Answer:
True
Step-by-step explanation:
We know that sales of store 1 and store 2 will be two independent sample and given that weeky sales are normally distributed therefore we can use indepedence means method.
That is to say, we are affirming that what they say is correct therefore the correct answer is "true".
30 students, along with some of their parents, are going to a trip to Washington DC. Some of the adults are driving cars, and each car can accommodate up to 5 people including the driver. What is the smallest number of adults that should be invited on the trip to get all 30 students to Washington?
Answer:
Minimum 08 adults / drivers
Maximum 10 adults / drivers
Step-by-step explanation:
Total students are 30
Each car can take total 5 incl. drive
There needs to be 7 cars taking the 30 students, which also means there have to be minimum 7 drivers / adults.
Min. passengers = 30 + 7
Of course, there will be space for 3 more in the 8th car since 5 x 8 = 40
A box contains 99 green marbles and 1212 white marbles. If the first marble chosen was a green marble, what is the probability of choosing, without replacement, a white marble? Express your answer as a fraction or a decimal number rounded to four decimal places.
Answer:
0.9252Step-by-step explanation:
Adding the two together 1212 + (99 - 1)
1310
1212/1310 = 606/655
Decimal: 0.9252
I'm always happy to help :)
Mighty Casey hits two baseballs out of the park. The path of the first baseball can be described by the displacement (distance and direction) vector,
b1 = 100 i ^ + 10 j ^. The path of the second baseball can be described by the displacement vector b2 = 90 i ^ + (−20) j ^.
(a) How much farther did the first ball travel than the second? (Round your final answer to the nearest tenth.)
(b) How far are the baseballs apart? (Round your final answer to the nearest tenth.)
Answer:
a) 8.3 units of length
b) 31.6 units of length
Step-by-step explanation:
a) The distances traveled by each ball are given by:
[tex]d_1^2=100^2+10^2=10,100\\d_1=100.5\\\\d_2^2=90^2+(-20^2)=8,500\\d_2=92.2[/tex]
The diference between the distance traveled by both balls is:
[tex]d_1-d-2=100.5-92.2\\d_1-d_2=8.3[/tex]
The first ball traveled 8.3 units of length farther than the second ball.
b) The distance between both balls is:
[tex]d^2=(i_1-i_2)^2+(j_1-j_2)^2\\d^2=(100-90)^2+(10-(-20))^2\\d^2=1,000\\d=31.6[/tex]
The balls are 31.6 units of length apart.
A supplier of heavy construction equipment has found that new customers are normally obtained through customer requests for a sales call and that the probability of a sale of a particular piece of equipment is 0.15. If the supplier has four pieces of the equipment available for sale, what is the probability that it will take fewer than six customer contacts to clear the inventory?
Answer:
The probability that it will take fewer than six customer contacts to clear the inventory is 0.8%.
Step-by-step explanation:
We have a probability of making an individual sale of p=0.15.
We have 4 units, so the probability of clearing the inventory with n clients can be calculated as:
[tex]P=\dbinom{n}{4}p^4q^{n-4}=\dbinom{n}{4}0.15^4\cdot 0.85^{n-4}[/tex]
As we see in the equation, n has to be equal or big than 4.
In this problem we have to calculate the probability that less than 6 clients are needed to sell the 4 units.
This probability can be calculated adding the probability from n=4 to n=6:
[tex]P=\sum_{n=4}^6P(n)=\sum_{n=4}^6 \dbinom{n}{4}0.15^4^\cdot 0.85^{n-4}\\\\\\P=0.15^4(\dfrac{4!}{4!0!}\cdot 0.85^{4-4}+\dfrac{5!}{4!1!}\cdot0.85^{5-4}+\dfrac{6!}{4!2!}0.85^{6-4})\\\\\\P=0.15^4(1\cdot0.85^0+5\cdot0.85^1+15\cdot0.85^2)\\\\\\P=0.00051(1+4.25+10.84)\\\\\\P=0.00051\cdot16.09\\\\\\P=0.008[/tex]
5. A worker can do a piece of
piece of wook
in 14 days.
How much coook does he do ini day!
. How much work does he do in 7 days?
lijIt he works for 2 days and leaves,
how much work is left to finish it?
Answer:
therefore the left work of worker will be 6/7 part of work
A lottery is conducted using three urns. Each urn contains chips numbered from 0 to 9. One chip is selected at random from each urn. The total number of sample points in the sample space is:_______ a) 30 b) 100 c) 729 d) 1,000"
Answer: Option d.
Step-by-step explanation:
Ok, we have 3 urns.
Each urn can give a number between 0 and 9, so each urn has 10 options.
And as the urns are different, the outcome in the first urn does not affect the outcomes in the others, and the same happens for the outcome in the second urn, so the events are independent.
The total number of combinations is equal to the product of the number of options for each event (here each urn is one event)
then the number of combinations is:
C = 10*10*10 = 10^3 = 1000
Then the correct option is d.
Express the number using scientific notation: 0.000000067
Select one:
O a. 67 x 10-7
O b. 6.7 x 10-7
O c. can not be written in scientific form
O d. 6.7 x 10 -8
Answer: D
Step-by-step explanation:
To express this number in scientific notation, we want to move the decimal so that it goes past the first nonzero integer. In this case, we would move it to the right 8 times.
6.7×10⁻⁸
The only reason why the 8 is negative is because when you write the scientific notation in standard form, you will need to move the decimal to the left in order to get 0.000000067. Negative means moving to the left. Therefore, 6.7×10⁻⁸ is our correct answer.
Which is the cosine ratio of
Answer:The answer is B
Step-by-step explanation:
Answer:
Option B
Step-by-step explanation:
Cos A = [tex]\frac{Adjacent}{Hypotenuse}[/tex]
Where Adjacent = 28, Hypotenuse = 197
Cos A = [tex]\frac{28}{197}[/tex]
Given the vector (4|3) and the transformation matrix (0|1|-1|0), which vector is the imagine after applying the transformation to (4|3)? A. (4|-3)
B.(-3|4)
C.(3|-4)
D.(-4|3)
Answer:
C.(3|-4)
Step-by-step explanation:
Given the vector:
[tex]\left[\begin{array}{ccc}4\\3\end{array}\right][/tex]
The transformation Matrix is:
[tex]\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right][/tex]
The image of the vector after applying the transformation will be:
[tex]\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]\left[\begin{array}{ccc}4\\3\end{array}\right]\\\\=\left[\begin{array}{ccc}0*4+1*3\\-1*4+0*3\end{array}\right]\\\\=\left[\begin{array}{ccc}3\\-4\end{array}\right][/tex]
The correct option is C
The image after applying the transformation to the matrix is [tex]\begin{bmatrix}3\\ -4\end{bmatrix}[/tex].
What is a matrix ?Matrix, a set of numbers arranged in rows and columns so as to form a rectangular array. The numbers are called the elements, or entries, of the matrix.
It is given that the vector is
[tex]\begin{bmatrix}4\\ 3\end{bmatrix}[/tex]
and the transformation matrix is
[tex]\begin{bmatrix}0 &1 \\ -1 &0 \end{bmatrix}[/tex]
The image after applying the transformation
[tex]\begin{bmatrix}4\\ 3\end{bmatrix}\begin{bmatrix}0 &1 \\ -1 &0 \end{bmatrix}[/tex]
[tex]\begin{bmatrix}0*4+0*3 \\-1*4+0*3 \end{bmatrix}[/tex]
[tex]\begin{bmatrix}3\\ -4\end{bmatrix}[/tex]
Therefore the image after applying the transformation to the matrix is [tex]\begin{bmatrix}3\\ -4\end{bmatrix}[/tex].
To know more about Matrix
https://brainly.com/question/9967572
#SPJ5
1(3√2)2=2n what is n? this might be hard to do but I need help asap!! ty
Answer:
[tex]n=3\sqrt{2}[/tex]
Step-by-step explanation:
[tex]2n=1\times \left(3\sqrt{2}\right)\times \:2[/tex]
[tex]2n=2 \times 3\sqrt{2}[/tex]
[tex]2n=6\sqrt{2}[/tex]
[tex]\frac{2n}{2}=\frac{6\sqrt{2}}{2}[/tex]
[tex]n=3\sqrt{2}[/tex]
Answer:
n = 3√2
Step-by-step explanation:
=> [tex]1(3\sqrt{2} )2 = 2n\\6\sqrt{2} = 2n\\[/tex]
Dividing both sides by 2, we'll get
=> [tex]\frac{6\sqrt{2} }{2} = \frac{2n}{2}[/tex]
So,
=> n = [tex]3\sqrt{2}[/tex]
Phil has $20,000, part of which he invests at 8% interest and the rest at 6%. If the total income from the two investments was $1460, how much did he invest at 6%?
Answer: 7000
Step-by-step explanation:
Let the amount invested in 8% account be P1 and the amount invested in 6% account be P2
. If the total amount invested is $20,000 then:
P1+P2=20,000. (Eq. 1)
The interest earned in one year from the 8% account is:
I1=0.08P1
and the interest earned in one year from the 6% account is:
I2=0.06P2
If the total interest earned is $1460, then:
I1+I2=1460
0.08P1+0.06P2=1460
(Eq. 2) From Eq. 1 :
P1=20000−P2
Substituting this into Eq. 2:
0.08 (20000−P2) + 0.06P2 = 1460
1600 − 0.08P2 + 0.06P2 = 1460
0.02P2 = 140
P2 = 140 / 0.02
P2 = 7000
Hence, he invested $7000 at the rate of 6%.
If it takes 4 hours for 2 men to mow a sports field,how long would it take 6 men working at the same rate to do the job?solution plis
Answer:
4/3 hours
Step-by-step explanation:
[tex]\frac{4*2}{6}\\=\frac{8}{6} \\= 4/3 hours[/tex]
What are the like terms in the algebraic expression? Negative a squared b + 6 a b minus 8 + 5 a squared b minus 6 a minus b Negative a squared b and negative 6 a Negative a squared b and 5 a squared b 6 a b and 5 a squared b 6 a b and negative 6 a
Answer:
The like terms are: [tex]a^{2}b,\ ab,\ \teaxt{and}\ a[/tex]
Step-by-step explanation:
The expression is:
[tex]-a^{2}b+6ab-8+5a^{2}b-6a-b-a^{2}b-6a-a^{2}b+5a^{2}b+6ab+5a^{2}b+6ab-6a[/tex]
Collect the like terms as follows:
[tex]-a^{2}b+6ab-8+5a^{2}b-6a-b-a^{2}b-6a-a^{2}b+5a^{2}b+6ab+5a^{2}b+6ab-6a[/tex]
[tex]=(-a^{2}b+5a^{2}b-a^{2}b-a^{2}b+5a^{2}b+5a^{2}b)+(6ab+6ab+6ab)-(6a-6a-6a)-b-8[/tex]
[tex]=12a^{2}b+18ab+18a-b-8[/tex]
Thus, the final expression is [tex]12a^{2}b+18ab+18a-b-8[/tex]
The like terms are: [tex]a^{2}b,\ ab,\ \teaxt{and}\ a[/tex].
Answer:
The CORRECT answer is B
Step-by-step explanation:
9+9+3=21
1234+1234+1234= 30
9+1224+12=?
Answer:
9+1224+12=1245
Hope this helps
Answer:
Mathematically,
9+1224+12 = 1245
But, Logically, here:
9+1224+12 = 21
Write the expression 3*3*3*3*3 in exponential notation
Answer:
3^5
Step-by-step explanation:
becuase 3*3*3*3*3
Answer: 3^5 (3 to the power of 5)
Step-by-step explanation:
3 is multiplied by itself 5 times
To shorten the expression, exponential notation is used and it becomes 3^5, which essentially means three multiplied by itself 5 times
ex. 4^3 equals 4x4x4
Do all systems of linear inequalities have solutions? If not, write a system of inequalities that has no solution. What would the graph of a system of linear inequalities with no solution look like?
Answer: There are systems with no solutions, and the graphs may show two regions with no intersections (as you know, the solution set is in the intersection of the sets of solutions for each inequality)
Step-by-step explanation:
Ok, suppose that our system is:
y > x
and
y < x.
This system obviously does not have any solution, because y can not be larger and smaller than x at the same time.
The graph of y > x is where we shade all the region above the line y = x (the line is not included)
and the graph of y < x is where we sade all the region under the line y = x (the line is not included)
So we will look at a graph where we never have a region with the two shades overlapping (so we do not have a intersection in the sets of solutions), meaning that we have no solutions.
A cylinder has radius R = 3.7 and height H = 5.6 both measured in inches. What is the volume of this cylinder measured in cm3? (Hint: The volume of a cylinder is given by V=\pi R^2HV = π R 2 H.)
Answer:
The volume is [tex]3946.17cm^3[/tex]Step-by-step explanation:
We need to convert the radius and the height to cm first
1 cm = 0.393701 in
r (cm)= 3.7 in
[tex]h(cm)= \frac{3.7}{0.393701}= 9.398 cm[/tex]
1 cm = 0.393701 in
h (cm)= 5.6 in
[tex]h(cm)= \frac{5.6}{0.393701}= 14.22 cm[/tex]
The formula the volume of cylinder is
[tex]volume= \pi r^2h\\\\volume= 3.142*9.398^2*14.22\\volume=3946.17cm^3[/tex]
I think of number. Add 2. Then Multiply it by 6. After that I square it. Assume the number as x. Write the correct algebraic form.
Answer:
[tex] {(6x+12) }^{2} \\
=36x^2+64x+144 [/tex]
Step-by-step explanation:
Thinked number
[tex]x[/tex]
Add 2
[tex]x + 2 \\ [/tex]
multiply it by 6
[tex]6(x+2) \\ [/tex]
square it
[tex] {(6x+12)}^{2} \\
= 36x^2+64x+144[/tex]
hope this helps
Answer:
36x^2 + 144x + 144
Step-by-step explanation:
Say the number youre think of is x
You do x + 2 as you're adding 2
Then you do x + 2 times 6 or 6 (x + 2) = 6x +12
6x + 12 squared = 36x ^ 2 + 144 x + 144
Timmy received $50 for his birthday following the birthday party his parents promised him 5$ each week for completing his chores. Assuming Timmy completes all chores uses a linear equation to determine the number of dollars Timmy will have in 7 weeks
Answer:
$85
Step-by-step explanation:
Let y represent Timmy's money after x weeks. If we assume that the only money Timmy has is what is mentioned in the problem statement, then ...
y = 50 +5x . . . . . $50 initially plus $5 for each week
After 7 weeks, x = 7, so Timmy's fortune will be ...
y = 50 +5(7) = 50 +35
y = 85
Timmy will have $85 in 7 weeks.
The mean age of 5 people in a room is 40 years. A person enters the room. The mean age is now 36. What is the age of the person who entered the room?
Answer:
[tex]\boxed{\sf \ \ \ age = 16 \ \ \ }[/tex]
Step-by-step explanation:
Hello,
as the mean age of 5 people is 40
it means that the sum of the 5 ages is 40*5=200
now a person enters the room, let's note x his age
the new mean is
[tex]\dfrac{200+x}{6}=36[/tex]
[tex]<=>200+x=6*36=216\\<=> x = 216-200=16\\[/tex]
So the age of the new person is 16
hope this helps
Use the diagram to find the angle measures that satisfy each case. Find the measures of all four angles if 3·(m∠1+m∠3) = m∠2+m∠4.
Answer:
m∠1=45 degreesm∠2=135 degreesm∠3=45 degreesm∠4=135 degreesStep-by-step explanation:
Given that: 3(m∠1+m∠3) = m∠2+m∠4.
From the diagram:
m∠1=m∠3 (Vertical Angles)m∠2=m∠4 (Vertical Angles)Therefore:
3(m∠1+m∠1) = m∠2+m∠2
3(2m∠1)=2m∠2
Divide both sides by 2
3m∠1=m∠2
m∠1+m∠2=180 (Linear Postulate)
Therefore:
m∠1+3m∠1=180
4m∠1=180
Divide both sides by 4
m∠1=45 degrees
Since m∠1=m∠3
m∠3=45 degrees
Recall: m∠1+m∠2=180 (Linear Postulate)
45+m∠2=180
m∠2=180-45
m∠2=135 degrees
Since m∠2=m∠4
m∠4=135 degrees
Write an equation in slope-intercept form for the line that passes through (4,5) and parallel to the to the line described by y=5x+10
Answer:
[tex]y = 5x-15[/tex]
Step-by-step explanation:
Parallel ⇒ So the slopes will definitely be equal
So,
Slope = m = 5
Now,
Point = (x,y) = (4,5)
So, x = 4, y = 5
Putting these in the slope intercept form to get b
[tex]y = mx +b \\[/tex]
5 = (5)(4) + b
5 = 20 + b
b = -20+5
b = -15
So, Putting m and b in the slope intercept form to get the required equation,
[tex]y = 5x-15[/tex]
Rogelio paints watercolors. He got a $100 gift card to the art supply store and wants to use it to buy 12 inch by 16 inch canvases. Each canvas costs $10.99. What is the maximum number of canvases he can buy with his gift card
Answer:
9 canvases
Step-by-step explanation:
To find the number of canvases Rogelio can buy, we just need to divide the value of the gift card by the value of each canvas. Then, if the result is decimal, we round down, because if we round up we will not have enough money to buy them all.
So we have that:
Number of canvases = 100 / 10.99
Number of canvases = 9.099
Rounding down, we can buy 9 canvases
Evaluate (x + y)0 for x = -3 and y = 5
Answer:
0Step-by-step explanation:
[tex](x + y)0 \\ x = -3 \\y = 5\\(-3+5)0\\(2)0\\= 0[/tex]
Tell whether the following set is an empty set or not? A = { A quadrilateral having 3 obtuse angles}
Answer:
No.
Step-by-step explanation:
A quadrilateral with 3 obtuse angles is possible. You could have 100°+100°+100°+60° quadrilateral or whatever. As long as it's inner angles add up to 360°, it is possible.
Answer:
[tex]\boxed{\mathrm{It \: is \: not \: an \: empty \: set}}[/tex]
Step-by-step explanation:
A quadrilateral with 3 obtuse angles is possible.
A obtuse angle has a measure of more than 90 degrees and less than 180 degrees.
Let’s say three angles are measuring 91 degrees in a quadrilateral.
91 + 91 + 91 + x = 360
x = 87
The measure of the fourth angle is 87 degrees which is less than 360 degrees and is a positive integer, so it is possible.
Please answer this correctly
Answer:
I want to say 9 but im preety sure it's 6
Step-by-step explanation:
you have 54 times to pick it
you have 9 marbles,
54 divided by 9= 6
answer is 6
hope this helped:))))
have a grate dayy
Answer:
1
this is because I see only one marble present which is orange
Please answer this correctly
Answer:
sorry about that that was my sister . the correct answer is yes
Step-by-step explanation:
please mark as brainliest
The personnel department of a large corporation wants to estimate the family dental expenses of its employees to determine the feasibility of providing a dental insurance plan. A random sample of 12 employees reveals the following family dental expenses (in dollars). See Attached Excel for Data. Construct a 97% confidence interval estimate for the average family dental expenses for all employees of this corporation.
The data cited is in the attachment.
Answer: 308.2±106.4
Step-by-step explanation: To construct a confidence interval, first calculate mean (μ) and standard deviation (s) for the sample:
μ = Σvalue/n
μ = 308.2
s = √∑(x - μ)²/n-1
s = 147.9
Calculate standard error of the mean:
[tex]s_{x} = \frac{s}{\sqrt{n} }[/tex]
[tex]s_{x}[/tex] = [tex]\frac{147.9}{\sqrt{12} }[/tex]
[tex]s_{x}[/tex] = 42.72
Find the degrees of freedom:
d.f. = n - 1
d.f. = 12 - 1
d.f. = 11
Find the significance level:
[tex]\frac{1-0.97}{2}[/tex] = 0.015
Since sample is smaller than 30, use t-test table and find t-score:
[tex]t_{11,0.015}[/tex] = 2.4907
E = t-score.[tex]s_{x}[/tex]
E = 2.4907.42.72
E = 106.4
The interval of confidence is: 308.2±106.4, which means that dental insurance plan varies from $201.8 to $414.6.
The circle shown below has AB and BC as its tangents:
AB and BC are two tangents to a circle which intersect outside the circle at a point B.
If the measure of arc AC is 120°, what is the measure of angle ABC? (1 point)
Answer:
120
Step-by-step explanation:
we know if the arc measures 120, we know that its 1/3 of the circle, so ABC will also be 120
Suppose you will perform a test to determine whether there is sufficient evidence to support a claim of a linear correlation between two variables. Find the critical values of r given the number of pairs of data n and the significance level α. n = 12, α = 0.01
Answer:
[tex]t=\frac{r \sqrt{n-2}}{\sqrt{1-r^2}}[/tex]
And is distributed with n-2 degreed of freedom. df=n-2=12-2=10
The significance level is [tex]\alpha=0.01[/tex] and [tex]\alpha/2 = 0.005[/tex] and for this case we can find the critical values and we got:
[tex] t_{\alpha/2}= \pm 3.169[/tex]
Step-by-step explanation:
In order to test the hypothesis if the correlation coefficient it's significant we have the following hypothesis:
Null hypothesis: [tex]\rho =0[/tex]
Alternative hypothesis: [tex]\rho \neq 0[/tex]
The statistic to check the hypothesis is given by:
[tex]t=\frac{r \sqrt{n-2}}{\sqrt{1-r^2}}[/tex]
And is distributed with n-2 degreed of freedom. df=n-2=12-2=10
The significance level is [tex]\alpha=0.01[/tex] and [tex]\alpha/2 = 0.005[/tex] and for this case we can find the critical values and we got:
[tex] t_{\alpha/2}= \pm 3.169[/tex]