En el triángulo rectángulo ABC, recto en “B”, SI Tg C = 3/5, hallar el valor “cosec A”

Answers

Answer 1

Answer: Cosec(A) = 3.64

Step-by-step explanation:

Ok, tenemos un triangulo rectángulo.

Sabemos que B = 90° y que  

tg(C) = 3.5

entonces:

Atg(Tg(C)) = C = Atg(3.5) = 74.05°.

Nosotros también sabemos que la suma de todos los ángulos interiores de un triangulo es igual que 180°

entonces:

A + B + C = 180°

A + 90° + 74.05° = 180°

A = 180° - 90° - 74.05° = 15.95°

Entonces Cosec(A) = Cosec(15.95°) = 1/sin(15.95°) = 3.64


Related Questions

Suppose the proportion X of surface area in a randomly selected quadrat that is covered by a certain plant has a standard beta distribution with α = 4 and β = 3.(a) Compute E(X) and V(X). (Round your answers to four decimal places.)E(X) = Correct: Your answer is correct.V(X) = Correct: Your answer is correct.(b) Compute P(X ≤ 0.5). (Round your answer to four decimal places.)

Answers

Answer:

(a) The value of E (X) is 4/7.

    The value of V (X) is 3/98.

(b) The value of P (X ≤ 0.5) is 0.3438.

Step-by-step explanation:

The random variable X is defined as the proportion of surface area in a randomly selected quadrant that is covered by a certain plant.

The random variable X follows a standard beta distribution with parameters α = 4 and β = 3.

The probability density function of X is as follows:

[tex]f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} ; \hspace{.3in}0 \le x \le 1;\ \alpha, \beta > 0[/tex]

Here, B (α, β) is:

[tex]B(\alpha,\beta)=\frac{(\alpha-1)!\cdot\ (\beta-1)!}{((\alpha+\beta)-1)!}[/tex]

            [tex]=\frac{(4-1)!\cdot\ (3-1)!}{((4+3)-1)!}\\\\=\frac{6\times 2}{720}\\\\=\frac{1}{60}[/tex]

So, the pdf of X is:

[tex]f(x) = \frac{x^{4-1}(1-x)^{3-1}}{1/60}=60\cdot\ [x^{3}(1-x)^{2}];\ 0\leq x\leq 1[/tex]

(a)

Compute the value of E (X) as follows:

[tex]E (X)=\frac{\alpha }{\alpha +\beta }[/tex]

         [tex]=\frac{4}{4+3}\\\\=\frac{4}{7}[/tex]

The value of E (X) is 4/7.

Compute the value of V (X) as follows:

[tex]V (X)=\frac{\alpha\ \cdot\ \beta}{(\alpha+\beta)^{2}\ \cdot\ (\alpha+\beta+1)}[/tex]

         [tex]=\frac{4\cdot\ 3}{(4+3)^{2}\cdot\ (4+3+1)}\\\\=\frac{12}{49\times 8}\\\\=\frac{3}{98}[/tex]

The value of V (X) is 3/98.

(b)

Compute the value of P (X ≤ 0.5) as follows:

[tex]P(X\leq 0.50) = \int\limits^{0.50}_{0}{60\cdot\ [x^{3}(1-x)^{2}]} \, dx[/tex]

                    [tex]=60\int\limits^{0.50}_{0}{[x^{3}(1+x^{2}-2x)]} \, dx \\\\=60\int\limits^{0.50}_{0}{[x^{3}+x^{5}-2x^{4}]} \, dx \\\\=60\times [\dfrac{x^4}{4}+\dfrac{x^6}{6}-\dfrac{2x^5}{5}]\limits^{0.50}_{0}\\\\=60\times [\dfrac{x^4\left(10x^2-24x+15\right)}{60}]\limits^{0.50}_{0}\\\\=[x^4\left(10x^2-24x+15\right)]\limits^{0.50}_{0}\\\\=0.34375\\\\\approx 0.3438[/tex]

Thus, the value of P (X ≤ 0.5) is 0.3438.

Let the sample space be
S = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Suppose the outcomes are equally likely. Compute the probability of the event E = 1, 2.

Answers

Answer:

probability of the event E = 1/5

Step-by-step explanation:

We are given;

Sample space, S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

Number of terms in sample S is;

n(S) = 10

We are given the event; E = {1, 2}

Thus, number of terms in event E is;

n(E) = 2

Now, Probability = favorable outcomes/total outcomes

Thus, the probability of the event E is;

P(E) = n(E)/n(S)

P(E) = 2/10

P(E) = 1/5

Subtract -6 4/9-3 2/9-8 2/9

Answers

Answer:

[tex]-\frac{161}{9}=\\or\\-16\frac{8}{9}[/tex]

Step-by-step explanation:

[tex]-6\frac{4}{9}-3\frac{2}{9}-8\frac{2}{9}=\\\\-\frac{58}{9}-\frac{29}{9}-\frac{74}{9}=\\\\-\frac{161}{9}=\\\\-16\frac{8}{9}[/tex]

Please help me find Jebel dhanna in UAE map.​

Answers

Jebel dhanna is in Abu Dhabi

Answer:

The full name of the place is the "Danat Jebel Dhanna".  The Jebel Dhanna is currently located in the Abu Dhabi.  It is said that it is one of the most best beach in the UAE, they also say that it is the biggest resort, of course, with a bunch of hotels.

hope this helps ;)

best regards,

`FL°°F~` (floof)

All the employees of ABC Company are assigned ID numbers. The ID number consists of the first letter of an employee's last name, followed by three numbers. (a) How many possible different ID numbers are there

Answers

Answer:

there will be 9 id no. which it contains

The volume of a trianglular prism is 54 cubic units. What is the value of x?
3
5
7
9

Answers

Answer:

X is 3 units.

Step-by-step explanation:

Volume of prism is cross sectional area multiplied by length. So 1/2 ×2× x ×2 into 3x, which is equal to 6x^2. So, 6x^2=54. Therefore, x=3.

Suppose that we want to generate the outcome of the flip of a fair coin, but that all we have at our disposal is a biased coin which lands on heads with some unknown probability p that need not be equal to1/2. Consider the following procedure for accomplishing our task:
1. Flip the coin.
2. Flip the coin again.
3. If both flips land on heads or both land on tails, return to step 1. 4. Let the result of the last flip be the result of the experiment.
(a) Show that the result is equally likely to be either heads or tails.
(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?

Answers

Answer:

Step-by-step explanation:

Given that;

the following procedure for accomplishing our task are:

1. Flip the coin.

2. Flip the coin again.

From here will know that the coin is first flipped twice

3. If both flips land on heads or both land on tails, it implies that we return to step 1 to start again. this makes the flip to be insignificant since both flips land on heads or both land on tails

But if the outcomes of the two flip are different i.e they did not land on both heads or both did not land on tails , then we will consider such an outcome.

Let the probability of head = p

so P(head) = p

the probability of tail be = (1 - p)

This kind of probability follows a conditional distribution and the probability  of getting heads is :

[tex]P( \{Tails, Heads\})|\{Tails, Heads,( Heads ,Tails)\})[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) \cap \{Tails, Heads,( Heads ,Tails)\})}{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) }{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) } { {P( Tails, Heads) +P( Heads ,Tails)}}[/tex]

[tex]=\dfrac{(1-p)*p}{(1-p)*p+p*(1-p)}[/tex]

[tex]=\dfrac{(1-p)*p}{2(1-p)*p}[/tex]

[tex]=\dfrac{1}{2}[/tex]

Thus; the probability of getting heads is [tex]\dfrac{1}{2}[/tex] which typically implies that the coin is fair

(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?

For a fair coin (0<p<1) , it's certain that both heads and tails at the end of the flip.

The procedure that is talked about in (b) illustrates that the procedure gives head if and only if the first flip comes out tail with probability 1 - p.

Likewise , the procedure gives tail if and and only if the first flip comes out head with probability of  p.

In essence, NO, procedure (b) does not give a fair coin flip outcome.

Find the equation of the line.
Use exact numbers.
y=

Answers

Answer:

y = 2x+4

Step-by-step explanation:

First we need to find the slope using two points

(-2,0) and (0,4)

m = (y2-y1)/(x2-x1)

m = (4-0)/(0--2)

   = 4/+2

   = 2

we have the y intercept  which is 4

Using the slope intercept form of the line

y = mx+b where m is the slope and b is the y intercept

y = 2x+4

The length of a rectangle is 9 more than the width. The area is 162 square centimeters. Find the length and width of the rectangle.

Answers

Answer:

Length: 18

Width: 9

Step-by-step explanation:

Denote the width as x, hence the length is x+9. As a result, you can create the equation x(x+9) = 162. Solving, you find x = 9.

Write the expression in simplest form 3(5x) + 8(2x)

Answers

Answer:

31x

[tex]solution \\ 3(5x) + 8(2x) \\ = 3 \times 5x + 8 \times 2x \\ = 15x + 16x \\ = 31x[/tex]

hope this helps...

Good luck on your assignment...

The expression  [tex]3(5x) + 8(2x)[/tex] in simplest form is 31x.

To simplify the expression [tex]3(5x) + 8(2x)[/tex], we can apply the distributive property:

[tex]3(5x) + 8(2x)[/tex]

[tex]= 15x + 16x[/tex]

Combining like terms, we have:

[tex]15x + 16x = 31x[/tex]

Therefore, the expression [tex]3(5x) + 8(2x)[/tex] simplifies to [tex]31x.[/tex]

To learn more on Expressions click:

https://brainly.com/question/14083225

#SPJ6

In an office complex of 1110 employees, on any given day some are at work and the rest are absent. It is known that if an employee is at work today, there is an 77% chance that she will be at work tomorrow, and if the employee is absent today, there is a 54% chance that she will be absent tomorrow. Suppose that today there are 899 employees at work.

Required:
a. Find the transition matrix for this scenario.
b. Predict the number that will be at work five days from now.
c. Find the steady-state vector.

Answers

Answer:

B

Step-by-step explanation:

The distribution of the number of hours of sleep people get per night is unimodal and symmetric with a mean of 6 hours and a standard deviation of 1.5. Using the Empirical Rule, approximately what percentage of people sleep between 6 and 7.5 hours per night

Answers

Answer:

Approximately 34% of people sleep between 6 and 7.5 hours per night

Step-by-step explanation:

The Empirical Rule states that, for a normally distributed random variable:

68% of the measures are within 1 standard deviation of the mean.

95% of the measures are within 2 standard deviation of the mean.

99.7% of the measures are within 3 standard deviations of the mean.

In this problem, we have that:

Mean = 6

Standard deviation = 1.5

The normal distribution is symmetric, which means that 50% of the measures are below the mean and 50% are above.

What percentage of people sleep between 6 and 7.5 hours per night

6 is the mean.

7.5 is 1 one standard deviation above the mean.

By the Empirical Rule, of the 50% of the measures that are above the mean, 68% are within 1 standard deviation of the mean(between 6 and 7.5).

0.5*0.68 = 0.34

Approximately 34% of people sleep between 6 and 7.5 hours per night

A nationwide survey of seniors by the University of Michigan reveals that almost 18.0% disapprove of daily pot smoking. If 8 seniors are selected at random, what is the probability that at least 2 disapprove of daily pot smoking.

Answers

Answer:

[tex] P(X\geq 2)=1- P(X<2)= 1-[P(X=0) +P(X=1)][/tex]

And using the probability mass function we can find the individual probabilities:

[tex]P(X=0)=(8C0)(0.18)^0 (1-0.18)^{8-0}=0.2044[/tex]

[tex]P(X=1)=(8C1)(0.18)^1 (1-0.18)^{0-1}=0.3590[/tex]

And replacing we got:

[tex] P(X\geq 2)=1 -[0.2044 +0.3590]= 0.4366[/tex]

Then the probability that at least 2 disapprove of daily pot smoking is 0.4366

Step-by-step explanation:

Let X the random variable of interest "number of seniors who disapprove of daily smoking ", on this case we now that:

[tex]X \sim Binom(n=8, p=0.18)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

And we want to find this probability:

[tex] P(X\geq 2)=1- P(X<2)= 1-[P(X=0) +P(X=1)][/tex]

And using the probability mass function we can find the individual probabilities:

[tex]P(X=0)=(8C0)(0.18)^0 (1-0.18)^{8-0}=0.2044[/tex]

[tex]P(X=1)=(8C1)(0.18)^1 (1-0.18)^{0-1}=0.3590[/tex]

And replacing we got:

[tex] P(X\geq 2)=1 -[0.2044 +0.3590]= 0.4366[/tex]

Then the probability that at least 2 disapprove of daily pot smoking is 0.4366

You are given an n×n board, where n is an even integer and 2≤n≤30. For how many such boards is it possible to cover the board with T-shaped tiles like the one shown? Each cell of the shape is congruent to one cell on the board.

Answers

Answer:

  7

Step-by-step explanation:

The number of cells in a tile is 4. If colored alternately, there are 3 of one color and 1 of the alternate color. To balance the coloring, an even number of tiles is needed. Hence the board dimensions must be multiples of 4.

In the given range, there are 7 such boards:

  4×4, 8×8, 12×12, 16×16, 20×20, 24×24, and 28×28

Timmy writes the equation f(x) - *x-1. He then doubles both of the terms on the right side to create the equation g(x) =
2x - 2. How does the graph of g(x) compare to the graph of f(x)?
The line of g(x) is steeper and has a higher y-intercept.
The line of g(x) is less steep and has a lower y-intercept.
The line of g(x) is steeper and has a lower y-intercept.
The line of g(x) is less steep and has a higher y-intercept.

Answers

Answer:

  The line of g(x) is steeper and has a lower y-intercept.

Step-by-step explanation:

Doubling the function expands it vertically by a factor of 2. Everything is twice as far from the x-axis as it was. The line becomes steeper, and the y-intercept moves twice as far away. It was at -1, now is lower, at -2.

The line of g(x) is steeper and has a lower y-intercept.

A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed of 1.4 m/s, how fast is the length of his shadow on the building decreasing when he is 4 m from the building?

Answers

Answer:

the length of his shadow on the building is decreasing at the rate of 0.525 m/s

Step-by-step explanation:

From the diagram attached below;

the man is standing at point D with his head at point E

During that time, his shadow on the wall is y = BC

ΔABC and Δ ADE are similar in nature; thus their corresponding sides have equal ratios; i.e

[tex]\dfrac{AD}{AB} = \dfrac{DE}{BC}[/tex]

[tex]\dfrac{8}{12} = \dfrac{2}{y}[/tex]

8y = 24

y = 24/8

y = 3 meters

Let take an integral look  at the distance of the man from the building as x, therefore the distance from the spotlight to the man is  12 - x

[tex]\dfrac{12-x}{12}=\dfrac{2}{y}[/tex]

[tex]1- \dfrac{1}{12}x = 2* \dfrac{1}{y}[/tex]

To find the derivatives of both sides ;we have:

[tex]- \dfrac{1}{12}dx = 2* \dfrac{1}{y^2}dy[/tex]

[tex]- \dfrac{1}{12} \dfrac{dx}{dt} = 2* \dfrac{1}{y^2} \dfrac{dy}{dt}[/tex]

During that time ;

[tex]\dfrac{dx}{dt }= 1.4 \ m/s[/tex]   and y = 3

So; replacing the value into above ; we have:

[tex]-\dfrac{1}{12}(1.4) = - \dfrac{2}{9} \dfrac{dy}{dt}[/tex]

[tex]\dfrac{dy}{dt} = \dfrac{\dfrac{ 1.4} {12 } }{ \dfrac{2}{9}}[/tex]

[tex]\dfrac{dy}{dt} = {\dfrac{ 1.4} {12 } }*{ \dfrac{9}{2}}[/tex]

[tex]\dfrac{dy}{dt} =0.525 \ m/s[/tex]

Thus; the length of his shadow on the building is decreasing at the rate of 0.525 m/s

what is the sum of 4m(m-6) and 8(m-4)?

Answers

Step-by-step explanation:

4m2 - 24m + 8m - 32

4m2 - 16m - 32

The percent defective for parts produced by a manufacturing process is targeted at 4%. The process is monitored daily by taking samples of sizes n = 160 units. Suppose that today’s sample contains 14 defectives. Determine a 88% confidence interval for the proportion defective for the process today. Place your LOWER limit, rounded to 3 decimal places, in the first blank. For example, 0.123 would be a legitimate answer. Place your UPPER limit, rounded to 3 decimal places, in the second blank. For example, 0.345 would be a legitimate entry.

Answers

Answer:

The 88% confidence interval for the proportion of defectives today is (0.053, 0.123)

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 160, \pi = \frac{14}{160} = 0.088[/tex]

88% confidence level

So [tex]\alpha = 0.12[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.12}{2} = 0.94[/tex], so [tex]Z = 1.555[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.088 - 1.555\sqrt{\frac{0.088*0.912}{160}} = 0.053[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.088 + 1.555\sqrt{\frac{0.088*0.912}{160}} = 0.123[/tex]

The 88% confidence interval for the proportion of defectives today is (0.053, 0.123)

It is known that the number of hours a student sleeps per night has a normal distribution. The sleeping time in hours of a random sample of 8 students is given below. See Attached Excel for Data. Compute a 98% confidence interval for the true mean time a student sleeps per night and fill in the blanks appropriately. We have 98 % confidence that the true mean time a student sleeps per night is between and hours. (round to 3 decimal places)

Answers

Answer:

Step-by-step explanation:

The question is incomplete. The complete question is:

It is known that the number of hours a student sleeps per night has a normal distribution. The sleeping time in hours of a random sample of 8 students is given below. 7.4, 6.2, 8.5, 6.3, 5.4, 5.5, 6.3, 8.3 Compute a 98% confidence interval for the true mean time a student sleeps per night and fill in the blanks appropriately. We have 98% confidence that the true mean time a student sleeps per night is between _____ and ____ hours. (Keep 3 decimal places)

Solution:

Mean = (7.4 + 6.2 + 8.5 + 6.3 + 5.4 + 5.5 + 6.3 + 8.3)/8 = 6.7375

Standard deviation = √(summation(x - mean)²/n

Summation(x - mean)² = (7.4 - 6.7375)^2 + (6.2 - 6.7375)^2 + (8.5 - 6.7375)^2 + (6.3 - 6.7375)^2 + (5.4 - 6.7375)^2 + (5.5 - 6.7375)^2 + (6.3 - 6.7375)^2 + (8.3 - 6.7375)^2 = 9.97875

Standard deviation = √(9.97875/8

s = 1.12

Confidence interval is written in the form,

(Sample mean - margin of error, sample mean + margin of error)

The sample mean, x is the point estimate for the population mean.

Margin of error = z × s/√n

Where

sample standard deviation

number of samples

From the information given, the population standard deviation is unknown and the sample size is small, hence, we would use the t distribution to find the z score

In order to use the t distribution, we would determine the degree of freedom, df for the sample.

df = n - 1 = 8 - 1 = 7

Since confidence level = 98% = 0.98, α = 1 - CL = 1 - 0.98 = 0.02

α/2 = 0.02/2 = 0.01

the area to the right of z0.01 is 0.01 and the area to the left of z0.01 is 1 - 0.01 = 0.99

Looking at the t distribution table,

z = 2.998

Margin of error = 2.998 × 1.12/√8

= 1.19

the lower limit of this confidence interval is

6.738 - 1.19 = 5.548

the upper limit of this confidence interval is

6.738 + 1.19 = 7.928

We have 98 % confidence that the true mean time a student sleeps per night is between 5.548 hours and 7.928 hours.

Luther evaluated 2 to the power of 3 as 9 and wade evaluated 3 to the power of 2 as 9 are both students correct explain why or why not

Answers

Answer:

Luther is wrong

Wade is right

Step-by-step explanation:

Luther's case 2^3 = 2x2x2 = 8

Wade's case 3^3 = 3 x 3 = 9

Answer:

Luther is incorrect, while Wade is correct. (2)(2)(2)=8, not 9. (3)(3)= 9.

Step-by-step explanation:

I put that as my answer and it was counted as right.

What is the slope and y-intercept of the equation on the graph?

A. M=3/2,y-int=-3
B.m=3/2,y-int=3
C.m=2/3,y-int=-3
D.m=2/3,y-int=4

Answers

Answer:

m = 3/2, y intercept = 3

Step-by-step explanation:

The y intercept is where it crosses the y axis.  It crosses at 3

The slope is  found by using two points on the line

(-2,0) and (0,3)

m= (y2-y1)/(x2-x1)

   = (3-0)/(0- -2)

  = 3 / +2

  =3/2

m = 3/2, y intercept = 3

The y intercept is where it crosses the y axis.

It crosses at 3
slope is found by using 2 points on the line

(-2,0) and (0,3)

m= (y2-y1)/(x2-x1)

= (3-0)/(0- -2)

= 3 / +2

=3/2

The price-earnings ratios of a sample of stocks have a mean value of 13.5 and a standard deviation of 2. If the ratios have a bell-shaped distribution, what can be said about the proportion of ratios that fall between 11.5 and 15.5

Answers

Answer:

[tex]P(11.5<X<15.5)=P(\frac{11.5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{13.5-\mu}{\sigma})=P(\frac{11.5-13.5}{2}<Z<\frac{15.5-13.5}{2})=P(-1<z<1)[/tex]

And we can find the probability with this difference

[tex]P(-1<z<1)=P(z<1)-P(z<-1)[/tex]

And we can use the normal standard distribution or excel and we got:

[tex]P(-1<z<1)=P(z<1)-P(z<-1)=0.841-0.159=0.682[/tex]

So then we expect a proportion of 0.682 between 11.5 and 13.5

Step-by-step explanation:

Let X the random variable that represent the price earning ratios of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(13.5,2)[/tex]  

Where [tex]\mu=13.5[/tex] and [tex]\sigma=2[/tex]

We want to find the following probability

[tex]P(11.5<X<15.5)[/tex]

And we can use the z score formula given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

Using this formula we got:

[tex]P(11.5<X<15.5)=P(\frac{11.5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{13.5-\mu}{\sigma})=P(\frac{11.5-13.5}{2}<Z<\frac{15.5-13.5}{2})=P(-1<z<1)[/tex]

And we can find the probability with this difference

[tex]P(-1<z<1)=P(z<1)-P(z<-1)[/tex]

And we can use the normal standard distribution or excel and we got:

[tex]P(-1<z<1)=P(z<1)-P(z<-1)=0.841-0.159=0.682[/tex]

So then we expect a proportion of 0.682 between 11.5 and 13.5

(please help!) find x.

Answers

Answer:

x = 6√2

Step-by-step explanation:

It is a 45°45°90° triangle so you can use the ratio.

x : x√2

x = 6√2

A financial advisor is analyzing a family's estate plan. The amount of money that the family has invested in different real estate properties is normally distributed with a mean of $225,000 and a standard deviation of $50,000. Use a calculator to find how much money separates the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings.

Answers

Answer:

The amount of money separating the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings is $238,281.57.

Step-by-step explanation:

Let the random variable X represent the amount of money that the family has invested in different real estate properties.

The random variable X follows a Normal distribution with parameters μ = $225,000 and σ = $50,000.

It is provided that the family has invested in n = 10 different real estate properties.

Then the mean and standard deviation of amount of money that the family has invested in these 10 different real estate properties is:

[tex]\mu_{\bar x}=\mu=\$225,000\\\\\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}=\frac{50000}{\sqrt{10}}=15811.39[/tex]

Now the lowest 80% of the amount invested can be represented as follows:

[tex]P(\bar X<\bar x)=0.80\\\\\Rightarrow P(Z<z)=0.80[/tex]

The value of z is 0.84.

*Use a z-table.

Compute the value of the mean amount invested as follows:

[tex]\bar x=\mu_{\bar x}+z\cdot \sigma_{\bar x}[/tex]

   [tex]=225000+(0.84\times 15811.39)\\\\=225000+13281.5676\\\\=238281.5676\\\\\approx 238281.57[/tex]

Thus, the amount of money separating the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings is $238,281.57.

A video game requires at least 4 points to advance. Each solved puzzle is worth two points. Each solved riddle is worth 1 point. If x is the number of solved puzzles and y is the number of solved riddles, which graph represents the overall equation represented by this scenario (all points may not apply to the scenario)? On a coordinate plane, a solid straight line has a negative slope and goes through (0, 2) and (4, 0). Everything below the line is shaded. On a coordinate plane, a solid straight line has a negative slope and goes through (0, 2) and (4, 0). Everything above the line is shaded. On a coordinate plane, a solid straight line has a negative slope and goes through (0, 4) and (2, 0). Everything to the left of the line is shaded. On a coordinate plane, a solid straight line has a negative slope and goes through (0, 4) and (2, 0). Everything to the right of the line is shaded.

Answers

Answer:

Its D The Last Graph

Step-by-step explanation:

it just is my guy

Tasha wants to take money out of the ATM for a taxi fare. She wants to do a quick estimate to see if taking $120 out of her bank account will overdraw it. She knows she had $325 in the account this morning when she checked her balance. Today she bought lunch for $19, a dress for $76, a pair of shoes for $53, and a necklace for $23. She also saw a movie with a friend for $12. Rounding each of her expenses to the nearest tens place, estimate how much money Tasha has left in her account before she goes to the ATM. Do not include the $ in your answer.

Answers

Answer:145

Step-by-step explanation: $19=20 76=80 53=50 23=20 12=10 total = 180 325-180 =145

Given a normal distribution with (mean) μ= 50 and (standard deviation) σ = 4, what is the probability that:__________.
a) x>43
b) x<42
c) x>57.5
d) 42 e) x<40 or x>55
f) 5% of the values are less than what X value?
g) 60% of the values are between what two X values (symmetrically distributed around the mean)?
h) 85% of the values will be above what X value?

Answers

Answer:

a) P(x > 43) = 0.9599

b) P(x < 42) = 0.0228

c) P(x > 57.5) = 0.03

d) P(x = 42) = 0.

e) P(x<40 or x>55) = 0.1118

f) 43.42

g) Between 46.64 and 53.36.

h) Above 45.852.

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 50, \sigma = 4[/tex]

a) x>43

This is 1 subtracted by the pvalue of Z when X = 43. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{43 - 50}{4}[/tex]

[tex]Z = -1.75[/tex]

[tex]Z = -1.75[/tex] has a pvalue of 0.0401

1 - 0.0401 = 0.9599

P(x > 43) = 0.9599

b) x<42

This is the pvalue of Z when X = 42.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{42 - 50}{4}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228

P(x < 42) = 0.0228

c) x>57.5

This is 1 subtracted by the pvalue of Z when X = 57.5. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{57.5 - 50}{4}[/tex]

[tex]Z = 1.88[/tex]

[tex]Z = 1.88[/tex] has a pvalue of 0.97

1 - 0.97 = 0.03

P(x > 57.5) = 0.03

d) P(x = 42)

In the normal distribution, the probability of an exact value is 0. So

P(x = 42) = 0.

e) x<40 or x>55

x < 40 is the pvalue of Z when X = 40. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{40 - 50}{4}[/tex]

[tex]Z = -2.5[/tex]

[tex]Z = -2.5[/tex] has a pvalue of 0.0062

x > 55 is 1 subtracted by the pvalue of Z when X = 55. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{55 - 50}{4}[/tex]

[tex]Z = 1.25[/tex]

[tex]Z = 1.25[/tex] has a pvalue of 0.8944

1 - 0.8944 = 0.1056

0.0062 + 0.1056 = 0.1118

P(x<40 or x>55) = 0.1118

f) 5% of the values are less than what X value?

X is the 5th percentile, which is X when Z has a pvalue of 0.05, so X when Z = -1.645.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.645 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -1.645*4[/tex]

[tex]X = 43.42[/tex]

43.42 is the answer.

g) 60% of the values are between what two X values (symmetrically distributed around the mean)?

Between the 50 - (60/2) = 20th percentile and the 50 + (60/2) = 80th percentile.

20th percentile:

X when Z has a pvalue of 0.2. So X when Z = -0.84.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-0.84 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -0.84*4[/tex]

[tex]X = 46.64[/tex]

80th percentile:

X when Z has a pvalue of 0.8. So X when Z = 0.84.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]0.84 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = 0.84*4[/tex]

[tex]X = 53.36[/tex]

Between 46.64 and 53.36.

h) 85% of the values will be above what X value?

Above the 100 - 85 = 15th percentile, which is X when Z has a pvalue of 0.15. So X when Z = -1.037.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.037 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -1.037*4[/tex]

[tex]X = 45.852[/tex]

Above 45.852.

Please please help me!!

Answers

The vertex would be (5, -1). So that’ll be the answer

Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x4 ln(x) (a) Find the interval on which f is increasing. (Enter your answer using interval notation.) Find the interval on which f is decreasing. (Enter your answer using interval notation.) (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection point. (x, y) = Find the interval on which f is concave up. (Enter your answer using interval notation.) Find the interval on which f is concave down. (Enter your answer using interval notation.)

Answers

Answer: (a) Interval where f is increasing: (0.78,+∞);

Interval where f is decreasing: (0,0.78);

(b) Local minimum: (0.78, - 0.09)

(c) Inflection point: (0.56,-0.06)

Interval concave up: (0.56,+∞)

Interval concave down: (0,0.56)

Step-by-step explanation:

(a) To determine the interval where function f is increasing or decreasing, first derive the function:

f'(x) = [tex]\frac{d}{dx}[/tex][[tex]x^{4}ln(x)[/tex]]

Using the product rule of derivative, which is: [u(x).v(x)]' = u'(x)v(x) + u(x).v'(x),

you have:

f'(x) = [tex]4x^{3}ln(x) + x_{4}.\frac{1}{x}[/tex]

f'(x) = [tex]4x^{3}ln(x) + x^{3}[/tex]

f'(x) = [tex]x^{3}[4ln(x) + 1][/tex]

Now, find the critical points: f'(x) = 0

[tex]x^{3}[4ln(x) + 1][/tex] = 0

[tex]x^{3} = 0[/tex]

x = 0

and

[tex]4ln(x) + 1 = 0[/tex]

[tex]ln(x) = \frac{-1}{4}[/tex]

x = [tex]e^{\frac{-1}{4} }[/tex]

x = 0.78

To determine the interval where f(x) is positive (increasing) or negative (decreasing), evaluate the function at each interval:

interval                 x-value                      f'(x)                       result

0<x<0.78                 0.5                 f'(0.5) = -0.22            decreasing

x>0.78                       1                         f'(1) = 1                  increasing

With the table, it can be concluded that in the interval (0,0.78) the function is decreasing while in the interval (0.78, +∞), f is increasing.

Note: As it is a natural logarithm function, there are no negative x-values.

(b) A extremum point (maximum or minimum) is found where f is defined and f' changes signs. In this case:

Between 0 and 0.78, the function decreases and at point and it is defined at point 0.78;After 0.78, it increase (has a change of sign) and f is also defined;

Then, x=0.78 is a point of minimum and its y-value is:

f(x) = [tex]x^{4}ln(x)[/tex]

f(0.78) = [tex]0.78^{4}ln(0.78)[/tex]

f(0.78) = - 0.092

The point of minimum is (0.78, - 0.092)

(c) To determine the inflection point (IP), calculate the second derivative of the function and solve for x:

f"(x) = [tex]\frac{d^{2}}{dx^{2}}[/tex] [[tex]x^{3}[4ln(x) + 1][/tex]]

f"(x) = [tex]3x^{2}[4ln(x) + 1] + 4x^{2}[/tex]

f"(x) = [tex]x^{2}[12ln(x) + 7][/tex]

[tex]x^{2}[12ln(x) + 7][/tex] = 0

[tex]x^{2} = 0\\x = 0[/tex]

and

[tex]12ln(x) + 7 = 0\\ln(x) = \frac{-7}{12} \\x = e^{\frac{-7}{12} }\\x = 0.56[/tex]

Substituing x in the function:

f(x) = [tex]x^{4}ln(x)[/tex]

f(0.56) = [tex]0.56^{4} ln(0.56)[/tex]

f(0.56) = - 0.06

The inflection point will be: (0.56, - 0.06)

In a function, the concave is down when f"(x) < 0 and up when f"(x) > 0, adn knowing that the critical points for that derivative are 0 and 0.56:

f"(x) =  [tex]x^{2}[12ln(x) + 7][/tex]

f"(0.1) = [tex]0.1^{2}[12ln(0.1)+7][/tex]

f"(0.1) = - 0.21, i.e. Concave is DOWN.

f"(0.7) = [tex]0.7^{2}[12ln(0.7)+7][/tex]

f"(0.7) = + 1.33, i.e. Concave is UP.

AC =
Round your answer to the nearest hundredth.
с
6
B
40°
А

Answers

Answer:

  5.03

Step-by-step explanation:

Answer:

5.03 = AC

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan theta = opp/ adj

tan 40 = AC /6

6 tan 40 = AC

5.034597787 = AC

To the nearest hundredth

5.03 = AC

Other Questions
1. A complaint of sexual harassment by a part-time worker in a hardware business was upheld when the Tribunal found that the employer had failed to take sufficient action in relation to the employee's report of inappropriate behaviour. The alleged sexual harassment included kissing, touching her breasts and leg, persistent requests to have a drink outside work hours despite an ongoing refusal, asking for cuddles, telephoning her at home and making repeated unsolicited sexual remarks. Based on any four ethical theories, explain how these acts constitute unethical behaviours at the workplace.2. The process of negotiation between buyer and supplier inevitably raises some ethical tensions, given that the situation is often characterized as one of the two combatants coming together to do battle. Explain any five popular negotiating tactics, all of which can be challenged on ethical grounds. 3. If a firms business activities do not result in profit maximization, whilst alternatives exist, then such activities amount to irresponsible actions. Discuss any five sets of economic responsibilities firms must embrace to ensure the protection and enhancement of the business. For an American Literature course: What skills from this course would you use to develop a brief essay on the significance of Walt Whitman's "When Lilacs Last in the Dooryard Bloom'd," a poem written in the summer of 1865? Assume that a sample is used to estimate a population proportion p. Find the 98% confidence interval for asample of size 131 with 81% successes. Enter your answer as a tri-linear inequality using decimals (notpercents) accurate to three decimal places.apa> Next Question Put them in order!!!!!!!! Arrange the events in the order in which they occurred. 1.Tiles Islam spreads to western and southern of Africa. 2.All of North Africa comes under Muslim rule. 3.Arabs come into North Africa. 4.The gold-salt trade flourishes on the trans-Saharan route. Please answer this correctly You are trying to overhear a juicy conversation, but from your distance of 25.0 m, it sounds like only an average whisper of 25.0 dB. So you decide to move closer to give the conversation a sound level of 80.0 dB instead. How close should you come? Which of the following expressions is equivalent to b x b? A. 2b B.) b^2 C.)2^b D.)2b^2 Graph y2/3x+6. PLEASE I NEED HELP!!!!:(( Which formula is used to calculate the standard deviation of sample data?2.X, - x+ X2-X+ ... + X-X(1928)s=1n-1(x1 - x)2 + (x2-x) +...+(XN-)?211Nw(x1 - x)+ (x2-x)2 +...+(x+4) ?N2Xq- x-3)+ X2-X++ XS=n-1 Who created the first iPhone? A.) Mozart B.) Greg Christie C.) Notch D.) Shawn Mendes Find the standard form of the equation of the parabola with a vertex at the origin and a focus at (0.-4).Oy=-x?Oy2 = -4xOy2 = -16%Oy tox? Which type of rights did the colonists who drafted the Declaration of Independence most want to protect Which of the following equations could be that of the ellipse graphed below? A rotary cutter has a radius of 4 centimeters. The hole in the middle ofthe cutter has a radius of 0.5 centimeter. What is the area of one side of the cutter?10 of 11 QUESTIONS3.577 cm15.757 cm?1671 cm213.571 cm2 To the right are the outcomes that are possible when a couple has three children. Assume that boys and girls are equally likely, so that the eight simple events are equally likely. Find the probability that when a couple has three children, there are exactly 0 girls. Examine this map. Which region was the second to industrialize following theIndustrial Revolution?.region AA.region CC.region BD.region D Five-thirds divided by one-third = Select the two values of x that are roots of this equation.2x-5=-3x^2 What does 8:8 equal? Evaluate g(x) = 1.873 -0.0034x +0.5 for x = 1 and x = 2.