Answer: the answer is c (the third answer ) ‼️
Step-by-step explanation:
The data in the given residual plot shows that model C has the best fit.
What is a line of fit?A straight line that minimizes the gap between it and some data is called a line of best fit. In a scatter plot containing various data points, a relationship is expressed using the line of best fit.
Given:
The residual plot of the values in the graph,
The points in the first graph are very far from the x-axis and y-axis so, it is not the best fit,
The points in the second graph are very far from the x-axis and y-axis, and they are symmetric to the y-axis but not the best fit.
Most of the points are close to the x-axis, so it is the best fit,
Thus, the third graph is the best line of fit.
To know more about the line of fits:
brainly.com/question/22992800
#SPJ2
Please help! The table below shows the elevations of the three animals that Fernanda can see from her boat.
Answer:
Sea Lion, fish, Bird
Step-by-step explanation:
Find the absolute value of the animals, and then compare them from least to greatest
If n is an even integer such that 5≤n≤12, then what is the mean of all possible values of n?
Answer:
9
Step-by-step explanation:
5≤n≤12
List all the even integers
6,8,10,12
Then find the mean
(6+8+10+12) /4
36/4
9
The mean is 9
Assume that 1700 births are randomly selected and 4 of the births are girls. Use subjective judgment to describe the number of girls as significantly high, significantly low, or neither significantly low nor significantly high.
Answer: Significantly low.
Step-by-step explanation:
Ok, we know that out of 1700 randomly selected, only 4 of them are girls.
Then the frequency is:
p = 4/1700
Now, using the subjective judgement (meaning that it is based on the opinion only, there is no real math involved)
I can conclude that the number of girls is significantly low, meaning that out of 1700 births we have 4 girls, then the other 1694 must be boys.
Clarkson University surveyed alumni to learn more about what they think of Clarkson. One part of the survey asked respondents to indicate whether their overall experience at Clarkson fell short of expectations, met expectations, or surpassed expectations. The results showed that of the respondents did not provide a response, said that their experience fell short of expectations, and of the respondents said that their experience met expectations.A. If we chose an alumnus at random, what is the probability that the alumnus would say their experience surpassed expectations?B. If we chose an alumnus at random, what is the probability that the alumnus would say their experience met or surpassed expectations?
Answer:
Step-by-step explanation:
The question is incomplete. The complete question is:
Clarkson University surveyed alumni to learn more about what they think of Clarkson. One part of the survey asked respondents to indicate whether their overall experience at Clarkson fell short of expectations, met expectations, or surpassed expectations. The results showed that 4% of respondents did not provide a response, 26% said that their experience fell short of expectations, 65% of the respondents said that their experience met expectations (Clarkson Magazine, Summer, 2001). If we chose an alumnus at random, what is the probability that the alumnus would say their experience surpassed expectations? If we chose an alumnus at random, what is the probability that the alumnus would say their experience met or surpassed expectations?
Solution:
Probability = number of favorable outcomes/number of total outcomes
From the information given,
The probability that respondents did not provide a response, P(A) is 4/100 = 0.04
The probability that a respondent said that their experience fell short of expectations, P(B) is 26/100 = 0.26
The probability that a respondent said that their experience met expectations, P(C) is 65/100 = 0.65
A) Adding all the probabilities, it becomes 0.04 + 0.26 + 0.65 = 0.95
Therefore, the probability,P(D) that a respondent said that their experience surpassed expectations is 1 - 0.95 = 0.05
B) The event of a randomly chosen respondent saying that their experience met expectations and that their experience surpassed expectations are mutually exclusive because they cannot occur together. It means that P(C) × P(D) = 0
Therefore, the probability of P(C) or P(D) is 0.65 + 0.05 = 0.7
Data was collected for a sample of organic snacks. The amount of sugar (in mg) in each snack is summarized in the histogram below. 2 4 6 8 10 12 14 amount of sugar (mg) 60 80 100 120 140 160 180 200 Frequency What is the sample size for this data set
Answer:
The sample size for the data set = 56
Step-by-step explanation:
The sample size or number of individuals (n) is gotten from a histogram by summing up the total frequencies of occurrences.
In this example, the frequencies are: 2 4 6 8 10 12 14
Therefore, the sample size (n) is calculated as follows:
n = 2 + 4 + 6 + 8 + 10 + 12 + 14 = 56
Therefore the sample size for the data set = 56
The sample size for the data set = 56
Given that,
Data was collected for a sample of organic snacks.The calculation is as follows:
= 2 + 4 + 6 + 8 + 10 + 12 + 14
= 56
Learn more: https://brainly.com/question/15622851?referrer=searchResults
[tex]{f}^{4} = - 1[/tex]
O True
O False
?
Answer:
False.
Step-by-step explanation:
This statement is false, for any value of F because the power function with an even exponent is always positive or 0.
If the price of a product is p (dollars), the number of units demanded is given by the equation q-pe-3p
(a) Find the price elasticity of demand by using the differentials definition of elasticity. Fully simplify your answer.
(b) Use your answer from part (a) to estimate the percent change in q when the price is raised from $2.00 to $2.10.
Answer:
[tex]\mathbf{E(p) = 1 - 3p}[/tex]
the estimate the percent change in q when the price is raised from $2.00 to $2.10 decreases by 25%
Step-by-step explanation:
Given that:
the number of units demanded [tex]q = pe^{-3p}[/tex]
Taking differentiations ; we have,
[tex]\dfrac{dq}{dp}=e^{-3p}+p(-3e^{-3p})[/tex]
[tex]\dfrac{dq}{dp}=(1-3)e^{-3p}[/tex]
Now; the price elasticity of demand using the differentials definition of elasticity is:
[tex]E(p) = \dfrac{dq}{dp}*\dfrac{p}{q}[/tex]
[tex]E(p) =[(1-3)e^{-3p}]*[\dfrac{p}{pe^{-3p}}][/tex]
[tex]\mathbf{E(p) = 1 - 3p}[/tex]
(b) Use your answer from part (a) to estimate the percent change in q when the price is raised from $2.00 to $2.10.
The estimate of the percentage change in price is :
[tex]=\dfrac{2.10-2.00}{2.00}*100 \%[/tex]
= 5%
From (a)
[tex]\mathbf{E(p) = 1 - 3p}[/tex]
Now at p = $2.00
E(2) = 1 - 3 (2.00)
E(2) = 1 - 6
E(2) = -5
The percentage change in q = -5 × 5%
The percentage change in q = -25%
Thus; we can conclude that the estimate the percent change in q when the price is raised from $2.00 to $2.10 decreases by 25%
PLEASE ANSWER, URGENT!!! In a math exam, Zach, Wendy, and Lee have an average score 91. Wendy, Lee and Chen have an average score 89. Zach and Chen have an average score 95. What is Zach's score?
Answer:
98
Step-by-step explanation:
Z as Zach; W as Wendy; L as Lee; C as Chen
We know that average score of Z,W, and L is 91, so:
(z + w + l)/3 = 91
z + w + l = 273
Average score W, L, C = 89, so:
(w + l + c)/3 = 89
w + l + c = 267
We take both:
(z + w + l) – (w + l + c) = 273 – 267
z – c = 6
Average score Z and C = 95
(z + c)/2 = 95
z + c = 190
(z + c) – (z – c) = 184
2c = 184
c = 92
z + c = 190
z + 92 = 190
z = 98
So, Zachs score is 98
Simplify 5^2 · 5^9 1. 5^11 2. 5^18 3. 25^11 4. 25^18
Answer:
Answer choice 1
Step-by-step explanation:
[tex]5^2\cdot 5^9= \\\\5^{2+9}= \\\\5^{11}[/tex]
Therefore, the correct answer choice is choice 1. Hope this helps!
HELP! What is the solution to the equation below? Round your answer to two decimal places. 4x = 20 A. x = 2.99 B. x = 0.46 C. x = 1.30 D. x = 2.16
Answer:
X = 5
Step-by-step explanation:
If 4x = 20
And we are asked to find the solution.
It simply means looking for the value of x
So
4x = 20
X = 20/4
X = 5
X is simply the solution
X = 5
Answer:
D 2.16
Step-by-step explanation:
a p e x just use log
Length of Triangles.
Answer:
9
Step-by-step explanation:
Since the scale factor is 12/8 = 1.5, to find LA we have to multiply FI by 1.5 which is 6 * 1.5 = 9.
Which function has the same range?
Answer:
I would say the second one
Step-by-step explanation:
f(x) has a range of y<0, because it is reflected over the x axis
g(x) = -5/7(3/5)^-x is also reflected over the x axis, except also in the y axis. Regardless of the reflection in the y-axis, y still cannot be equal to or greater than 0. Therefore, I believe it is the second choice.
(The third and forth choice are the same, which rules them both out. The first on reflects it over the y-axis, meaning that x can be greater than 0.)
last one haha ill give 20 points
The type of triangle drawn is an isosceles triangle.
Base angles ∠ACB and ∠CAB are equal.
What is an isosceles triangle?This is a type of triangle with base angles and opposite sides equal.
Analysis:
∠DCA = ∠CAB ( alternate angles are equal)
∠CAB + ∠ACB + ∠CBA = 180°( sum of angles in a triangle)
50 + ∠ACB + 80 = 180
130 + ∠ACB = 180
∠ACB = 180 - 130 = 50°
Since ∠ACB = ∠CAB = 50°. The triangle drawn is an isosceles triangle.
In conclusion, the triangle is isosceles because the base angles are equal.
Learn more about isosceles triangle: brainly.com/question/1475130
#SPJ1
Rata-rata markah matematik untuk Amin, azman dan aziz adalah 73. Tanda Azman lebih 35 berbanding Amin manakala aziz dua kali ganda daripada Amun. Apakah tanda Amin?
Answer:
The Amin's score in math was 46.
Step-by-step explanation:
The question is:
The average math score for Amin, azman and aziz is 73. Azman marks 35 more than Amin while aziz is twice that of Amun. What is Amin's sign?
Solution:
Let us denote that:
x = Amin's score in math
y = Azman's score in math
z = Aziz's score in math.
The average of x, y and z is, 73.
That is:
[tex]\frac{x+y+z}{3}=73\\\\\Rightarrow x+y+z = 219[/tex]
Now it is provided that:
[tex]y=x+35...(i)\\z=2x...(ii)[/tex]
Use the equations (i) and (ii) to determine the value of x as follows:
[tex]x+y+z=219\\\\x+x+35+2x=219\\\\4x=184\\\\x=46[/tex]
Thus, the Amin's score in math was 46.
Suppose the time it takes a barber to complete a haircuts is uniformly distributed between 8 and 22 minutes, inclusive. Let X = the time, in minutes, it takes a barber to complete a haircut. Then X ~ U (8, 22). Find the probability that a randomly selected barber needs at least 14 minutes to complete the haircut, P(x > 14) (round answer to 4 decimal places) Answer:
Answer:
[tex] P(X>14)= 1-P(X<14) =1- F(14)[/tex]
And replacing we got:
[tex] P(X>14)= 1- \frac{14-8}{22-8}= 0.5714[/tex]
The probability that a randomly selected barber needs at least 14 minutes to complete the haircut is 0.5714
Step-by-step explanation:
We define the random variable of interest as x " time it takes a barber to complete a haircuts" and we know that the distribution for X is given by:
[tex] X \sim Unif (a= 8, b=22)[/tex]
And for this case we want to find the following probability:
[tex] P(X>14)[/tex]
We can find this probability using the complement rule and the cumulative distribution function given by:
[tex] P(X<x) = \frac{x-a}{b-a} ,a \leq x \leq b[/tex]
Using this formula we got:
[tex] P(X>14)= 1-P(X<14) =1- F(14)[/tex]
And replacing we got:
[tex] P(X>14)= 1- \frac{14-8}{22-8}= 0.5714[/tex]
The probability that a randomly selected barber needs at least 14 minutes to complete the haircut is 0.5714
The 3 by 3 grid below shows nine 1 cm x 1 cm squares and uses 24 cm of wire.
What length of wire is required for a similar 20 by 20 grid?
Answer:
840 cm
Step-by-step explanation:
From the diagram attached, the 3 by 3 grid is made up of nine 1 cm x 1 cm squares. The the length of wire needed to make this grid consist of four rows each row having a length of 3 cm and four columns with each column having a length of 3 cm.
The length of wire required by the 3 by 3 grid = 4 column (3 cm / column) + 4 row (3 cm / row) = 12 cm + 12 cm = 24 cm
The 20 by 20 grid is made up of twenty 1 cm x 1 cm squares. The the length of wire needed to make this grid consist of twenty one rows each row having a length of 20 cm and twenty columns with each column having a length of 20 cm.
The length of wire required by the 20 by 20 grid = 21 column (20 cm / column) + 21 row (20 cm / row) = 420 cm + 420 cm = 840 cm
Safety by-laws state that for a ladder to be stable, the angle the base of the ladder makes with the ground should be between 70° and 80'. A safety inspector at a construction site notices a painter on a 10-m ladder that is leaning against a wall. The base of the ladder is 1.5 m away from the wall. Does the inspector have cause to be concerned? Explain.
Cos(angle) = adjacent/hypotenuse
Cos(angle) = 1.5/10
Angle = arccos(1.5/10)
Angle = 81.37 degrees
Although the angle is close, it is over the 80 degrees, so the inspector should be concerned.
Two contractors will jointly pave a road, each working from one end. If one of them paves 2/5 of the road and the other 81 km remaining, the length of that road is
Five times the sum of a number and 13 is 20. Find the number
Answer:
x = -9
Step-by-step explanation:
Step 1: Write out expression
5(x + 13) = 20
Step 2: Distribute
5x + 65 = 20
Step 3: Isolate x
5x = -45
x = -9
And we have our answer!
Answer:
-9
Step-by-step explanation:
Let the number be x.
5(x+13) = 20
Expand.
5x+65 = 20
Subtract 26 on both sides.
5x = 20 - 65
5x = -45
Divide 5 into both sides.
x = -45/5
x = -9
The number is -9.
Two random samples were drawn from two employers to obtain information about hourly wages. Use the following information and the PopMeanDiff template to determine if there is a significant difference in wages across the two employers.
Kroger Wal-Mart
Sample size 80 60
Sample mean $6.75 $6.25
Population standard deviation $1.00 $0.95
The p-value is _____.
a. 0.0026
b. 0.0013
c. 0.0084
d. 0.0042
Answer:
a) 0.0026
P- value is 0.0026
Step-by-step explanation:
Step(i):-
Given data
first sample size n₁= 80
mean of the first sample x⁻₁= $6.75
Standard deviation of the first sample (σ₁) = $1.00
second sample size (n₂) = 60
mean of the second sample( x₂⁻) = $6.25
Standard deviation of the second sample (σ₂) = $0.95
step(ii):-
Test statistic
[tex]Z = \frac{x^{-} _{1} -x^{-} _{2} }{\sqrt{\frac{(S.D)_{1} ^{2} }{n_{1} } +\frac{(S.D)_{2} ^{2} }{n_{2} } } }[/tex]
Null Hypothesis :H₀: There is no significant difference in wages across the two employers.
x⁻₁= x₂⁻
Alternative Hypothesis :H₁: There is significant difference in wages across the two employers.
x⁻₁≠ x₂⁻
[tex]Z = \frac{6.75 -6.25 }{\sqrt{\frac{(1^{2} }{80 } +\frac{((0.95)^{2} }{60} } }[/tex]
Z = 3.01
P- value:-
Given data is two tailed test
The test statistic Z = 3.01
First we have to find the Probability of z-statistic
P(Z>3.01) = 1- P( z <3.01)
= 1- (0.5 + A(3.01)
= 0.5 - A(3.01)
= 0.5 - 0.49865 ( from normal table)
= 0.0013
P(Z>3.125) = 0.0013
Given two tailed test
P- value = 2 × P( Z > 3.01)
= 2 × 0.0013
= 0.0026
Final answer:-
The calculated value Z = 3.125 > 1.96 at 0.05 level of significance
null hypothesis is rejected
Conclusion:-
P- value is 0.0026
F(x)=(x+1)(x-3)(x-4)
Answer :
x1 = -1
x2= +3
x3 = +4
I hope it helps
If you are doing it by roots how ever it would be 3
Lily is cutting a piece of yarn into 3 (three) pieces. The 2nd piece is 3 times as long as the 1st piece, while the 3rd piece is 6 centimeters longer than the 1st piece. When the yarn has a total length of 211 centimeters, calculate the length of the first piece.
Answer:
The length of the first piece = 41 cm
Step-by-step explanation:
Let the length of the first piece = a
Let the length of the second piece = b
Let the length of the third piece = c
we are given the following:
b = 3a . . . . . (1) (The 2nd piece is 3 times as long as the 1st piece)
c = 6 + a . . . . (2) (the 3rd piece is 6 centimeters longer than the 1st piece)
a + b + c = 211 . . . . . (3) ( the yarn has a total length of 211 centimeters)
Next, let us eliminate two variables, and this can easily be done by substituting the values of b and c in equations 1 and 2 into equation 3. this is done as follows:
a + b + c = 211
a + (3a) + (6 + a) = 211 ( remember that b = 3a; c = 6 + a)
a + 3a + 6 + a = 211
5a + 6 = 211
5a = 211 - 6 = 205
5a = 205
∴ a = 205 ÷ 5 = 41 cm
a = 41 cm
Therefore the length of the first piece (a) = 41 cm
now finding b and c
substituting a into equation 1 and 2
b = 3a
b = 3 × 41 = 123
∴ b = 123 cm
c = 6 + a
c = 6 + 41 = 47
∴ c = 47 cm
6) The average Mathematics mark for Amin, Azman and Aziz is 73. Azman's mark is 35 more than
Amin while Aziz's is twice of Amin's. What is the Mathematics mark of Amin?
Answer:
46
Step-by-step explanation:
Azman=35+amin
Aziz=3×amin
therefore;35+amin+2amin+amin/3=73
219=35+4amin
219-35=4amin
184=4amin
Amin's mark=184÷4
=46
4. The area of a rhombus with one diagonal is 8.72 cm long is the same as the area of a square of side 15.6 cm. Find the length of the other diagonal of the rhombus.
Answer:
55.82 cm
Step-by-step explanation:
d1= 8.72 cm
a= 15.6 cm
A rhombus= 1/2*d1*d2 = A square
A square= 15.6²= 243.36 cm²
d2= 2A/d1= 2*243.36/8.72 ≈55.82 cm
Im stuck on this question
Answer:
well the shape is acute so it will be quite low work out the opposite angles and you will find out that the lines are parallels there for meaning the answer is the lowest angle
Step-by-step explanation:
7. Evaluate 4P2
O
22
O
12
O
14
5
Answer:
12Step-by-step explanation:
To evaluate 4P2, we will use the permutation formula as shown;
nPr = [tex]\frac{n!}{(n-r)!}[/tex]
4P2 = [tex]\frac{4!}{(4-2!}[/tex]
[tex]= \frac{4!}{2!} \\= \frac{4*3*2!}{2!}\\ = 4*3\\= 12[/tex]
4P2 = 12
Can someone plz help me solved this problem! I’m giving you 10 points! I need help plz help me! Will mark you as brainiest!
Hey there! :)
Answer:
a. 3
b. -22
c. -2
d. -2
e. 5a + 8
f. a² + 6a + 3
Step-by-step explanation:
Calculate the answers by substituting the values inside of the parenthesis for 'x':
a. f(1) = 5(1) - 2 = 3
b. f(-4) = 5(-4) - 2 = -22
c. g(-3) = (-3)² + 2(-3) - 5 = 9 - 6 - 5 = -2
d. g(1) = 1² + 2(1) - 5 = 1 + 2 -5 = -2
e. f(a+ 2) = 5(a+2) - 2 = 5a + 10 - 2 = 5a + 8
f. g(a + 2) = (a + 2)² + 2(a + 2) - 5 = a² + 4a + 4 + 2a + 4 - 5 =
a² + 6a + 3
There are five faculty members in a certain academic department. These individuals have 4, 6, 7, 10, and 15 years of teaching experience. Two of these individuals are randomly selected to serve on a personnel review committee. What is the probability that the chosen representatives have a total of at least 16 years of teaching experience
Answer:
3/5Step-by-step explanation:
Probability is the likelihood or chance that an event will occur.
Probability = expected outcome of event/total outcome of event
Given 5 individuals with 4, 6, 7, 10, and 15 years of teaching experience.
Since two of these 5 individuals are randomly selected to serve on a personnel review committee, total possible outcome = 5C2 (randomly selecting 2 personnel out of 5 )
5C2 = [tex]\frac{5!}{(5-2)!2!}[/tex]
[tex]= \frac{5!}{3!2!}\\ = \frac{5*4*3!}{3!*2} \\= 10\ possible\ selections\ can\ be\ done[/tex]
To get the probability that the chosen representatives have a total of at least 16 years of teaching experience, first we need to find the two values that will give a sum of years greater that or equal to 16 years. The possible combination are as shown;
4+15 = 19years (first reps)
6+10 = 16years (second reps)
6+15 = 21years (third reps)
7+10 = 17 years (fourth reps)
7+15 = 22 years (fifth reps)
10+15 = 25 years (sixth reps)
This shows that there are 6 possible ways to choose the representatives that have a total of at least 16 years of teaching experience
Total outcome = 10
expected outcome = 6
Probability that the chosen representatives have a total of at least 16 years of teaching experience = [tex]\frac{6}{10} = \frac{3}{5}[/tex]
Find the equation of the line given
the gradient
Parrallel to the line y= - 2x+4
point ( 1-3)
Answer:
y = -2x - 1
Step-by-step explanation:
Step 1: Find the parallel line
y = -2x + b
Step 2: Solve for b
-3 = -2(1) + b
-3 = -2 + b
b = -1
Step 3: Write parallel equation
y = -2x - 1
whats the answers to this ?
Answer:
Hi there!
The correct answers are: A, B, D, E
Step-by-step explanation:
First of all, perpendicular means when two lines intersect to form a 90° angle.
Second ⊥ means perpendicular.
When something is a bisector it means it evenly slices a line in half.