In cricket how bowler and batsman use acceleration?

Answers

Answer 1
Yes actually the faster your arm moves the more momentum you’ll have

Related Questions

A 4.5 kg ball swings from a string in a vertical circle such that it has constant sum of kinetic and gravitational potential energy. Ignore any friction forces from the air or in the string. What is the difference in the tension between the lowest and highest points on the circle

Answers

Answer:

88.29 N

Explanation:

mass of the ball = 4.5 kg

weight of the ball will be = mass x acceleration due to gravity(9.81 m/s^2)

weight W = 4.5 x 9.81 = 44.145 N

centrifugal forces Tc act on the ball as it swings.

At the top point of the vertical swing,

Tension on the rope = Tc - W.

At the bottom point of the vertical swing,

Tension on the rope = Tc + W

therefore,

difference in tension between these two points will be;

Net tension = tension at bottom minus tension at the top

= Tc + W - (Tc - W) = Tc + W -Tc + W

= 2W

imputing the value of the weight W, we have

2W = 2 x 44.145 = 88.29 N

That 85 kg paratrooper from the 50's was moving at constant speed of 56 m/s because the air was applying a frictional drag force to him that matched his weight. If he fell this way for 40 m, how much heat was generated by this frictional drag force in J

Answers

Answer:

46648 J

Explanation:

mass m= 85 Kg

velocity v = 56 m/s

distance covered s =40 m

According to Question,

frictional drag force to him that matched his weight

[tex]\Rightarrow F_d =mg\\=85\times9.81=833 N[/tex]

Therefore, work done by practometer against the drag force = heat was generated by this frictional drag force in J

W=Q= F_d×s

=833×56 = 46648 J

when their center-to-center separation is 50 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.2525 N. What were the initial charges on the spheres

Answers

Answer:

q1 = 7.6uC , -2.3 uC

q2 = 7.6uC , -2.3 uC

( q1 , q2 ) = ( 7.6 uC , -2.3 uC ) OR ( -2.3 uC , 7.6 uC )

Explanation:

Solution:-

- We have two stationary identical conducting spheres with initial charges ( q1 and q2 ). Such that the force of attraction between them was F = 0.6286 N.

- To model the electrostatic force ( F ) between two stationary charged objects we can apply the Coulomb's Law, which states:

                              [tex]F = k\frac{|q_1|.|q_2|}{r^2}[/tex]

Where,

                     k: The coulomb's constant = 8.99*10^9

- Coulomb's law assume the objects as point charges with separation or ( r ) from center to center.  

- We can apply the assumption and approximate the spheres as point charges under the basis that charge is uniformly distributed over and inside the sphere.

- Therefore, the force of attraction between the spheres would be:

                             [tex]\frac{F}{k}*r^2 =| q_1|.|q_2| \\\\\frac{0.6286}{8.99*10^9}*(0.5)^2 = | q_1|.|q_2| \\\\ | q_1|.|q_2| = 1.74805 * 10^-^1^1[/tex] ... Eq 1

- Once, we connect the two spheres with a conducting wire the charges redistribute themselves until the charges on both sphere are equal ( q' ). This is the point when the re-distribution is complete ( current stops in the wire).

- We will apply the principle of conservation of charges. As charge is neither destroyed nor created. Therefore,

                             [tex]q' + q' = q_1 + q_2\\\\q' = \frac{q_1 + q_2}{2}[/tex]

- Once the conducting wire is connected. The spheres at the same distance of ( r = 0.5m) repel one another. We will again apply the Coulombs Law as follows for the force of repulsion (F = 0.2525 N ) as follows:

                          [tex]\frac{F}{k}*r^2 = (\frac{q_1 + q_2}{2})^2\\\\\sqrt{\frac{0.2525}{8.99*10^9}*0.5^2} = \frac{q_1 + q_2}{2}\\\\2.64985*10^-^6 = \frac{q_1 + q_2}{2}\\\\q_1 + q_2 = 5.29969*10^-^6[/tex]  .. Eq2

- We have two equations with two unknowns. We can solve them simultaneously to solve for initial charges ( q1 and q2 ) as follows:

                         [tex]-\frac{1.74805*10^-^1^1}{q_2} + q_2 = 5.29969*10^-^6 \\\\q^2_2 - (5.29969*10^-^6)q_2 - 1.74805*10^-^1^1 = 0\\\\q_2 = 0.0000075998, -0.000002300123[/tex]

                         

                          [tex]q_1 = -\frac{1.74805*10^-^1^1}{-0.0000075998} = -2.3001uC\\\\q_1 = \frac{1.74805*10^-^1^1}{0.000002300123} = 7.59982uC\\[/tex]

 

When using a mercury barometer , the vapor pressure of mercury is usually assumed to be zero. At room temperature mercury's vapor pressure is about 0.0015 mm-Hg. At sea level, the height hhh of mercury in a barometer is about 760 mm.Required:a. If the vapor pressure of mercury is neglected, is the true atmospheric pressure greater or less than the value read from the barometer? b. What is the percent error? c. What is the percent error if you use a water barometer and ignore water's saturated vapor pressure at STP?

Answers

Answer:

Explanation:

(a)

The true atmospheric pressure will has more value than the reading in the barometer. If Parm is the atmospheric

pressure in the tube then the resulting vapour pressure is

Patm - pgh = Prapor

The final reading ion the barometer is

pgh = Palm - Proper

Hence, the true atmospheric pressure is greater.

you can find the answer in this book

physics principles with Applications, Global Edition Problem 67P: Chapter: CH 13 Problem:67p

A 2.4-kg ball falling vertically hits the floor with a speed of 2.5 m/s and rebounds with a speed of 1.5 m/s. What is the magnitude of the impulse exerted on the ball by the floor

Answers

Answer:

9.6 Ns

Explanation:

Note: From newton's second law of motion,

Impulse = change in momentum

I = m(v-u).................. Equation 1

Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.

Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)

Substitute into equation 1

I = 2.4[2.5-(-1.5)]

I = 2.4(2.5+1.5)

I = 2.4(4)

I = 9.6 Ns

The magnitude of impulse will be "9.6 Ns".

According to the question,

Mass,

m = 2.4 kg

Final velocity,

v = 2.5 m/s

Initial velocity,

u = -1.5 m/s

By using Newton's 2nd law of motion, we get

Impulse, [tex]I = m(v-u)[/tex]

By substituting the values, we get

                     [tex]= 2.4[2.5-(1.5)][/tex]

                     [tex]= 2.4(2.5+1.5)[/tex]

                     [tex]= 2.4\times 4[/tex]

                     [tex]= 9.6 \ Ns[/tex]

Thus the above answer is right.    

Learn more about Impulse here:

https://brainly.com/question/15495020

g A mass of 2 kg is attached to a spring whose constant is 7 N/m. The mass is initially released from a point 4 m above the equilibrium position with a downward velocity of 10 m/s, and the subsequent motion takes place in a medium that imparts a damping force numerically equal to 10 times the instantaneous velocity. What is the differential equation for the mass-spring system.

Answers

Answer:

mass 20 times of an amazing and all its motion

A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck always remains on the ice and slides 115 m before coming to rest, determine the coefficient of kinetic friction between the puck and ice.

Answers

Answer:

μ_k = 0.1773

Explanation:

We are given;

Initial velocity;u = 20 m/s

Final velocity;v = 0 m/s (since it comes to rest)

Distance before coming to rest;s = 115 m

Let's find the acceleration using Newton's second law of motion;

v² = u² + 2as

Making a the subject, we have;

a = (v² - u²)/2s

Plugging relevant values;

a = (0² - 20²)/(2 × 115)

a = -400/230

a = -1.739 m/s²

From the question, the only force acting on the puck in the x direction is the force of friction. Since friction always opposes motion, we see that:

F_k = −ma - - - (1)

We also know that F_k is defined by;

F_k = μ_k•N

Where;

μ_k is coefficient of kinetic friction

N is normal force which is (mg)

Since gravity acts in the negative direction, the normal force will be positive.

Thus;

F_k = μ_k•mg - - - (2)

where g is acceleration due to gravity.

Thus,equating equation 1 and 2,we have;

−ma = μ_k•mg

m will cancel out to give;

-a = μ_k•g

μ_k = -a/g

g has a constant value of 9.81 m/s², so;

μ_k = - (-1.739/9.81)

μ_k = 0.1773

The coefficient of kinetic friction between the hockey puck and ice is equal to 0.178

Given the following data:

Initial speed = 20 m/sFinal velocity = 0 m/s (since it came to rest)Distance = 115 m

Scientific data:

Acceleration due to gravity = 9.8 [tex]m/s^2[/tex]

To determine the coefficient of kinetic friction between the hockey puck and ice:

First of all, we would calculate the acceleration of the hockey puck by using the third equation of motion.

[tex]V^2 = U^2 + 2aS\\\\0^2 =20^2 + 2a(115)\\\\-400=230a\\\\a=\frac{-400}{230}[/tex]

Acceleration, a = -1.74 [tex]m/s^2[/tex]

Note: The negative signs indicates that the hockey puck is slowing down or decelerating.

From Newton's Second Law of Motion, we have:

[tex]\sum F_x = F_k + F_n =0\\\\F_k =- F_n\\\\\mu mg =-ma\\\\\mu = \frac{-a}{g}\\\\\mu = \frac{-(-1.74)}{9.8}\\\\\mu = \frac{1.74}{9.8}[/tex]

Coefficient of kinetic friction = 0.178

Read more: https://brainly.com/question/13821217

A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.

Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?

1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.

Answers

Answer:

a) The distance from the cornea vertex to the retina is 2.37 cm

b) This distance is shorter than for the normal eye.

Explanation:

a) Let refractive index of air,

n(air) = x = 1

Let refractive index of lens,

n(lens) = y = 1.4

Object distance, s = 36 cm

Radius of curvature, R = 0.65 cm

The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.

Image distance, s' = ?

(x/s) + (y/s') = (y-x)/R

(1/36) + (1.4/s') = (1.4 - 1)/0.65

1.4/s' = 0.62 - 0.028

1.4/s' = 0.592

s' = 1.4/0.592

s' = 2.37 cm

Distance from the cornea vertex to the retina is 2.37 cm

(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.

A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 8.1 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled x= 0 m. The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring by 0.050 m, and is then thrown to the left. In order for the block to knock over the bottle,it must be thrown with a speed exceeding v0. Ignoring the width of the block, find v0.

Answers

Answer:

v₀ = 0.5058 m/s

Explanation:

From the question, for the block to hit the bottle, the elastic potential energy of the spring at the bottle (x = 0.08 m) should be equal to the sum of the elastic potential energy of the spring at x = 0.05 m and the kinetic energy of block at x = 0.05 m

Now, the potential energy of the block at x = 0.08 m is ½kx²

where;

k is the spring constant given by; k = ω²m

ω is the angular velocity of the oscillation

m is the mass of the block.

Thus, potential energy of the spring at the bottle(x = 0.08 m) is;

U = ½ω²m(0.08m)²

Also, potential energy of the spring at the bottle(x = 0.05 m) is;

U = ½ω²m(0.05m)²

and the kinetic energy of the block at x = 0.05 m is;

K = ½mv₀²

Thus;

½ω²m(0.08)² = ½ω²m(0.05)² + ½mv₀²

Inspecting this, ½m will cancel out to give;

ω²(0.08)² = ω²(0.05)² + v₀²

Making v₀ the subject, we have;

v₀ = ω√((0.08)² - (0.05)²)

So,

v₀ = 8.1√((0.08)² - (0.05)²)

v₀ = 0.5058 m/s

In a contest, two tractors pull two identical blocks of stone thesame distance over identical surfaces. However, block A is moving twice as fast as block B when it crosses the finish line. Which statement is correct?a) Block A has twiceas much kinetic energy as block B.b) Block B has losttwice as much kinetic energy to friction as block A.c) Block B has losttwice as much kinetic energy as block A.d) Both blocks havehad equal losses of energy to friction.e) No energy is lostto friction because the ground has no displacement.

Answers

Answer:

d) Both blocks have had equal losses of energy to friction

Explanation:

As it is mentioned in the question that two tractors pull two same stone blocks having the identical distance over the same surfaces

Moreover, the block A is twice as fast than block B at the time of crossing the finish line

So based on the above information,  it contains the losses of identical friction

And we also know that

Friction energy loss is

[tex]= \mu \times m \times g \times D[/tex]

It would be the same for both the blocks

hence, the option d is correct

The correct answer will be both blocks have had equal losses of energy to friction.

What is friction?

Friction is defined as when any object is slides on a surface by means of any external force then the force in the opposite direction generated between the surface and the body restrict the motion of the body this force is called as the friction.

As it is mentioned in the question that two tractors pull two same stone blocks having the identical distance over the same surfaces.

Moreover, the block A is twice as fast as block B at the time of crossing the finish line.

So based on the above information,  it contains the losses of identical friction.

And we also know that

Friction energy loss is

[tex]E_f=\mu m g D[/tex]

It would be the same for both the blocks

Hence both blocks have had equal losses of energy to friction.

To know more about friction, follow

https://brainly.com/question/24386803

a wall, a 55.6 kg painter is standing on a 3.15 m long homogeneous board that is resting on two saw horses. The board’s mass is 14.5 kg. The saw horse on the right is 1.00 m from the right. How far away can the painter walk from the saw horse on the right until the board begins to tip?

Answers

Answer:

0.15 m

Explanation:

First calculating the center of mass from the saw horse

[tex]\frac{3.15}{2} -1=0.575 m[/tex]

from the free body diagram we can write

Taking moment about the saw horse

55.9×9.81×y=14.5×0.575×9.81

y= 0.15 m

So, the painter walk from the saw horse on the right until the board begins to tip is 0.15 m far.

A glass flask whose volume is 1000 cm^3 at a temperature of 1.00°C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0°C , a volume of 8.50 cm^3 of mercury overflows the flask.Required:If the coefficient of volume expansion of mercury is βHg = 1.80×10^−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

Answers

Answer:

the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

Explanation:

Given that:

Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³

temperature of the glass flask and mercury= 1.00° C

After heat is applied ; the final temperature = 52.00° C

Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C

Volume of the mercury overflow = 8.50 cm^3 = 8.50 ×  10⁻⁶ m³

the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K

The increase in the volume of the mercury =  10⁻³ m³ ×  51.00 × 1.80 × 10⁻⁴

The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]

Increase in volume of the glass =  10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]

Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask

the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]

[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]

[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.

Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.

Answers

Answer:

a.     F = 2.32*10^-18 N

b.     The force F is 2.59*10^11 times the weight of the electron

Explanation:

a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:

[tex]v^2=v_o^2+2ax[/tex]         (1)

v: final speed of the electron = 6.60*10^5 m/s

vo: initial speed of the electron = 4.00*10^5 m/s

a: acceleration of the electron = ?

x: distance traveled by the electron = 5.40cm = 0.054m

you solve the equation (2) for a and replace the values of the parameters:

[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]

Next, you use the second Newton law to calculate the force:

[tex]F=ma[/tex]

m: mass of the electron = 9.11*10^-31kg

[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]

The magnitude of the force exerted on the electron is 2.32*10^-18 N

b. The weight of the electron is given by:

[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]

The quotient between the weight of the electron and the force F is:

[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]

The force F is 2.59*10^11 times the weight of the electron

A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.

Answers

Answer:

v = 4.08m/s₂

Explanation:

How have physicists played a role in history?
A. Physics has changed the course of the world.
B. History books are written by physicists.
C. Physicists have controlled most governments.
D. Most decisions about wars are made by physicists.

Answers

A. Physics has changed the course of the world.

Answer:

A. Physics has changed the course of the world.

Explanation:

A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force

Answers

Answer:

The magnitude of the electric force on the particle in terms of the variables given is, F = qE

The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)

Explanation:

Given;

a charged particle, q

magnitude of electric field, E

magnitude of magnetic field, B

The magnitude of the electric force on the particle in terms of the variables given;

F = qE

The magnitude of the magnetic force on the particle in terms of the variables given;

F = q (v x B)

where;

v is the constant velocity of the charged particle

Answer:

The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|

The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|

Explanation:

The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).

Electric force = qE

The magnitude of the electric force = |qE|

That is, magnitude of the product of the charge and the electric field vector.

The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).

It is given mathematically as (qv × B)

The magnitude of the magnetic force is the magnitude of the vector product obtained.

Magnitude of the magnetic force = |qv × B|

Hope this Helps!!!

In 1949, an automobile manufacturing company introduced a sports car (the "Model A") which could accelerate from 0 to speed v in a time interval of Δt. In order to boost sales, a year later they introduced a more powerful engine (the "Model B") which could accelerate the car from 0 to speed 2.92v in the same time interval. Introducing the new engine did not change the mass of the car. Compare the power of the two cars, if we assume all the energy coming from the engine appears as kinetic energy of the car.

Answers

Answer: [tex]\frac{P_B}{P_A}[/tex] = 8.5264

Explanation: Power is the rate of energy transferred per unit of time: P = [tex]\frac{E}{t}[/tex]

The energy from the engine is converted into kinetic energy, which is calculated as: [tex]KE = \frac{1}{2}.m.v^{2}[/tex]

To compare the power of the two cars, first find the Kinetic Energy each one has:

K.E. for Model A

[tex]KE_A = \frac{1}{2}.m.v^{2}[/tex]

K.E. for model B

[tex]KE_B = \frac{1}{2}.m.(2.92v)^{2}[/tex]

[tex]KE_B = \frac{1}{2}.m.8.5264v^{2}[/tex]

Now, determine Power for each model:

Power for model A

[tex]P_{A}[/tex] = [tex]\frac{m.v^{2} }{2.t}[/tex]

Power for model B

[tex]P_B = \frac{m.8.5264.v^{2} }{2.t}[/tex]

Comparing power of model B to power of model A:

[tex]\frac{P_B}{P_A} = \frac{m.8.5264.v^{2} }{2.t}.\frac{2.t}{m.v^{2} }[/tex]

[tex]\frac{P_B}{P_A} =[/tex] 8.5264

Comparing power for each model, power for model B is 8.5264 better than model A.

A particle leaves the origin with a speed of 3 106 m/s at 38 degrees to the positive x axis. It moves in a uniform electric field directed along positive y axis. Find Ey such that the particle will cross the x axis at x

Answers

Answer:

If the particle is an electron [tex]E_y = 3.311 * 10^3 N/C[/tex]

If the particle is a proton, [tex]E_y = 6.08 * 10^6 N/C[/tex]

Explanation:

Initial speed at the origin, [tex]u = 3 * 10^6 m/s[/tex]

[tex]\theta = 38^0[/tex] to +ve x-axis

The particle crosses the x-axis at , x = 1.5 cm = 0.015 m

The particle can either be an electron or a proton:

Mass of an electron, [tex]m_e = 9.1 * 10^{-31} kg[/tex]

Mass of a proton, [tex]m_p = 1.67 * 10^{-27} kg[/tex]

The electric field intensity along the positive y axis [tex]E_y[/tex], can be given by the formula:

[tex]E_y = \frac{2 m u^2 sin \theta cos \theta}{qx} \\[/tex]

If the particle is an electron:

[tex]E_y = \frac{2 m_e u^2 sin \theta cos \theta}{qx} \\[/tex]

[tex]E_y = \frac{2 * 9.1 * 10^{-31} * (3*10^6)^2 *(sin38)( cos38)}{1.6*10^{-19} * 0.015} \\[/tex]

[tex]E_y = 3311.13 N/C\\E_y = 3.311 * 10^3 N/C[/tex]

If the particle is a proton:

[tex]E_y = \frac{2 m_p u^2 sin \theta cos \theta}{qx} \\[/tex]

[tex]E_y = \frac{2 * 1.67 * 10^{-27} * (3*10^6)^2 *(sin38)( cos38)}{1.6*10^{-19} * 0.015} \\[/tex]

[tex]E_y = 6.08 * 10^6 N/C[/tex]

what is the most likely elevation of point x?
A. 150 ft
B. 200 ft
C. 125 ft
D. 250 ft​

Answers

A.125

Because, sea level is 0 and the elevation gets higher the closer you get towards the center. The x was closest to the 100.
answer is: 125
explanation: sea level is at 0 and the elevation gets higher the closer you get towards the center. X was the closest one to 100

The index of refraction for a certain type of glass is 1.645 for blue light and 1.609 for red light. A beam of white light (one that contains all colors) enters a plate of glass from the air, nair≈1, at an incidence angle of 38.55∘. What is the absolute value of ????, the angle in the glass between blue and red parts of the refracted beams?

Answers

Answer:

blue  θ₂ = 22.26º

red    θ₂ = 22.79º

Explanation:

When a light beam passes from one material medium to another, it undergoes a deviation from the path, described by the law of refraction

         n₁ sin θ₁ = n₂ sin θ₂

where n₁ and n₂ are the incident and transmitted media refractive indices and θ are the angles in the media

let's apply this equation to each wavelength

λ = blue

     

in this case n₁ = 1, n₂ = 1,645

       sin θ₂ = n₁/ n₂ sin₂ θ₁

       

let's calculate

       sin θ₂ = 1 / 1,645 sint 38.55

       sin θ₂ = 0.37884

       θ₂ = sin⁻¹ 0.37884

       θ₂ = 22.26º

λ = red

n₂ = 1,609

         sin θ₂ = 1 / 1,609 sin 38.55

         sin θ₂ = 0.3873

         θ₂ = sim⁻¹ 0.3873

         θ₂ = 22.79º

the refracted rays are between these two angles

Suppose I have an infinite plane of charge surrounded by air. What is the maximum charge density that can be placed on the surface of the plane before dielectric breakdown of the surrounding air occurs

Answers

Answer:

[tex]53.1\mu C/m^2[/tex]

Explanation:

We are given that

Electric field,E=[tex]3\times 10^6V/m[/tex]

We have to find the value of maximum charge density that can be placed on the surface of the plane before dielectric breakdown of the surrounding air occurs.

We know that

[tex]E=\frac{\sigma}{2\epsilon_0}[/tex]

Where [tex]\epsilon_0=8.85\times 10^{-12}[/tex]

Using the formula

[tex]3\times 10^6=\frac{\sigma}{2\times 8.85\times 10^{-12}}[/tex]

[tex]\sigma=3\times 10^6\times 2\times 8.85\times 10^{-12}[/tex]

[tex]\sigma=5.31\times 10^{-5}C/m^2[/tex]

[tex]\sigma=53.1\times 10^{-6}C/m^2=53.1\mu C/m^2[/tex]

[tex]1\mu C=10^{-6} C[/tex]

A 50-kg block is pushed a distance of 5.0 m across a floor by a horizontal force Fp whose magnitude is 150 N. Fp is parallel to the displacement of the block. The coefficient of kinetic friction is 0.25.
a) What is the total work done on the block?
b) If the box started from rest, what is the final speed of the block?

Answers

Answer:

a) WT = 137.5 J

b) v2 = 2.34 m/s

Explanation:

a) The total work done on the block is given by the following formula:

[tex]W_T=F_pd-F_fd=(F_p-F_f)d[/tex]          (1)

Fp: force parallel to the displacement of the block = 150N

Ff: friction force

d: distance = 5.0 m

Then, you first calculate the friction force by using the following relation:

[tex]F_f=\mu_k N=\mu_k Mg[/tex]        (2)

μk: coefficient of kinetic friction = 0.25

M: mass of the block = 50kg

g: gravitational constant = 9.8 m/s^2

Next, you replace the equation (2) into the equation (1) and solve for WT:

[tex]W_T=(F_p-\mu_kMg)d=(150N-(0.25)(50kg)(9.8m/s^2))(5.0m)\\\\W_T=137.5J[/tex]

The work done over the block is 137.5 J

b) If the block started from rest, you can use the following equation to calculate the final speed of the block:

[tex]W_T=\Delta K=\frac{1}{2}M(v_2^2-v_1^2)[/tex]     (3)

WT: total work = 137.5 J

v2: final speed = ?

v1: initial speed of the block = 0m/s

You solve the equation (3) for v2:

[tex]v_2=\sqrt{\frac{2W_T}{M}}=\sqrt{\frac{2(137.5J)}{50kg}}=2.34\frac{m}{s}[/tex]

The final speed of the block is 2.34 m/s

The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the

Answers

Complete question:

The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.

Answer:

The exit velocity is 629.41 m/s

Explanation:

Given;

initial temperature, T₁ = 1200K

initial pressure, P₁ = 150 kPa

final pressure, P₂ = 80 kPa

specific heat at 300 K, Cp = 1004 J/kgK

k = 1.4

Calculate final temperature;

[tex]T_2 = T_1(\frac{P_2}{P_1})^{\frac{k-1 }{k}[/tex]

k = 1.4

[tex]T_2 = T_1(\frac{P_2}{P_1})^{\frac{k-1 }{k}}\\\\T_2 = 1200(\frac{80}{150})^{\frac{1.4-1 }{1.4}}\\\\T_2 = 1002.714K[/tex]

Work done is given as;

[tex]W = \frac{1}{2} *m*(v_i^2 - v_e^2)[/tex]

inlet velocity is negligible;

[tex]v_e = \sqrt{\frac{2W}{m} } = \sqrt{2*C_p(T_1-T_2)} \\\\v_e = \sqrt{2*1004(1200-1002.714)}\\\\v_e = \sqrt{396150.288} \\\\v_e = 629.41 \ m/s[/tex]

Therefore, the exit velocity is 629.41 m/s

If you slide down a rope, it's possible to create enough thermal energy to burn your hands or your legs where they grip the rope. Suppose a 30 kg child slides down a rope at a playground, descending 2.5 m at a constant speed.
How much thermal energy is created as she slides down the rope?

Answers

Answer:

    Q = 735 J

Explanation:

In this exercise we must assume that all the mechanical energy of the system transforms into cemite energy.

Initial energy

        Em₀ = U = m g h

final energy

        [tex]Em_{f}[/tex] = Q

        Em₀ = Em_{f}

        m g h = Q

let's calculate

        Q = 30  9.8  2.5

        Q = 735 J

Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.

Answers

Answer:

The two value of the wavelength for the out of tune guitar is  

[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]

Explanation:

From the question we are told that

     The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]

     The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]

     

Generally the frequency of the note played by the guitar that is in tune is  

        [tex]f_1 = \frac{v_s}{\lambda}[/tex]

Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]

       [tex]f_1 = \frac{343}{0.0065}[/tex]

      [tex]f_1 = 5276.9 \ Hz[/tex]

The difference in beat is mathematically represented as

       [tex]\Delta f = |f_1 - f_2|[/tex]

Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar

     [tex]f_2 =f_1 \pm \Delta f[/tex]

substituting values

      [tex]f_2 =f_1 + \Delta f[/tex]

      [tex]f_2 = 5276.9 + 17.0[/tex]  

     [tex]f_2 = 5293.9 \ Hz[/tex]

The wavelength for this frequency is

      [tex]\lambda_2 = \frac{343 }{5293.9}[/tex]

     [tex]\lambda_2 = 0.0648 \ m[/tex]

    [tex]\lambda_2 = 6.48 \ cm[/tex]

For the second value of the second frequency

     [tex]f_2 = f_1 - \Delta f[/tex]

     [tex]f_2 = 5276.9 -17[/tex]

      [tex]f_2 = 5259.9 Hz[/tex]

The wavelength for this frequency is

   [tex]\lambda _2 = \frac{343}{5259.9}[/tex]

   [tex]\lambda _2 = 0.0652 \ m[/tex]

   [tex]\lambda _2 = 6.52 \ cm[/tex]

This question involves the concepts of beat frequency and wavelength.

The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".

The beat frequency is given by the following formula:

[tex]f_b=|f_1-f_2|\\\\[/tex]

f₂ = [tex]f_b[/tex] ± f₁

where,

f₂ = frequency of the out-of-tune guitar = ?

[tex]f_b[/tex] = beat frequency = 17 Hz

f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]

Therefore,

f₂ = 5276.9 Hz ± 17 HZ

f₂ = 5293.9 Hz (OR) 5259.9 Hz

Now, calculating the possible wavelengths:

[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]

λ₂ = 6.48 cm (OR) 6.52 cm

Learn more about beat frequency here:

https://brainly.com/question/10703578?referrer=searchResults

Assume you have a rocket in Earth orbit and want to go to Mars. The required change in velocity is ΔV≈9.6km/s . There are two options for the propulsion system --- chemical and electric --- each with a different specific impulse. Recall that the relationship between specific impulse and exhaust velocity is: Vex=g0Isp Using the Ideal Rocket Equation and setting g0=9.81m/s2 , calculate the propellant fraction required to achieve the necessary ΔV for each of propulsion system. Part 1: Cryogenic Chemical Propulsion First, consider a cryogenic chemical propulsion system with Isp≈450s . Enter the required propellant fraction as a proportion with at least 2 decimal places (i.e., enter 0.25 to represent 25%): incorrect Part 2: Electric Propulsion Next, consider an electric propulsion system with Isp≈2000s . Enter the required propellant fraction as a proportion with at least 2 decimal places (i.e., enter 0.25 to represent 25%):

Answers

Answer: Part 1: Propellant Fraction (MR) = 8.76

Part 2: Propellant Fraction (MR) = 1.63

Explanation: The Ideal Rocket Equation is given by:

Δv = [tex]v_{ex}.ln(\frac{m_{f}}{m_{e}} )[/tex]

Where:

[tex]v_{ex}[/tex] is relationship between exhaust velocity and specific impulse

[tex]\frac{m_{f}}{m_{e}}[/tex] is the porpellant fraction, also written as MR.

The relationship [tex]v_{ex}[/tex] is: [tex]v_{ex} = g_{0}.Isp[/tex]

To determine the fraction:

Δv = [tex]v_{ex}.ln(\frac{m_{f}}{m_{e}} )[/tex]

[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]

Knowing that change in velocity is Δv = 9.6km/s and [tex]g_{0}[/tex] = 9.81m/s²

Note: Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.

Part 1: Isp = 450s

[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]

ln(MR) = [tex]\frac{9.6.10^{3}}{9.81.450}[/tex]

ln (MR) = 2.17

MR = [tex]e^{2.17}[/tex]

MR = 8.76

Part 2: Isp = 2000s

[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]

ln (MR) = [tex]\frac{9.6.10^{3}}{9.81.2.10^{3}}[/tex]

ln (MR) = 0.49

MR = [tex]e^{0.49}[/tex]

MR = 1.63

During a particular time interval, the displacement of an object is equal to zero. Must the distance traveled by this object also equal to zero during this time interval? Group of answer choices

Answers

Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.

Explanation:

Ok, let's write the definitions:

Displacement: The displacement is equal to the difference between the final position and the initial position.

Distance traveled: Total distance that you moved.

So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:

The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.

But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.

So no, we can have a displacement equal to zero, but a distance traveled different than zero.

A 300 g bird flying along at 6.2 m/s sees a 10 g insect heading straight toward it with a speed of 35 m/s (as measured by an observer on the ground, not by the bird). The bird opens its mouth wide and enjoys a nice lunch.

Required:
What is the bird's speed immediately after swallowing?

Answers

Answer:

The velocity of the bird is [tex]v_f = 4.87 \ m/s[/tex]

Explanation:

From the question we are told that  

    The mass of the bird  is [tex]m_1 = 300 \ g = 0.3 \ kg[/tex]

    The initial speed of the bird is  [tex]u_1 = 6.2 \ m/s[/tex]

     The mass of the insect is [tex]m_2 = 10 \ g = 0.01 \ kg[/tex]

       The speed of the insect is [tex]u_ 2 =-35 \ m/s[/tex]

The negative sign is because it is moving in opposite direction  to the bird

According to the principle of linear momentum conservation

       [tex]m_1 u_1 + m_2 u_2 = (m_1 + m_2 )v_f[/tex]

substituting values

        [tex](0.3 * 6.2 ) + (0.01 * (-35)) = (0.3 + 0.01 )v_f[/tex]

    [tex]1.51 = 0.31 v_f[/tex]

     [tex]v_f = 4.87 \ m/s[/tex]

The Final velocity of Bird =  4.87 m/s

Mass of the bird = 300 g = 0.3 kg

Velocity of bird = 6.2 m/s

Momentum of Bird = Mass of bird [tex]\times[/tex] Velocity of Bird = 0.3 [tex]\times[/tex] 6.2 =  1.86 kgm/s

Mass of the insect = 10 g = 0.01 kg

Velocity of insect =   - 35 m/s

Momentum of the Insect = Mass of Insect [tex]\times[/tex] Velocity of Insect = - 0.35  kgm/s

According to the law of conservation of momentum We can write that

In the absence of external forces on the system , the momentum of system remains conserved in that particular direction.

The bird opens the mouth and enjoys the free lunch  hence

Let the final velocity of bird is [tex]v_f[/tex]

Initial momentum of the system = Final momentum of the system

1.86 -0.35 = [tex]v_f[/tex] ( 0.01 + 0.3 )

1.51 =  [tex]v_f[/tex] 0.31

[tex]v_f[/tex] = 4.87 m/s

The Final velocity of Bird =  4.87 m/s

For more information please refer to the link below

https://brainly.com/question/18066930

A skydiver stepped out of an airplane at an altitude of 1000m fell freely for 5.00s opened her parachute and slowed to 7.00m/s in a negligible time what was the total elapsed time from leaving the airplane to landing on the ground

Answers

Answer:

t = 17.68s

Explanation:

In order to calculate the total elapsed time that skydiver takes to reache the ground, you first calculate the distance traveled by the skydiver in the first 5.00s. You use the following formula:

[tex]y=y_o-v_ot-\frac{1}{2}gt^2[/tex]            (1)

y: height for a time t

yo: initial height = 1000m

vo: initial velocity = 0m/s

g: gravitational acceleration = 9.8m/s^2

t: time = 5.00 s

You replace the values of the parameters to get the values of the new height of the skydiver:

[tex]y=1000m-\frac{1}{2}(9.8m/s^2)(5.00s)^2\\\\y=877.5m[/tex]

Next, you take this value of 877.5m as the initial height of the second part of the trajectory of the skydiver. Furthermore, use the value of 7.00m/s as the initial velocity.

You use the same equation (1) with the values of the initial velocity and new height. We are interested in the time for which the skydiver arrives to the ground, then y = 0

[tex]0=877.5-7.00t-4.9t^2[/tex]       (2)

The equation (2) is a quadratic equation, you solve it for t with the quadratic formula:

[tex]t_{1,2}=\frac{-(-7.00)\pm \sqrt{(-7.00)^2-4(-4.9)(877.5)}}{2(-4.9)}\\\\t_{1,2}=\frac{7.00\pm 131.33}{-9.8}\\\\t_1=12.68s\\\\t_2=-14.11s[/tex]

You use the positive value of t1 because it has physical meaning.

Finally, you sum the times of both parts of the trajectory:

total time = 5.00s + 12.68s = 17.68s

The total elapsed time taken by the skydiver to arrive to the ground from the airplane is 17.68s

Is it possible to do work on an object without changing the kinetic energy of the object? Now Why?
a) Yes, it is possible by raising the object to a greater height without acceleration.
b) Yes, it is possible by raising the object to a greater height with acceleration
c) Yes, it is possible by moving the object without acceleration at the same height.
d) Yes, it is possible by moving the object with acceleration at the same height.

Answers

Answer:

(a) Yes, it is possible by raising the object to a greater height without acceleration.

Explanation:

The work-energy theorem states that work done on an object is equal to the change in kinetic energy, and change in  kinetic energy requires a change in velocity.

If kinetic energy will not change, then velocity will not change, this means that there will be constant velocity and an object with a constant velocity is not accelerating.

If the object is not accelerating (without acceleration) and it remains at the same height (change in height = 0, and mgh = 0).

Thus, for work to be done on the object, without changing the kinetic energy of the object, the object must be raised  to a greater height without acceleration.

Correct option is " (a) Yes, it is possible by raising the object to a greater height without acceleration".

Other Questions
Question 16 (3 points) The 2011 and 2012 Balance Sheets for Jacob, Inc. contained the following entries: 12/31/201112/31/2012 Accounts receivable$206$116 Inventories$590$603 Net fixed assets$102$307 Accounts payable$329$333 Jacob had materials purchases in 2011 of $1,689 and materials purchases in 2012 of $2,770 . What did Jacob record as Cost of Goods Sold (COGS) on its 2012 income statement The life of an electric component has an exponential distribution with a mean of 8.9 years. What is the probability that a randomly selected one such component has a life more than 8 years? Answer: (Round to 4 decimal places.) Solve for x. 9x-2c=k Dolan Company's accounting records reflect the following inventories:Dec.31, 2013 Dec.31, 2012Raw materials inventory $310,000 $260,000Work in process inventory 300,000 160,000Finished goods inventory 190,000 150,000During 2013, $600,000 of raw materials were purchased, direct labor costs amounted to $500,000, and manufacturing overhead incurred was $480,000.Dolan Company's total manufacturing costs incurred in 2013 amounted to________. The women has had two miscarriages. What is the chance that she could have a normal child? a. The chance of a normal child is approximately one in four; however, all of the normal children will be translocation carriers.b. The chance of a normal child is approximately one in two; however, all of the normal children will be translocation carriers.c. The chance of a normal child is approximately one in four; however, half of the normal children will be translocation carriers.d. The chance of a normal child is approximately one in two; however, half of the normal children will be translocation carriers 25 points !!! 3 1/3 x 52 What does Lincoln wish to do through this finalsentence of the speech?With malice toward none, with charity for all, withfirmness in the right as God gives us to see the right, letus strive on to finish the work we are in, to bind up thenation's wounds, to care for him who shall have borne thebattle and for his widow and his orphan, to do all whichmay achieve and cherish a just and lasting peace amongourselves and with all nations.-Second inaugural address,Abraham Lincolnleave the listener feeling sad and hopelesscause the listener to feel angry about the length ofthe unwinnable warstir up emotions about the lives lost in the war andencourage the listener to help end itmake the listener blame the South for the ongoingviolence PLEASE ANSWER ASAP AND PROVIDE EXPLANATION! A copy machine is set up to enlarge an original in the ratio 2:3. What is this enlargement in percent? In triangle ABC, the right angle is at vertex C, a = 714 cm and the measure of angle A is 78 . To the nearest cm, what is the length of side c? All projects are unique:________. Select one: A. Therefore all project management circumstances are equally unique. B. So knowledge should not be transferred to avoid bias in future projects. C. So knowledge cannot be transferred. D. But they may have several common points. The slope, m, of a linear equation can be found using the formula m = StartFraction y 2 minus y a Over x 2 minus x 1 EndFraction., where the x- and y-values come from two ordered pairs, and (x1, y1) and (x2, y2).What is an equivalent equation solved for y2? Use an Excel function to find: Note: No need to use Excel TABLES to answer these questions! 6. The average viewer rating of all shows watched. 7. Out of all of the shows watched, what is the earliest airing year what is the most likely elevation of point x? A. 150 ft B. 200 ft C. 125 ftD. 250 ft ________ general's army attacked the city at night. a) No article b) The c) A Read the excerpt from Article 4 of the Texas Constitution. Sec. 1. OFFICERS CONSTITUTING EXECUTIVE DEPARTMENT. The Executive Department of the State shall consist of a Governor, who shall be the Chief Executive Officer of the State, a Lieutenant Governor, Secretary of State, Comptroller of Public Accounts, Commissioner of the General Land Office, and Attorney General. Sec. 2. ELECTION OF OFFICERS OF EXECUTIVE DEPARTMENT. All the above officers of the Executive Department (except Secretary of State) shall be elected by the qualified voters of the State at the time and places of election for members of the Legislature. Sec. 21. SECRETARY OF STATE. There shall be a Secretary of State, who shall be appointed by the Governor, by and with the advice and consent of the Senate, and who shall continue in office during the term of service of the Governor. According to the excerpt, who chooses the governor? the members of the legislature the qualified voters of the state the secretary of state the chief executive officer Motorzone offers replacement parts for old Volkswagen Beetles. The company calculates shipping charges based on shipping parts from Boston, even though some parts actually ship from St. Louis. Motorzone most likely practices ________ pricing. Please answer this correctly what is the recursiveformula for this geometric sequence? 4,-12,36,108 According to the Phillips curve, policymakers could reduce both the inflation rate and the unemployment rate by Group of answer choices increasing the money supply. raising taxes. increasing government expenditures None of the other answers is correct What is the domain of the function on the graph? all real numbers all real numbers greater than or equal to 0 all real numbers greater than or equal to 2 all real numbers greater than or equal to 3