The vertices of the image triangle N'M'O' are N'(5, 2), M'(2, 1), and O'(3, 3).
To determine the vertices of the image N'M'O' after reflecting triangle NMO over the line x = -1, we need to apply the reflection transformation to each vertex.
For a reflection over the line x = -1, we can find the image of a point (x, y) by finding its reflection as (2(-1) - x, y).
Applying this transformation to each vertex of triangle NMO, we get:
N' = (2(-1) - (-5), 2) = (5, 2)
M' = (2(-1) - (-2), 1) = (2, 1)
O' = (2(-1) - (-3), 3) = (3, 3)
The vertices of the image triangle N'M'O' are N'(5, 2), M'(2, 1), and O'(3, 3).
For more such questions on Triangle
https://brainly.com/question/1058720
#SPJ8
Is the expression quadratic 3x+5y-2
No, the expression 3x + 5y - 2200 is not a quadratic expression.
A quadratic expression is an expression of the form ax² + bx + c, where a, b, and c are constants and x is a variable raised to the power of 2.
It is a second-degree polynomial, meaning that the highest power of the variable is 2.Quadratic expressions often have a graph that is a parabola.
"3x + 5y - 2" is a linear expression, not a quadratic expression.
In a quadratic expression, the highest power of the variable(s) is 2, whereas in this expression, the highest power is 1.
The expression 3x + 5y - 2200 is a linear expression since it does not contain a term with a variable raised to the power of 2.
It is a first-degree polynomial, meaning that the highest power of the variable is 1.
Linear expressions often have a graph that is a straight line.
For more related questions on quadratic expression.:
https://brainly.com/question/10025464
#SPJ8
No. The expression, 3x + 5y - 2, is not quadratic.
What are quadratic expressions?The expression "3x+5y-2" is a linear expression, not quadratic.
Quadratic expressions contain a squared term, like "[tex]ax^2 + bx + c[/tex]." In the given expression, there are no squared terms, only linear terms with variables "x" and "y" raised to the power of 1.
The coefficients for "x" and "y" are 3 and 5, respectively, and there is a constant term of -2. Therefore, it represents a linear relationship between "x" and "y" rather than a quadratic one.
More on quadratic expressions can be found here: https://brainly.com/question/14680354
#SPJ1
2) Looking at your average from question 1, with an expected weight of 4 ounces, what is the % error in actual weights? (Assume you think the answer is 10%. Find 10% of 4 ounces to check to see if that answer is reasonable!) Do not round!
A) 17.5%
B) .128%
C) 10%
D) 0.175%
The calculated percentage error with the assumed answer of 10%
To find the percentage error in actual weights, we can use the formula:
Percentage Error = [(|Measured Value - Expected Value|) / Expected Value] * 100%
In this case, the expected weight is 4 ounces. Let's assume the measured value is 10% off from the expected value. So the measured value would be:
Measured Value = Expected Value + (10% of Expected Value)
= 4 ounces + (10/100) * 4 ounces
= 4 ounces + 0.4 ounces
= 4.4 ounces
Now we can calculate the percentage error:
Percentage Error = [(|4.4 ounces - 4 ounces|) / 4 ounces] * 100%
= [(0.4 ounces) / 4 ounces] * 100%
= (0.4/4) * 100%
= 0.1 * 100%
= 10%
Comparing the calculated percentage error with the assumed answer of 10%, we can see that they are the same.
The percentage error represents the deviation from the expected value as a percentage of the expected value itself. In this case, it indicates that the actual weights deviate by 10% from the expected weight of 4 ounces. The calculated percentage error with the assumed answer of 10%
For more such questions on percentage error
https://brainly.com/question/30760250
#SPJ8
Jade decided to rent movies for a movie marathon over the weekend. The function g(x) represents the amount of money spent in dollars, where x is the number of movies. Does a possible solution of (6.5, $17.50) make sense for this function? Explain your answer.
Yes. The input and output are both feasible.
No. The input is not feasible.
No. The output is not feasible.
No. Neither the input nor output is feasible.
The output value is feasible. The input value is not feasible, the possible solution of (6.5, $17.50) does not make sense for this function. The correct answer is No. The input is not feasible.
Jade decided to rent movies for a movie marathon over the weekend.
The function g(x) represents the amount of money spent in dollars, where x is the number of movies.
The given function is g(x) which represents the amount of money spent in dollars, where x is the number of movies.
The solution given is (6.5, $17.50).
We need to find whether the solution makes sense for the given function or not.
The input is given as 6.5 and the output is given as $17.50.
This means that Jade rented 6.5 movies and spent $17.50 on renting those movies.
To check whether the solution makes sense or not, we need to see if the input and output values are feasible or not.
The input value 6.5 is not a feasible value because it is not possible to rent half a movie.
Jade can rent 6 movies or 7 movies but not 6.5 movies.
Therefore, the input value is not feasible.
On the other hand, the output value $17.50 is a feasible value because it is possible for Jade to spend $17.50 on renting 6 movies.
The output value is feasible.
Since the input value is not feasible, the possible solution of (6.5, $17.50) does not make sense for this function. The correct answer is No. The input is not feasible.
For more related questions on feasible:
https://brainly.com/question/32957392
#SPJ8
Given the following rectangles, identify all combinations of assembling these rectangles for which it is possible to create a rectangle with the length of 15 and the width 11 with no gaps or overlapping. You can't cut any of the rectangles but you may use some of them multiple times. More than one answer may be correct; mark all that apply.
Rectangles you are given:
answer options:
two C rectangles, two D rectangles, and two B rectangles
one each of rectangles A, B, C, and D
one A rectangle and four B rectangles
three E rectangles and two B rectangles
one E rectangle, one C, one D, and three B rectangles
The combinations of assembling these rectangles for which it is possible to create a rectangle with the length of 15 and the width 11 with no gaps or overlapping are:
One each of rectangles A, B, C, and D.One A rectangle and four B rectangles.What is a rectangle?A rectangle is a plane figure with four straight sides and four right angles, especially one with unequal adjacent sides.
Required
Which group forms a rectangle of
[tex]\text{Length}=15[/tex]
[tex]\text{Width}=11[/tex]
First, calculate the area of the big rectangle
[tex]\text{Area}=\text{Length}\times\text{Width}[/tex]
[tex]\text{A}_{\text{Big}}=15\times11[/tex]
[tex]\text{A}_{\text{Big}}=165[/tex]
Next, calculate the area of each rectangle A to E.
[tex]\text{A}_{\text{A}}=11\times7[/tex]
[tex]\text{A}_{\text{A}}=77[/tex]
[tex]\text{A}_{\text{B}}=2\times11[/tex]
[tex]\text{A}_{\text{B}}=22[/tex]
[tex]\text{A}_{\text{C}}=6\times6[/tex]
[tex]\text{A}_{\text{C}}=36[/tex]
[tex]\text{A}_{\text{D}}=6\times5[/tex]
[tex]\text{A}_{\text{D}}=30[/tex]
[tex]\text{A}_{\text{E}}=13\times4[/tex]
[tex]\text{A}_{\text{E}}=52[/tex]
Then consider each option.
(a) 2C + 2D + 2B
[tex]2\text{C}+2\text{D}+2\text{B}=(2\times36)+(2\times30)+(2\times22)[/tex]
[tex]2\text{C}+2\text{D}+2\text{B}=72+60+44[/tex]
[tex]2\text{C}+2\text{D}+2\text{B}=176[/tex]
(b) A + B + C + D
[tex]\text{A}+\text{B}+\text{C}+\text{D}=77+22+36+30[/tex]
[tex]\text{A}+\text{B}+\text{C}+\text{D}=165[/tex]
(c) A + 4B
[tex]\text{A} + 4\text{B}=77+(4\times22)[/tex]
[tex]\text{A} + 4\text{B}=77+88[/tex]
[tex]\text{A} + 4\text{B}=165[/tex]
(d) 3E + 2B
[tex]3\text{E}+2\text{B}=(3\times52)+(2\times22)[/tex]
[tex]3\text{E}+2\text{B}=156+44[/tex]
[tex]3\text{E}+2\text{B}=200[/tex]
(e) E + C + D + 3B
[tex]\text{E} + \text{C} + \text{D} + 3\text{B}=52+36+30+(3\times22)[/tex]
[tex]\text{E} + \text{C} + \text{D} + 3\text{B}=52+36+30+66[/tex]
[tex]\text{E} + \text{C} + \text{D} + 3\text{B}=184[/tex]
Recall that:
[tex]\text{A}_{\text{Big}}=165[/tex]
Only options (b) and (c) match this value.
[tex]\text{A}+\text{B}+\text{C}+\text{D}=165[/tex]
[tex]\text{A} + 4\text{B}=165[/tex]
Hence, options (b) and (c) are correct.
To know more on rectangles, visit:
https://brainly.com/question/31891759
Find y" by implicit differentiation.
cos(y) + sin(x) = 1
y" = cos(y) * dy/dx - sin(x) + sin(y) by implicit differentiation.
To find the second derivative (y") by implicit differentiation, we will differentiate the equation with respect to x twice.
Equation: cos(y) + sin(x) = 1
Differentiating once with respect to x using the chain rule:
-sin(y) * dy/dx + cos(x) = 0
Now, differentiating again with respect to x:
Differentiating the first term:
-d/dx(sin(y)) * dy/dx - sin(y) * d^2y/dx^2
Differentiating the second term:
-d/dx(cos(x)) = -(-sin(x)) = sin(x)
The equation becomes:
-d/dx(sin(y)) * dy/dx - sin(y) * d^2y/dx^2 + sin(x) = 0
Now, let's isolate the second derivative, d^2y/dx^2:
-d^2y/dx^2 = d/dx(sin(y)) * dy/dx - sin(x) + sin(y)
Substituting the previously obtained expression for d/dx(sin(y)) = cos(y):
-d^2y/dx^2 = cos(y) * dy/dx - sin(x) + sin(y)
Thus, the second derivative (y") by the equation:
y" = cos(y) * dy/dx - sin(x) + sin(y)
For more such questions on implicit differentiation
https://brainly.com/question/25081524
#SPJ8
Two cyclists, 54 miles apart, start riding toward each other at the same time. One cycles 2 times as fast as the other. If they meet 2 hours later, what is the speed (in mi/h) of the faster cyclist?
Answer:
In summary, the faster cyclist cycles at a speed of 18 mi/h since they travel 36 of the 54 miles in 2 hours while cycling twice as fast as the slower cyclist.
Explanationn:
The two cyclists are 54 miles apart and heading toward each other.
One cyclist cycles 2 times as fast as the other. We will call the faster cyclist A and the slower cyclist B.
They meet 2 hours after starting. This means they travel a total distance of 54 miles in 2 hours.
Since cyclist, A cycles 2 times as fast as cyclist B, cyclist A travels 2/3 of the total distance, and cyclist B travels 1/3 of the total distance.
In two hours, cyclist A travels (2/3) * 54 miles = 36 miles.
We need to find the speed of cyclist A in miles per hour.
Speed = Distance / Time
So the speed of cyclist A is:
36 miles / 2 hours = 18 miles per hour
Therefore, the speed of the faster cyclist is 18 mi/h.
2(x+5)-5 x 12 example pls
When x = 3, the expression 2x - 50 evaluates to -44.
To demonstrate an example using the expression 2(x + 5) - 5 × 12, let's simplify it step by step:
Start with the given expression.
2(x + 5) - 5 × 12
Apply the distributive property.
2x + 2(5) - 5 × 12
Simplify within parentheses and perform multiplication.
2x + 10 - 60
Combine like terms.
2x - 50
The simplified form of the expression 2(x + 5) - 5 × 12 is 2x - 50.
Let's consider an example for substituting a value for the variable x:
Suppose we want to evaluate the expression when x = 3. We substitute x = 3 into the simplified expression:
2(3) - 50
Now, perform the calculations:
6 - 50
The result is -44.
for such more question on expression
https://brainly.com/question/4344214
#SPJ8
Question
evaluate the expression 2(x+5)-5 x 12.
The value v of a tractor purchased for $13,000 and depreciated linearly at the rate of $1,300 per year is given by v= -1,300t+13,000, where t represents the number of years since the
purchase. Find the value of the tractor after (a) two years and (b) six years. When will the tractor have no value?
a) the value of the tractor after two years is $10,400.
b) the value of the tractor after six years is $5,200.
To find the value of the tractor after a certain number of years, we can substitute the value of t into the equation v = -1,300t + 13,000.
a) After two years:
Substituting t = 2 into the equation, we get:
v = -1,300(2) + 13,000
v = -2,600 + 13,000
v = 10,400
Therefore, the value of the tractor after two years is $10,400.
b) After six years:
Substituting t = 6 into the equation, we get:
v = -1,300(6) + 13,000
v = -7,800 + 13,000
v = 5,200
Therefore, the value of the tractor after six years is $5,200.
To find when the tractor will have no value, we need to find the value of t when v = 0. We can set the equation v = -1,300t + 13,000 equal to 0 and solve for t:
-1,300t + 13,000 = 0
-1,300t = -13,000
t = -13,000 / -1,300
t = 10
Therefore, the tractor will have no value after 10 years.
For more such question on value visit:
https://brainly.com/question/843074
#SPJ8
Arc BC on circle A has a length of 115,
- inches. What is the radius of the circle?
115/6 pi
138°
The radius of the circle is 25 inches. The length of arc with a central angle of 138° is 115π/6 in
What is an equation?An equation is an expression that shows how numbers and variables are related to each other using mathematical operators.
The length of an arc with a central angle Ф with circle radius (r) is given by:
Length of arc = (Ф/360) * 2πr
Given the length of arc as 115π/6 in and angle of 138°, hence:
Length of arc = (Ф/360) * 2πr
Substituting:
115π/6 = (138/360) * 2πr
r = 25 inches
The radius of the circle is 25 inches.
Find out more on equation at: https://brainly.com/question/29174899
#SPJ1
Select the correct answer.
Omar has a gift card for $40.00 at a gift shop. Omar wants to buy a hat for himself for $13.50. For his friends, he would like to buy souvenir bracelets, which are $3.25 each. All prices include taxes.
Which inequality can be used to solve for how many bracelets Omar can buy?
A.
3.25x + 13.50 ≤ 40
B.
3.25x + 13.50 ≥ 40
C.
13.50x + 3.25 ≤ 40
D.
13.50x + 3.25 ≥ 40
Answer:
A.
3.25x + 13.50 ≤ 40
Step-by-step explanation:
Please show the graph with correct points in x and y. Please specify if it’s a hollow dot or solid dot for each point. I’ll give good rating! Thank you!
The graph of the solution to the inequality is attached as image to this answer.
Understanding Piece-Wise FunctionThe piece-wise defined function h(x) represents different values of y (the output) depending on the value of x (the input). Each interval of x has a different value assigned to it.
In this particular case, the inequality statements define the intervals for x and their corresponding output values.
Let's break it down:
- For values of x that are greater than -3 and less than or equal to -2, h(x) is assigned the value of -1.
- For values of x that are greater than -2 and less than or equal to -1, h(x) is assigned the value of 0.
- For values of x that are greater than -1 and less than or equal to 0, h(x) is assigned the value of 1.
- For values of x that are greater than 0 and less than or equal to 1, h(x) is assigned the value of 2.
Any values of x outside of these intervals are not defined in this piece-wise function and are typically represented as "not a number" (NaN).
For example, if you were to evaluate h(-2.5), it falls within the first interval (-3 < x ≤ -2), so h(-2.5) would be equal to -1. Similarly, if you were to evaluate h(0.5), it falls within the fourth interval (0 < x ≤ 1), so h(0.5) would be equal to 2.
The graph of the piece-wise function h(x) consists of horizontal line segments connecting the specified values of y for each interval, resulting in a step-like pattern.
Learn more about piece-wise function here:
https://brainly.com/question/27262465
#SPJ1
0.059 and 0.01 which is greater?
What is the volume of the triangular prism?
3 in.
15 in.
13 in.