If q heat is taken out and W is work done to get this heat out .
coefficient of performance ( COP ) = q / W .
Hence C ) is the right choice .
Help
An object’s mass 300 kg is observed to accelerate at the rate of 4 m/s^2. Calculate the force required to produce this acceleration. *
1. 1000 N
2 .75 N
3. 1200 N
4. 1250 N
True False: Marke each statement as true or false.
shift
1. Light intensity affects the rate of photosynthesis.
in
2. Energy is required by all organisms for life.
3. The ability of a plant to repair tissue depends on respiration.
4. The gas needed for photosynthesis is carbon dioxide (CO2).
5. Plants only carry on photosynthesis, not respiration.
6. Respiration can occur without photosynthesis.
Answer:
1) true 2) true 3) true 4) true 5) false 6) false
Explanation:
Write the differential equation that governs the motion of the damped mass-spring system, and find the solution that satisfies the initial conditions specified. Units are mks;
????
is the damping coefficient, with units of kg/sec.
m
This question is incomplete, the complete question is;
Write the differential equation that governs the motion of the damped mass-spring system, and find the solution that satisfies the initial conditions specified. Units are mks; γ is the damping coefficient, with units of kg/sec
m = 0.2, γ = 1.6 and k = 4
Initial displacement is 1 and initial velocity is -2
x" + _____ x' ____x = 0
x(t) =
Answer:
the solution that satisfies the initial conditions specified is;
x(t) = [tex]c_1e^{-4t}cos(2t)[/tex] + [tex]c_2e^{-4t}sin(2t)[/tex]
Explanation:
Given the data in the question ;
m = 0.2, γ = 1.6, k = 4
x(0) = 1, x'(0) = -2
Now, the differential equation that governs the motions of spring mass system is;
mx" + γx' + kx = 0
so we substitute
0.2x" + 1.6x' + 4x = 0
divide through by 0.2
x" + 8x' + 20x = 0
hence, characteristics equation will be;
m² + 8m + 20 = 0
we find m using; x = [ -b±√(b² - 4ac) ] / 2a
m = [ -8 ± √((8)² - 4(1 × 20 )) ] / 2(1)
m = [ -8 ± √( 64 - 80 ) ] / 2
m = [ -8 ± √-16 ) ] / 2
m = ( -8 ± 4i ) / 2
m = -4 ± 2i
Hence, the general solution of the differential equation is;
x(t) = [tex]c_1e^{-4t}cos(2t)[/tex] + [tex]c_2e^{-4t}sin(2t)[/tex]
From the initial conditions;
c₁ = 1, c₂ = 1
the solution that satisfies the initial conditions specified is;
x(t) = [tex]c_1e^{-4t}cos(2t)[/tex] + [tex]c_2e^{-4t}sin(2t)[/tex]
The temperature of a body is from 200 to 300C.The change of temp at absolute scale is
Answer:
mark me brainliest
Explanation:
The change of temperature at absolute scale is. A. 3.73 K
Answer:
373K
Explanation:
300°c - 200°c =100°c
Absolute scale means Kelvin scale so
0°c= 273°c
100°c = 100 + 273
=373K
An electrical insulator is a material that:
A) contains no charge
B) does not allow electrons to flow
C) has more protons than electrons
D) must be a crystal
Answer:
Option B is appropriate for this question
Two identical circular, wire loops 35.0 cm in diameter each carry a current of 2.80 A in the same direction. These loops are parallel to each other and are 24.0 cm apart. Line ab is normal to the plane of the loops and passes through their centers. A proton is fired at 2600 m/s perpendicular to line ab from a point midway between the centers of the loops.
Find the magnitude of the magnetic force these loops exert on the proton just after it is fired.
Answer:
The answer is "[tex]4659.2 \times 10^{-24} \ N[/tex]"
Explanation:
The magnetic field at ehe mid point of the coils is,
[tex]\to B=\frac{\mu_0 i R^2}{(R^2+x^2)^{\frac{3}{2}}}\\\\[/tex]
Here, i is the current through the loop, R is the radius of the loop and x is the distance of the midpoint from the loop.
[tex]\to B=\frac{(4\pi\times 10^{-7})(2.80\ A) (\frac{0.35}{2})^2}{( (\frac{0.35}{2})^2+ (\frac{0.24}{2})^2)^{\frac{3}{2}}}\\\\[/tex]
[tex]=\frac{(12.56 \times 10^{-7})(2.80\ A) \times 0.030625}{( 0.030625+ 0.0144)^{\frac{3}{2}}}\\\\=\frac{ 1.07702 \times 10^{-7} }{0.0095538976}\\\\=112.730955 \times 10^{-7}\\\\=1.12\times 10^{-5}\ \ T\\[/tex]
Calculating the force experienced through the protons:
[tex]F=qvB=(1.6 \times 10^{-19}) (2600)(1.12 \times 10^{-5})= 4659.2 \times 10^{-24}\ N[/tex]
David is driving a steady 30.0 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady 2.10 m/s2 at the instant when David passes. Part A How far does Tina drive before passing David
Answer:
Explanation:
Let after time t , Tina catches up David .
Distance travelled by them are equal ,
Distance travelled by Tina
s = ut + 1/2 a t²
= .5 x 2.10 t²
= 1.05 t²
Distance travelled by David
= 30 t ( because of uniform velocity )
1.05 t² = 30t
t = 28.57 s
Distance travelled by Tina
= 1/2 a t²
= .5 x 2.10 x 28.57²
= 857 m approx.
Answer: [tex]857\ m[/tex]
Explanation:
Given
Speed of David car [tex]v=30\ m/s[/tex]
Tina begins to accelerate [tex]2.1\ m/s^2[/tex] after David pass the tina
Suppose it took t time for tina to catch David
Distance traveled by David in t time
[tex]\Rightarrow s_d=30\times t[/tex]
Using the equation of motion to get the distance of Tina is
[tex]s_t=ut+\dfrac{1}{2}at^2\\\\s_t=0+\dfrac{1}{2}\times 2.1t^2[/tex]
now, [tex]s_d=s_t[/tex]
[tex]30t=\dfrac{2.1}{2}t^2\\\\\Rightarrow 2.1t^2-60t=0\\\Rightarrow t(2.1t-60)=0\\\Rightarrow t=0,28.57\ s[/tex]
Neglecting [tex]t=0[/tex]
Distance traveled by tina in [tex]28.57\ s[/tex] is
[tex]s_t=\dfrac{1}{2}\times 2.1\times (28.57)^2\\\\s_t=857.057\approx 857\ m[/tex]
A magnetic field of 0.27 T exists in the region enclosed by a solenoid that has 599 turns and a diameter of 9.29 cm. Within what period of time must the field be reduced to zero if the average magnitude of the induced emf within the coil during this time interval is to be 12.8 kV
Answer: [tex]8.54\times 10^{-5}\ s[/tex]
Explanation:
Given
The initial magnetic field is [tex]B=0.27\ T[/tex]
No of turns [tex]N=599\ \text{turns}[/tex]
Diameter of the solenoid [tex]d=9.29\ cm[/tex]
Induced EMF [tex]E=12.8\ kV[/tex]
Induced emf is the product of no of turns and rate of change of flux.
[tex]\Rightarrow E=-N\cdot \dfrac{\Delta \phi }{\Delta t}\\\\\Rightarrow E=-N\cdot \dfrac{\Delta (B\cdot A)}{\Delta t}\\\\\Rightarrow E=-NA\cdot \dfrac{\Delta B}{\Delta t}\\\\\text{Insert the values}\\\\\Rightarrow 12.8=-599\times \pi r^2\cdot \dfrac{(0-B)}{\Delta t}\\\\\Rightarrow \Delta t=\dfrac{599\times \pi \times (4.64\times 10^{-2})\times 0.27}{12.8\times 10^3} \\\\\Rightarrow \Delta t=854.71\times 10^{-7}\ s\\\\\text{Taking absolute value}\\\Rightarrow \Delta t=8.54\times 10^{-5}\ s[/tex]
How does rainwater contribute to aquatic succession
Answer:
Rain water carries sediment and then these accumulate on the bottom of ponds, lakes and wetlands. This accumulation build up over time and eventually, the water disappears (because they sink into the ground) and the area once covered with water becomes land.
Blue whales apparently communicate with each other using sound of frequency 17.0 Hz, which can be heard nearly 1000 away in the ocean. What is the wavelength of such a sound in seawater, where the speed of sound is 1531 m/s
Answer:
the wavelength of the sound in seawater is 90.1 m.
Explanation:
Given;
frequency of the sound, f = 17 Hz
speed of the sound in seawater, v = 1531 m/s
The wavelength of the wave is calculated as follows;
v = fλ
λ = v / f
where;
λ is the wavelength of the sound
λ = 1531 / 17
λ = 90.1 m
Therefore, the wavelength of the sound in seawater is 90.1 m.
9. Cellular respiration occurs in what types of cells?
Answer:
Cellular respiration takes place in the cells of all organisms. It occurs in autotrophs such as plants as well as heterotrophs such as animals. Cellular respiration begins in the cytoplasm of cells. It is completed in mitochondria
Explanation:
Cellular respiration takes place in the cells of all organisms. It happening in autotrophs such as plantas as well as heterotrophs such as animals. Cellular respiration starts in the cytoplasm of cells.
It is finished in mitochondria.
True or False? To observe physical properties in matter, the matter must change into a new substance.
Please help... I'm confused on what I represents in terms of solving the total current. Would variable would I be singling out?
Answer:
the researcher say hi for us the best pa the best of us are going out to eat that I can get my money toward a little bit but the best of luck to be at work by then and we will see what the status
The illustration shows ?
A)open circuit
B)broken circuit
C)series circuit
D)parallel circuit
Answer:
D)parallel circuit
Explanation:
the components are placed parallel from eachother
Light travels at 300,000,000 m/s. This is an example
Answer:
ook soooooo
Explanation:
A skydiver weighing 200 lbs with clothes that have a drag coefficient of .325 is falling in an area that has an atmospheric density of 1.225 kg/m2 (and assuming that altitude has a negligible effect on atmospheric density). The skydiver can change the body orientation from straight-erect with a cross-sectional area of 6 sqft to a belly-flat cross-sectional area of 24 sqft. Calculate the terminal velocity of the person when the body has straight and when the body has belly-flat orientations. Calculate the terminal velocity on these two different orientations.
Answer:
The right solution is:
(a) 89.455 m/s
(b) 44.73 m/s
Explanation:
The given values are:
Mass,
m = 200 lbs
or,
= [tex]\frac{200}{2.205} \ kg[/tex]
= [tex]90.7 \ kg[/tex]
Air's density,
[tex]\delta = 1.225 \ kg/m^3[/tex]
Drag coefficient,
[tex]C_d=0.325[/tex]
When body is straight, area,
[tex]A_1=6 \ ft^2[/tex]
As we know,
Terminal velocity,
⇒ [tex]V_t=\sqrt{\frac{2W}{C_d \delta A} }[/tex]
or,
⇒ [tex]=\sqrt{\frac{2mg}{C_d \delta A} }[/tex]
At straight orientation,
⇒ [tex]V_t'=\sqrt{\frac{2\times 90.7\times 9.8}{0.325\times 1.225\times 0.558} }[/tex]
⇒ [tex]=\sqrt{\frac{1777.72}{0.223}}[/tex]
⇒ [tex]=89.455 \ m/s[/tex]
When belly flat,
⇒ [tex]V_t''=\sqrt{\frac{2\times 90.7\times 9.8}{0.325\times 1.225\times 0.558\times 4} }[/tex]
⇒ [tex]=\sqrt{\frac{1777.72}{0.889} }[/tex]
⇒ [tex]=44.73 \ m/s[/tex]