Answer:
C.
Step-by-step explanation:
Step 1: Multiply jar weights
12(10) = 120 oz
Step 2: Convert lbs to oz
16 + 14 = 30 oz
Step 3: Add weights
150 oz
Step 4: Convert to lbs
150/16 = 75/8 = 9.375 lbs
9.375 lbs = 9 lbs 6 oz
The angles of a
quadrilateral, taken in order
are y, 5y, 4y
and
2y.
Find these angles
Answer:
30, 150, 120, and 60 degrees
Step-by-step explanation:
Since the sum of the interior angles in a quadrilateral is 360 degrees:
y+5y+4y+2y=360
12y=360
y=30
2y=60, 4y=120, 5y=150
Hope this helps!
Step-by-step explanation:
y+5y+ 4y + 2y=360°(sum of a Quadrilateral)
12y=360°
divide both sides by 12
y=30°
5y=(5×30)=150°
4y=(4×30)=120°
2y=(2×30)=60°
Approximate the area under the curve y = x^3 from x = 2 to x = 5 using a Right Endpoint approximation with 6 subdivisions.
Answer:
182.8125
Step-by-step explanation:
Given:
y = x^3
from [2,5] using 6 subdivisions
deltax = (5 - 2)/6 = 3/6 = 0.5
hence the subdivisions are:
[2, 2.5]; [2.5, 3]; [3, 3.5]; [3.5, 4]; [4, 3.5]; [4.5, 5]
hence the right endpoints are:
x1 = 2.5; x2 = 3; x3 = 3.5; x4 =4; x5 = 4.5; x6 = 5
now the area is given by:
A = deltax*[2.5^3 + 3^3 + 3.5^3 + 4^3+ 4.5^3 + 5^3]
A = 0.5*365.625
A = 182.8125
Area using Right Endpoint approximation is 182.8125
The area of the region is an illustration of definite integrals.
The approximation of the area of the region R is 182.8125
The given parameters are:
[tex]\mathbf{f(x) = x^3}[/tex]
[tex]\mathbf{Interval = [2,5]}[/tex]
[tex]\mathbf{n = 6}[/tex] ------ sub intervals
Using 6 sub intervals, we have the partitions to be:
[tex]\mathbf{Partitions = [2,2.5]\ u\ [2.5, 3]\ u\ [3,3.5]\ u\ [3.5,4]\ u\ [4,4.5]\ u\ [4.5,5]}[/tex]
List out the right endpoints
[tex]\mathbf{x= 2.5,\ 3,\ 3.5,\ 4,\ 4.5,\ 5}[/tex]
Calculate f(x) at these partitions
[tex]\mathbf{f(2.5) = 2.5^3 = 15.625}[/tex]
[tex]\mathbf{f(3) = 3^3 = 27}[/tex]
[tex]\mathbf{f(3.5) = 3.5^3 = 42.875}[/tex]
[tex]\mathbf{f(4) = 4^3 = 64}[/tex]
[tex]\mathbf{f(4.5) = 4.5^3 = 91.125}[/tex]
[tex]\mathbf{f(5) = 5^3 = 125}[/tex]
So, the approximated value of the definite integral is:
[tex]\mathbf{\int\limits^5_2 {f(x)} \, dx \approx \frac{1}{2}(\sum f(x))}[/tex]
This becomes
[tex]\mathbf{\int\limits^5_2 {f(x)} \, dx \approx \frac{1}{2}(15.625 + 27 + 42.875 + 64+91.125 + 125)}[/tex]
[tex]\mathbf{\int\limits^5_2 {f(x)} \, dx \approx \frac{1}{2} \times 365.625}[/tex]
[tex]\mathbf{\int\limits^5_2 {f(x)} \, dx \approx 182.8125}[/tex]
Hence, the approximation of the area of the region R is 182.8125
Read more about definite integrals at:
https://brainly.com/question/9897385
What is the best description of the transformation shown?What is the best description of the transformation shown?
Answer:
the correct answer is a reflection over the y axis
Step-by-step explanation:
The best description of the transformation shown will be;
''Reflection over the y - axis.''
What is Translation?
A transformation that occurs when a figure is moved from one location to another location without changing its size or shape is called translation.
Given that;
The transformation is shown in figure.
Now,
Clearly, A'B'C'D' is the mirror image of the ABCD across the y - axis.
So, The best description of the transformation shown will be;
''Reflection over the y - axis.''
Thus, The best description of the transformation shown will be;
''Reflection over the y - axis.''
Learn more about the translation visit:
https://brainly.com/question/1046778
#SPJ6
PLZ I need Help the Question is: 5+13·18+85÷17−11
Answer:
233
Step-by-step explanation:
Find the intersection point for the following linear functions. f(x) = 2x + 3 g(x) = -4x − 27
Answer:
(- 5, - 7 )
Step-by-step explanation:
Equate f(x) and g(x), that is
2x + 3 = - 4x - 27 ( add 4x to both sides )
6x + 3 = - 27 ( subtract 3 from both sides )
6x = - 30 ( divide both sides by 6 )
x = - 5
Substitute x = - 5 into either of the 2 functions for y- coordinate
Substituting into f(x)
f(- 5) = 2(- 5) + 3 = - 10 + 3 = - 7
Thus point of intersection = (- 5, - 7 )
PLEASE HELP!!(PIC INCLUDED)
Which of the following steps were applied to ABCD to obtain A'B'C'D?
A. shifted 3 units right and 2 units down
B. shifted 4 units right and 2 units down
C. shifted 2 units right and 3 units down
D. shifted 3 units right and 1 unit down
Answer:
A. Shifted 3 unit right and 2 unit down
Step-by-step explanation:
Let's determine the reason for the answer.
We will use a reference point, only one point to determine the reason.
Because the both shape are identical.
Let's use point A
The position of A is 2 on the y axis and 1 on the x axis
While the position of A' is 0 on the y axis and 4 on the X asis
Let's know how many units where moved from the position.
A' -A
For X axis
4-1= 3
For y axis
0-2= 2(we need only the magnitude)
So its 2 units Down and 3 unit right
What is the value of - x^2 -4 x -11 if x =.3
Answer: -32
Step-by-step explanation:
I'm just going to plug in and break down the equation to make it more understandable and easier to comprehend
-(3^2) - (4*3) -11
-(9)- (12) -11
-9 - 12 - 11
-21 -11
-32
Which statement explains if a dilation was applied? A dilation was applied to the fabric because the width of the fabric was preserved. A dilation was applied to the fabric because the angle measures were preserved. A dilation was not applied to the fabric because the angle measures are the same. A dilation was not applied to the fabric because the length was changed, not the width.
Answer:
A dilation was not applied to the fabric because the length was changed, not the width.
Step-by-step explanation: B was not the answer it was D.
Answer:
D.
Step-by-step explanation:
Edge 2022.
Find the missing side and round the answer to the nearest tenth. Thanks.
Answer:
22.2
Step-by-step explanation:
The missing side is x
cos19° = 21/x switch x and cos19° x = 21/cos 19°x = 22.21≈ 22.2
Which statements about the circle are correct? Check all that apply Arc PQ is congruent to arc SR. The measure of arc QR is 150 The circumference of circle C is cm. Arc PS measures about 13.1 cm. QS measures about 15.7 cm.
Answer:
1st 2nd 4th 5th
Find the value of x for which a ll b
Answer:
x=35
Step-by-step explanation:
The surnames of 40 children in a class arranged in alphabetical order. 16 of the surnames begins with O and 9 of the surname begins with A, 14, of the letters of the alphabet do not appear as the first letter of a surname If more than one surname begins with a letter besides A and O, how may surnames begin with that letter?
Step-by-step explanation:
40children - 23 (with A, O) = 17left
26 letter in alphabet- ( A, O) = 24 letter left
24 letters left - 14 (not used for 1st letters) = 10
10 letters left to use/ 17 children left
10÷17 = 0.5882352941 x 10 =5.8 or as close to 6 I can get
There are six surnames that start with each letter other than A and O when more than one surname does.
What are permutation and combination?A permutation is an orderly arrangement of things or numbers. Combinations are a means to choose items or numbers from a collection or set of items without worrying about the items' chronological order.
Given, The surnames of 40 children in a class are arranged in alphabetical order. 16 of the surnames begins with O and 9 of the surname begins with A.
Since, 14, of the letters of the alphabet do not appear as the first letter of a surname
14 of the letters of the alphabet do not appear as the first letter of the surname
∴ the no. of letters that appeared = 26-14 = 12 alphabets
15 surnames begin with 10 letters beside O and A
∴ 6 surnames begin with a letter
Therefore, If more than one surname begins with a letter besides A and O, 6 surnames begin with that letter.
Learn more about Permutation and combination here:
https://brainly.com/question/15268220
#SPJ2
Two similar biscuit tins hold the same type of biscuits. The net mass of biscuits in the smaller tin is 1 kg. Find the net mass of biscuits in the larger tin. Net mass of biscuits in larger tin = __?_ kg
Answer:
1.5 kg
Step-by-step explanation:
Assuming it scales linearly: the higher tin holds 9/6 as many biscuits, so:
9/6 · 1 kg = 1.5 kg
Find the value of x in the figure
(X+5)* 90*
Answer:
x = 85 deg
Step-by-step explanation:
We can see that there are two straight lines that intersect and that the two angles given are opposite angles.
Because they are opposite angles, the two angles have the same value, i.e
(x + 5) = 90 (subtract 5 from each side)
x = 90 - 5
x = 85 deg
What is the solution to the system of equations?
y=-3x – 2
5x + 2y = 15
0 (-40. 19)
(-19.55)
(19-40)
(55.-19)
Answer:
Step-by-step explanation:
y = -3x - 2
5x + 2y = 15
5x + 2(-3x -2) = 15
5x -6x - 4 = 15
-x - 4 = 15
-x = 19
x = -19
y = -3(-19) - 2
y = 57 - 2
y = 55
(-19, 55)
solution is b
Given: a concave polygon Conjecture: It can be regular or irregular
Answer:
[tex]false[/tex]Step-by-step explanation:
A concave polygon can never be regular (all sides and angles must be congruent). Hope this helps..
The triangle ABC formed by AB = 13cm, BC=5cm and
AC = 12cm is
Answer:
Right-angle triangle
Step-by-step explanation:
Which function is graphed below?
Answer:
Piecewise function;
y = 2x - 2 where x < 2
4 where 2 ≤ x ≤ 5
y = x + 1 where x > 5
Step-by-step explanation:
Function graphed represents the piecewise function.
1). Equation of the line with y-intercept (-2) and slope 'm'.
Since, slope of the line = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]
= [tex]\frac{2}{1}[/tex]
= 2
Therefore, equation of this segment will be in the form of y = mx + b,
⇒ y = 2x - 2 where x < 2
2). Equation of a horizontal line,
y = 4 where 2 ≤ x ≤ 5
3). Equation of the third line in the interval x > 5
Let the equation of the line is,
y = mx + b
Where m = slope of the line
b = y-intercept
Here, slope 'm' = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]
= [tex]\frac{2}{2}[/tex]
= 1
Equation of this line will be,
y = 1(x) + b
y = x + b
Since, this line passes through (5, 6),
6 = 5 + b
b = 6 - 5 = 1
Therefore, equation of this line will be,
y = x + 1 where x > 5
Graphed piecewise function is,
y = 2x - 2 where x < 2
4 where 2 ≤ x ≤ 5
y = x + 1 where x > 5
Write the equation of each line in slope intercept form (If possible please show work)
Hope it make sense now :)
Solve by quadratic Formula:
Answer:
x = 1, x = .333
Step-by-step explanation:
Answer:
x = 1 and x = 1/3
Step-by-step explanation:
Here the coefficients of this quadratic are a = 3, b = -4 and c = 1.
The discriminant is b^2 - 4ac, or (-4)^2 - 4(3)(1) = 16 - 12 = 4.
Thus, the roots are:
-(-4) ± √4 4 ± 2
x = ---------------- = ------------- => x = 1 and x = 1/3
2(3) 6
A director of the library calculates that 10% of the library's collection is checked out. If the director is right, what is the probability that the proportion of books checked out in a sample of 899 books would be less than 11%? Round your answer to four decimal places.
Answer:
0.8413
Step-by-step explanation:
p = 0.10
σ = √(pq/n) = 0.01
z = (x − μ) / σ
z = (0.11 − 0.10) / 0.01
z = 1
P(Z < 1) = 0.8413
The probability that the proportion of books checked out in a sample of 899 books would be less than 11% is approximately 0.5425.
We have,
We can use the normal approximation to the binomial distribution to find the probability that the proportion of books checked out in a sample of 899 books would be less than 11%.
First, we need to calculate the mean and standard deviation of the binomial distribution:
Mean:
np = 899 × 0.1 = 89.9
Standard deviation:
√(np(1-p)) = √(899 × 0.1 × 0.9) = 9.427
Next, we need to standardize the sample proportion of 11% using the formula:
z = (x - μ) / σ
where x is the sample proportion, μ is the mean of the distribution, and σ is the standard deviation of the distribution.
Substituting the values we have, we get:
z = (0.11 - 0.1) / 0.9427 = 0.1059
Using a standard normal distribution table or calculator, we can find that the probability of getting a z-score less than 0.1059 is 0.5425.
Therefore,
The probability that the proportion of books checked out in a sample of 899 books would be less than 11% is approximately 0.5425.
Rounded to four decimal places, the answer is 0.5425.
Learn more about probability here:
https://brainly.com/question/11234923
#SPJ2
–9(w + 585) = –360 w = ______
Answer:
w = 15
Step-by-step explanation:
-9(w + 585) = -360w
-9w -5265 = -360w
351w = 5265
w=15
LM=9, NR=16, SR=8. Find the perimeter of △SMP.
HURRY FIRST ANSWER I WILL MARK YOU AS BRAINLILIST PROMISE
Answer:
perimeter of △SMP = 25Step-by-step explanation:
The perimeter of the triangle △SMP is the sum of al the sides of the triangle.
Perimeter of △SMP = ||MS|| + ||MP|| + ||SP||
Note that the triangle △LRN, △LSM, △MPN and △SRP are all scalene triangles showing that their sides are different.
Given LM=9, NR=16 and SR=8
NR = NP+PR
Since NP = PR
NR = NP+NP
NR =2NP
NP = NR/2 = 16/2
NP = 8
From △LSM, NP = PR = MS = 8
Also since LM = MN, MN = 9
From △SRP, SR = RP = PS = 9
Also SR = MP = 8
From the equation above, perimeter of △SMP = ||MS|| + ||MP|| + ||SP||
perimeter of △SMP = 8+8+9
perimeter of △SMP = 25
Mr.Chang needs to ship 8 boxes of cookies in a packing carton. Each box is a tight rectangular prism 8 inches long, 5 inches wide, and 3 inches high. What is the volume in cubic inches, of each box?
Answer:
120 inches cubed
Step-by-step explanation:
The formula for finding the volume of a rectangular prism is length * width * height.
In this case, 8 inches long is the length, 5 inches is the width, and 3 inches is the height.
So multiplying all of those together gets you 120 inches cubed.
A box is filled with 3 yellow cards , 4 green cards. A card is chosen at random from the box. What is the probability that the card is not green?
Answer:
3/7
Step-by-step explanation:
total cards 3+4 = 7
Not green = 7-4 = 3 cards
P ( not green )= not green cards / total = 3/7
Answer:
3/7.
Step-by-step explanation:
There are seven cards in total, four of them being green.
The knowledge of the color of the other cards aren't really nessesary, so you can just subtract four from seven, which is three.
Hope this helped!
A 1-inch rise for a 16-inch run makes it easier for the wheelchair rider to ascend a ramp. How long must a ramp be to easily accommodate a 24-inch rise to the door?
Answer: The ramp must be 32 feet long. In inches, 384.
Step-by-step explanation:
For each 16 inches of run, there is one inch of rise. To get 24 inches of rise, multiply 16 by 24 to get 384 inches. To convert to a more useful measurement, convert to feet. 12 inches per foot. 384/12 = 32
Measurement is the process of assigning numbers to physical quantities and phenomena.
If a 1-inch rise for a 16-inch run makes it easier for the wheelchair rider, this can be expressed as:
1inch rise = 16-inch run
In order to determine how long must a ramp be to easily accommodate a 24-inch rise to the door, we can write:
24in rise = x
Divide both expressions:
[tex]\dfrac{1}{24}=\dfrac{16}{x}\\[/tex]
Cross multiply:
[tex]x=16 \times 24\\x=384inches[/tex]
Hence the ramp must be 384inches long in order to easily accommodate a 24-inch rise to the door.
Learn more here: https://brainly.com/question/14503610
A researcher was interested in comparing the resting pulse rates of people who exercise regularly and people who do not exercise regularly. Independent simple random samples of 16 people ages 30 dash 40 who do not exercise regularly and 12 people ages 30 dash 40 who do exercise regularly were selected, and the resting pulse rate (in beats per minute) of each person was measured. The summary statistics are to the right. Apply the nonpooled t-interval procedure to obtain a 95% confidence interval for the difference, mu 1 minus mu 2, between the mean pulse rate of people who do not exercise and the mean pulse rate of people who do exercise. Assume that the requirements for using the procedure are satisfied and round to two decimal places.
Answer:
We Reject H₀ if t calculated > t tabulated
But in this case,
0.83 is not greater than 2.056
Therefore, we failed to reject H₀
There is no difference between the mean pulse rate of people who do not exercise and the mean pulse rate of people who do exercise.
Step-by-step explanation:
Refer to the attached data.
The Null and Alternate hypothesis is given by
Null hypotheses = H₀: μ₁ = μ₂
Alternate hypotheses = H₁: μ₁ ≠ μ₂
The test statistic is given by
[tex]$ t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} } } $[/tex]
Where [tex]\bar{x}_1[/tex] is the sample mean of people who do not exercise regularly.
Where [tex]\bar{x}_2[/tex] is the sample mean of people who do exercise regularly.
Where [tex]s_1[/tex] is the sample standard deviation of people who do not exercise regularly.
Where [tex]s_2[/tex] is the sample standard deviation of people who do exercise regularly.
Where [tex]n_1[/tex] is the sample size of people who do not exercise regularly.
Where [tex]n_2[/tex] is the sample size of people who do exercise regularly.
[tex]$ t = \frac{72.7 - 69.7}{\sqrt{\frac{10.9^2}{16} + \frac{8.2^2}{12} } } $[/tex]
[tex]t = 0.83[/tex]
The given level of significance is
1 - 0.95 = 0.05
The degree of freedom is
df = 16 + 12 - 2 = 26
From the t-table, df = 26 and significance level 0.05,
t = 2.056 (two-tailed)
Conclusion:
We Reject H₀ if t calculated > t tabulated
But in this case,
0.83 is not greater than 2.056
Therefore, We failed to reject H₀
There is no difference between the mean pulse rate of people who do not exercise and the mean pulse rate of people who do exercise.
Pleaseeee hheeelppp mmmeee
Answer:
A
90 degrees
anticlockwise.
Step-by-step explanation:
It looks much more complicated than it really is. I don't know how to explain this in any other form but to give the answers.
1 A
The center of rotation is where the 90 degree angle has its vertex. So that would be A.
1 B
Follow x. It rotates 90 degrees. So every point must rotate 90 degrees.
1 C
The direction is against the way the clock tells time, so the direction of rotation is anticlockwise.
A population consists of 500 elements. We want to draw a simple random sample of 50 elements from this population. On the first selection, the probability of an element being selected is
A. 0.100
B. 0.010
C, 0.001
D. 0.002
Answer:
D. 0.002
Step-by-step explanation:
Given;
total number of sample, N = 500 elements
50 elements are to be drawn from this sample.
The probability of the first selection, out of the 50 elements to be drawn will be = 1 / total number of sample
The probability of the first selection = 1 / 500
The probability of the first selection = 0.002
Therefore, on the first selection, the probability of an element being selected is 0.002
The correct option is "D. 0.002"
On the first selection, the probability of an element being selected is 0.002. Option D is correct.
Given information:
A population consists of 500 elements. so, the total number of samples will be [tex]N = 500[/tex] .
We want to draw a simple random sample of 50 elements.
The probability is defined as the preferred outcomes divided by the total number of samples.
So, the probability of first selection will be calculated as,
[tex]P=\dfrac{1}{500}\\P=0.002[/tex]
Therefore, on the first selection, the probability of an element being selected is 0.002.
For more details, refer to the link:
https://brainly.com/question/18722707
what is 1/4 x 1/4 x 1/4
Answer:
1/64
Step-by-step explanation:
1/4 × 1/4 × 1/4
Multiply the fractions.
1/4³
= 1/64
Answer:
The answer is 1/64.
Step-by-step explanation:
1/4 x 1/4 x 1/4 = 1/64
In other ways, you can write this as: 1/4³
Hope this helped!