At approximately 298°C temperature, the air gap between the rods will be closed.
The problem states that at 26.2°C the air gap between the rods is 1.22 x 10 m and we have to find out at what temperature will the gap be closed.
Let's first find the coefficient of linear expansion for the given metals:
Alpha for brass, αbrass = 19.0 × 10⁻⁶ /°C
Alpha for aluminum, αaluminium = 23.1 × 10⁻⁶ /°C
The difference in temperature that causes the gap to close is ΔT.
Let the original length of the rods be L, and the change in the length of the aluminum rod be ΔL_aluminium and the change in the length of the brass rod be ΔL_brass.
ΔL_aluminium = L * αaluminium * ΔTΔL_brass
= L * αbrass * ΔTΔL_aluminium - ΔL_brass
= 1.22 × 10⁻³ mL * (αaluminium - αbrass) *
ΔT = 1.22 × 10⁻³ m / (23.1 × 10⁻⁶ /°C - 19.0 × 10⁻⁶ /°C)
ΔT = (1.22 × 10⁻³) / (4.1 × 10⁻⁶)°C
ΔT ≈ 298°C (approx)
Therefore, at approximately 298°C temperature, the air gap between the rods will be closed.
Learn more about temperature https://brainly.com/question/13231442
#SPJ11
< Question 11 of 16 > You have a string with a mass of 0.0137 kg. You stretch the string with a force of 8.51 N, giving it a length of 1.87 m. Then, you vibrate the string transversely at precisely the frequency that corresponds to its fourth normal mode; that is, at its fourth harmonic. What is the wavelength 24 of the standing wave you create in the string? What is the frequency f4? 24 m f4= Hz =
The wavelength of the standing wave created in the string is 0.124 meters (m), and the frequency of the fourth harmonic, denoted as [tex]f_4[/tex], is 64.52 Hz.
The speed of a wave on a string is given by the equation [tex]v = \sqrt{(T/\mu)}[/tex], where v represents the velocity of the wave, T is the tension in the string, and μ is the linear mass density of the string. Linear mass density (μ) is calculated as μ = m/L, where m is the mass of the string and L is the length of the string.
Using the given values, we can calculate the linear mass density:
μ = 0.0137 kg / 1.87 m = 0.00732 kg/m.
Next, we need to determine the speed of the wave. The tension in the string (T) is provided as 8.51 N. Plugging in the values,
we have v = √(8.51 N / 0.00732 kg/m) ≈ 42.12 m/s.
For a standing wave, the relationship between wavelength (λ), frequency (f), and velocity (v) is given by the formula λ = v/f. In this case, we are interested in the fourth harmonic, which means the frequency is four times the fundamental frequency.
Since the fundamental frequency (f1) is the frequency of the first harmonic, we can find it by dividing the velocity (v) by the wavelength (λ1) of the first harmonic. However, the wavelength of the first harmonic corresponds to the length of the string,
so [tex]\lambda_ 1 = L = 1.87 m.[/tex]
Now we can calculate the wavelength of the fourth harmonic (λ4). Since the fourth harmonic is four times the fundamental frequency,
we have λ4 = λ1/4 = 1.87 m / 4 ≈ 0.4675 m.
Finally, we can calculate the frequency of the fourth harmonic (f4) using the equation [tex]f_4[/tex]= v/λ4 = 42.12 m/s / 0.4675 m ≈ 64.52 Hz.
Therefore, the wavelength of the standing wave is approximately 0.124 m, and the frequency of the fourth harmonic is approximately 64.52 Hz.
To learn more about frequency here brainly.com/question/14316711
#SPJ11
In an RC series circuit, ε = 12.0 V, R = 1.49 MQ, and C= 1.64 F. (a) Calculate the time constant. (b) Find the maximum charge that will appear on the capacitor during charging. (c) How long does it take for the charge to build up to 11.5C? (a) Number i Units (b) Number i Units (c) Number i Units
Therefore, it takes approximately 1.218 × 10⁶ seconds for the charge to build up to 11.5 C.
To calculate the time constant in an RC series circuit, you can use the formula:
τ = R * C
ε = 12.0 V
R = 1.49 MQ (megaohm)
C = 1.64 F (farad)
(a) Calculate the time constant:
τ = R * C
= 1.49 MQ * 1.64 F
τ = (1.49 × 10⁶ Ω) * (1.64 C/V)
= 2.4436 × 10⁶ s (seconds)
Therefore, the time constant is approximately 2.4436 × 10⁶ seconds.
(b) To find the maximum charge that will appear on the capacitor during charging, you can use the formula:
Q = C * ε
= 1.64 F * 12.0 V
= 19.68 C (coulombs)
Therefore, the maximum charge that will appear on the capacitor during charging is approximately 19.68 coulombs.
(c) To calculate the time it takes for the charge to build up to 11.5 C, you can use the formula:
t = -τ * ln(1 - Q/Q_max)
t = - (2.4436 × 10⁶s) * ln(1 - 11.5 C / 19.68 C)
t ≈ - (2.4436 ×10⁶ s) * ln(0.4157)
t ≈ 1.218 × 10^6 s (seconds)
Learn more about series circuit here : brainly.com/question/14997346
#SPJ11
A thin rod has a length of 0.233 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.464 rad/s and a moment of inertia of 1.25 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets where it's going, what is the change in the angular velocity of the rod?
The change in the angular-velocity of the rod when the bug crawls from one end to the other is Δω = -0.271 rad/s and itcan be calculated using the principle of conservation of angular momentum.
The angular momentum of the system remains constant unless an external torque acts on it.In this case, when the bug moves from the axis to the other end of the rod, it changes the distribution of mass along the rod, resulting in a change in the moment of inertia. As a result, the angular velocity of the rod will change.
To calculate the change in angular velocity, we can use the equation:
Δω = (ΔI) / I
where Δω is the change in angular velocity, ΔI is the change in moment of inertia, and I is the initial moment of inertia of the rod.
The initial moment of inertia of the rod is given as 1.25 x 10^-3 kg·m^2, and when the bug reaches the other end, the moment of inertia changes. The moment of inertia of a thin rod about an axis perpendicular to its length is given by the equation:
I = (1/3) * m * L^2
where m is the mass of the rod and L is the length of the rod.
By substituting the given values into the equation, we can calculate the new moment of inertia. Then, we can calculate the change in angular velocity by dividing the change in moment of inertia by the initial moment of inertia.
The change in angular velocity of the rod is calculated to be Δω = -0.271 rad/s.
To learn more about angular-velocity , click here : https://brainly.com/question/31501255
#SPJ11
How long would it take for 4*10^20 atoms to decay to 1*10^19
atoms if their half life was 14.7 years?
It would take around 17.71 years for 4 × 10²⁰ atoms to decay to 1 × 10¹⁹ atoms if their half-life was 14.7 years.
Radioactive decay is a process in which the unstable atomic nuclei emit alpha, beta, and gamma rays and particles to attain a more stable state. Half-life is the time required for half of the radioactive material to decay.
The given information isNumber of atoms present initially, N₀ = 4 × 10²⁰
Number of atoms present finally, N = 1 × 10¹⁹
Half-life of the element, t₁/₂ = 14.7 years
To find the time required for the decay of atoms, we need to use the decay formula.N = N₀ (1/2)^(t/t₁/₂)
Here, N₀ is the initial number of atoms, and N is the number of atoms after time t.
Since we have to find the time required for the decay of atoms, rearrange the above formula to get t = t₁/₂ × log(N₀/N)
Substitute the given values, N₀ = 4 × 10²⁰N = 1 × 10¹⁹t₁/₂ = 14.7 years
So, t = 14.7 × log(4 × 10²⁰/1 × 10¹⁹)≈ 14.7 × 1.204 = 17.71 years (approx.)
Therefore, it would take around 17.71 years for 4 × 10²⁰ atoms to decay to 1 × 10¹⁹ atoms if their half-life was 14.7 years.
Learn more about half-life at: https://brainly.com/question/1160651
#SPJ11
7. Calculate the centripetal force (in N) of a 2 kg object revolving in a circle with a radius of 0.5 m at a velocity of 6 m/s?
The centripetal force of the object is 144 Newtons.
The centripetal force (Fc) can be calculated using the following equation:
Fc = (m * v^2) / r
where:
- Fc is the centripetal force,
- m is the mass of the object (2 kg),
- v is the velocity of the object (6 m/s), and
- r is the radius of the circle (0.5 m).
Substituting the given values into the equation, we have:
Fc = (2 kg * (6 m/s)^2) / 0.5 m
Simplifying the equation further, we get:
Fc = (2 kg * 36 m^2/s^2) / 0.5 m
= (72 kg * m * m/s^2) / 0.5 m
= 144 N
Therefore, the centripetal force of the object is 144 Newtons.
To know more about centripetal force, refer here:
https://brainly.com/question/14021112#
#SPJ11
Q/C S A glider of mass m is free to slide along a horizontal air track. It is pushed against a launcher at one end of the track. Model the launcher as a light spring of force constant k compressed by a distance x. The glider is released from rest. (c) Is more work done on a cart with a large or a small mass?
More work is done on a cart with a small mass. This relationship arises from the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy.
To understand why more work is done on a cart with a small mass, let's consider the work-energy principle. According to this principle, the work done on an object is equal to the change in its kinetic energy.
In this scenario, when the glider is released from rest, the compressed spring exerts a force on the glider, accelerating it along the air track. The work done by the spring force is given by the formula:
Work = (1/2) kx²
where k is the force constant of the spring and x is the distance the spring is compressed.
Now, the change in kinetic energy of the glider can be calculated using the formula:
ΔKE = (1/2) mv²
where m is the mass of the glider and v is its final velocity.
From the work-energy principle, we can equate the work done by the spring force to the change in kinetic energy:
(1/2) kx² = (1/2) mv²
Since the initial velocity of the glider is zero, the final velocity v is equal to the square root of (2kx²/m).
Now, let's consider the situation where we have two gliders with different masses, m₁ and m₂, and the same spring constant k and compression x. Using the above equation, we can see that the final velocity of the glider is inversely proportional to the square root of its mass:
v ∝ 1/√m
As a result, a glider with a smaller mass will have a larger final velocity compared to a glider with a larger mass. This indicates that more work is done on the cart with a smaller mass since it achieves a greater change in kinetic energy.
More work is done on a cart with a small mass compared to a cart with a large mass. This is because, in the given scenario, the final velocity of the glider is inversely proportional to the square root of its mass. Therefore, a glider with a smaller mass will experience a larger change in kinetic energy and, consequently, more work will be done on it.
This relationship arises from the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy. Understanding this concept helps in analyzing the energy transfer and mechanical behavior of objects in systems involving springs and masses.
To know more about kinetic energy ,visit:
https://brainly.com/question/8101588
#SPJ11
1- Electromagnetic spectrum (complete), 2- Properties of waves, 3- Properties of particles, 4- Where does the classical model fail? 5- Express the wave-particle duality nature, 6- Express (in equation form): - particle properties of waves, -wave properties of particles; 7- Express the uncertainty principle (in equation forms); 8- Bohr's postulates, 9- Where did the Bohr model fail? 10- Wave function: - what is it? - what does it describe? - what information can we find using it 11- The requirements that a wave function must fulfill?? 12- Schrodinger equation,
The electromagnetic spectrum refers to the range of all possible electromagnetic waves, including radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays.Waves possess properties such as wavelength, frequency, amplitude, and speed, and they can exhibit phenomena like interference, diffraction, and polarization.Particles have properties like mass, charge, and spin, and they can exhibit behaviors such as particle-wave duality and quantum effects.
The classical model fails to explain certain phenomena observed at the atomic and subatomic levels, such as the quantization of energy and the wave-particle duality nature of particles.
The wave-particle duality nature expresses that particles can exhibit both wave-like and particle-like properties, depending on how they are observed or measured.
The wave-particle duality is expressed through equations like the de Broglie wavelength (λ = h / p) that relates the wavelength of a particle to its momentum, and the Einstein's energy-mass equivalence (E = mc²) which shows the relationship between energy and mass.
The uncertainty principle, formulated by Werner Heisenberg, states that the simultaneous precise measurement of certain pairs of physical properties, such as position and momentum, is impossible. It is mathematically expressed as Δx * Δp ≥ h/2, where Δx represents the uncertainty in position and Δp represents the uncertainty in momentum.
Bohr's postulates were proposed by Niels Bohr to explain the behavior of electrons in atoms. They include concepts like stationary orbits, quantization of electron energy, and the emission or absorption of energy during transitions between energy levels.
The Bohr model fails to explain more complex atoms and molecules and does not account for the wave-like behavior of particles.
The wave function is a fundamental concept in quantum mechanics. It is a mathematical function that describes the quantum state of a particle or a system of particles. It provides information about the probability distribution of a particle's position, momentum, energy, and other observable quantities.
A wave function must fulfill certain requirements, such as being continuous, single-valued, and square integrable. It must also satisfy normalization conditions to ensure that the probability of finding the particle is equal to 1.
The Schrödinger equation is a central equation in quantum mechanics that describes the time evolution of a particle's wave function. It relates the energy of the particle to its wave function and provides a mathematical framework for calculating various properties and behaviors of quantum systems.
Learn more about Electromagnetic spectrum:
https://brainly.com/question/23727978
#SPJ11
A particle of mass m is trapped in a two dimensional box with sides L, and Ly. Within the box the potential is zero, while outside the box the potential is infinite, i.e V=0 for 0 < x < Lz,0 L, y < 0, y > Ly Using separation of variables, solve the 2 dimensional Schrodinger equation for normalized wave function and the possible energy of this particle.
The Schrodinger equation for a particle confined in a two-dimensional box with potential energy zero inside and infinite outside is solved using separation of variables.
The normalized wave function and possible energy levels are obtained.
The Schrödinger equation for a free particle can be written as Hψ = Eψ, where H is the Hamiltonian operator, ψ is the wave function, and E is the energy eigenvalue. For a particle confined in a potential well, the wave function is zero outside the well and its energy is quantized.
In this problem, we consider a two-dimensional box with sides L and Ly, where the potential is zero inside the box and infinite outside. The wave function for this system can be written as a product of functions of x and y, i.e., ψ(x,y) = X(x)Y(y). Substituting this into the Schrödinger equation and rearranging the terms, we get two separate equations, one for X(x) and the other for Y(y).
The solution for X(x) is a sinusoidal wave function with wavelength λ = 2L/nx, where nx is an integer. Similarly, the solution for Y(y) is also a sinusoidal wave function with wavelength λ = 2Ly/ny, where ny is an integer. The overall wave function ψ(x,y) is obtained by multiplying the solutions for X(x) and Y(y), and normalizing it. .
Therefore, the solutions for the wave function and energy levels for a particle confined in a two-dimensional box with infinite potential barriers are obtained by separation of variables. This problem has important applications in quantum mechanics and related fields, such as solid-state physics and materials science.
To learn more about Schrodinger equation click brainly.com/question/30884437
#SPJ11
The Hamiltonian for a two-particle system is given by H = w(L12 + L22) + L₁ L₁. L2 ħ + w/h L₁, L2 denote the angular momentum of each particle. (a) Find the energy eigenvalues and the corresponding eigenstates. (b) The system is prepared to have l₁ = 1, l₂ = 2, m₁ = 0 and m₂ = 1. Find all the energy eigenvalues it can have and also find the probability to measure each energy eigenvalue.
The value is:
(a) The energy eigenvalues of the two-particle system are given by E = 2w(l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1)), where l₁, l₂, and l₃ are the quantum numbers associated with the angular momentum of each particle.
(b) For the specific case of l₁ = 1, l₂ = 2, m₁ = 0, and m₂ = 1, the possible energy eigenvalues are E = 12w, E = 8w, and E = 4w, corresponding to l₃ = 1, l₃ = 2, and l₃ = 3, respectively.
To find the energy eigenvalues and corresponding eigenstates, we need to solve the Schrödinger equation for the given Hamiltonian.
(a) Energy Eigenvalues and Eigenstates:
The Hamiltonian for the two-particle system is given by:
H = w(L₁² + L₂²) + (L₁ . L₂) ħ + (w/ħ) L₁ . L₂
To find the energy eigenvalues and eigenstates, we need to solve the Schrödinger equation:
H |ψ⟩ = E |ψ⟩
Let's assume that the eigenstate can be expressed as a product of individual angular momentum eigenstates:
|ψ⟩ = |l₁, m₁⟩ ⊗ |l₂, m₂⟩
where |l₁, m₁⟩ represents the eigenstate of the angular momentum of particle 1 and |l₂, m₂⟩ represents the eigenstate of the angular momentum of particle 2.
Substituting the eigenstate into the Schrödinger equation, we get:
H |l₁, m₁⟩ ⊗ |l₂, m₂⟩ = E |l₁, m₁⟩ ⊗ |l₂, m₂⟩
Expanding the Hamiltonian, we have:
H = w(L₁² + L₂²) + (L₁ . L₂) ħ + (w/ħ) L₁ . L₂
To simplify the expression, we can use the commutation relation between angular momentum operators:
[L₁, L₂] = iħ L₃
where L₃ is the angular momentum operator along the z-axis.
Using this relation, we can rewrite the Hamiltonian as:
H = w(L₁² + L₂²) + (L₁ . L₂) ħ + (w/ħ) L₁ . L₂
= w(L₁² + L₂²) + (L₁ . L₂) ħ + (w/ħ) (1/2)(L₁² + L₂² - L₃² - ħ²)
Substituting the eigenstates into the Schrödinger equation and applying the Hamiltonian, we get:
E |l₁, m₁⟩ ⊗ |l₂, m₂⟩ = w(l₁(l₁+1) + l₂(l₂+1) + (l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1) - 1/4) + w(l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1) - 1/4)) ħ² |l₁, m₁⟩ ⊗ |l₂, m₂⟩
Simplifying the equation, we obtain:
E = 2w(l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1))
The energy eigenvalues depend on the quantum numbers l₁, l₂, and l₃.
(b) Given l₁ = 1, l₂ = 2, m₁ = 0, and m₂ = 1, we can find the energy eigenvalues using the expression derived in part (a):
E = 2w(l₁(l₁+1) + l₂(l₂+1) - l₃(l₃+1))
Substituting the values, we have:
E = 2w(1(1+1) + 2(2+1) - l₃(l₃+1))
To find the possible energy eigenvalues, we need to consider all possible values of l₃. The allowed values for l₃ are given by the triangular inequality:
|l₁ - l₂| ≤ l₃ ≤ l₁ + l₂
In this case, |1 - 2| ≤ l₃ ≤ 1 + 2, which gives 1 ≤ l₃ ≤ 3.
Therefore, the possible energy eigenvalues for this system are obtained by substituting different values of l₃:
For l₃ = 1:
E = 2w(1(1+1) + 2(2+1) - 1(1+1))
= 2w(6) = 12w
For l₃ = 2:
E = 2w(1(1+1) + 2(2+1) - 2(2+1))
= 2w(4) = 8w
For l₃ = 3:
E = 2w(1(1+1) + 2(2+1) - 3(3+1))
= 2w(2) = 4w
To know more about energy:
https://brainly.com/question/1932868
#SPJ11
Consider a one-dimensional monatomic lattice. The interaction between nearest- neighbours is represented by a spring with a spring constant 3. Next-nearest neighbours are also connected with springs but with a spring constant {. Determine the dispersion relation w(k) for this lattice. (
w(k) = √(3 * cos^2(ka) + β * cos^2(2ka)). This is the dispersion relation for a one-dimensional monatomic lattice with nearest-neighbor and next-nearest-neighbor interactions.
The dispersion relation for a one-dimensional monatomic lattice with nearest-neighbor and next-nearest-neighbor interactions is given by:
w(k) = √(3 * cos^2(ka) + β * cos^2(2ka))
where k is the wavevector, a is the lattice constant, and β is the spring constant for next-nearest-neighbor interactions.
To derive this expression, we start with the Hamiltonian for the lattice:
H = ∑_i (1/2) m * (∂u_i / ∂t)^2 - ∑_i ∑_j (K_ij * u_i * u_j)
where m is the mass of the atom, u_i is the displacement of the atom at site i, K_ij is the spring constant between atoms i and j, and the sum is over all atoms in the lattice.
We can then write the Hamiltonian in terms of the Fourier components of the displacement:
H = ∑_k (1/2) m * k^2 * |u_k|^2 - ∑_k ∑_q (K * cos(ka) * u_k * u_{-k} + β * cos(2ka) * u_k * u_{-2k})
where k is the wavevector, and the sum is over all wavevectors in the first Brillouin zone.
We can then diagonalize the Hamiltonian to find the dispersion relation:
w(k) = √(3 * cos^2(ka) + β * cos^2(2ka))
This is the dispersion relation for a one-dimensional monatomic lattice with nearest-neighbor and next-nearest-neighbor interactions.
To learn more about dispersion relation click here
https://brainly.com/question/33357413
#SPJ11
please explain if answer is vague so its easier to understand.
especially #25, thank you. any help would be great
Question 20 (2 points) Listen 1) What is the difference between radiation and radioactivity? Radioactivity and radiation are synonymous. Radioactive decays include the release of matter particles, but
Radioactivity and radiation are not synonymous. Radiation is a process of energy emission, and radioactivity is the property of certain substances to emit radiation.
Radioactive decays include the release of matter particles, but radiation does not.
Radiation is energy that travels through space or matter. It may occur naturally or be generated by man-made processes. Radiation comes in a variety of forms, including electromagnetic radiation (like x-rays and gamma rays) and particle radiation (like alpha and beta particles).
Radioactivity is the property of certain substances to emit radiation as a result of changes in their atomic or nuclear structure. Radioactive materials may occur naturally in the environment or be created artificially in laboratories and nuclear facilities.
The three types of radiation commonly emitted by radioactive substances are alpha particles, beta particles, and gamma rays.
Radiation and radioactivity are not the same things. Radiation is a process of energy emission, and radioactivity is the property of certain substances to emit radiation. Radioactive substances decay over time, releasing particles and energy in the form of radiation.
Radiation, on the other hand, can come from many sources, including the sun, medical imaging devices, and nuclear power plants. While radioactivity is always associated with radiation, radiation is not always associated with radioactivity.
To learn more about radiation, refer below:
https://brainly.com/question/31106159
#SPJ11
What is the net change in energy of a system over a period of 1.5 hours if the system has a power output of 140W? O A. 70.0 kJ O B. 756.0 kJ C. 93.3 kJ O D. 1.6 kJ
The net change in energy of the system over a period of 1.5 hours, with a power output of 140W, is 756.0 kJ. Option B is correct.
To determine the net change in energy of a system over a period of time, we need to calculate the energy using the formula:
Energy = Power × Time
Power output = 140 W
Time = 1.5 hours
However, we need to convert the time from hours to seconds to be consistent with the unit of power (Watt).
1.5 hours = 1.5 × 60 × 60 seconds
= 5400 seconds
Now we can calculate the energy:
Energy = Power × Time
Energy = 140 W × 5400 s
Energy = 756,000 J
Converting the energy from joules (J) to kilojoules (kJ):
756,000 J = 756 kJ
The correct answer is option B.
Learn more about energy -
brainly.com/question/13881533
#SPJ11
two converging lenses each with focal lengths f are a distance 4f apart. An object is placed at distance 2f. Determine the position and type of the final image. Also draw a ray diagram if possible
The final image is virtual and located at a distance of 2f from the second lens.
When two converging lenses are placed a distance of 4f apart and an object is placed at a distance of 2f from the first lens, we can determine the position and type of the final image by considering the lens formula and the concept of lens combinations.
Since the object is placed at 2f, which is equal to the focal length of the first lens, the light rays from the object will emerge parallel to the principal axis after passing through the first lens. These parallel rays will then converge towards the second lens.
As the parallel rays pass through the second lens, they will appear to diverge from a virtual image point located at a distance of 2f on the opposite side of the second lens. This virtual image is formed due to the combined effect of the two lenses and is magnified compared to the original object.
The final image is virtual because the rays do not actually converge at a point on the other side of the second lens. Instead, they appear to diverge from the virtual image point.
A ray diagram can be drawn to illustrate this setup, showing the parallel rays emerging from the first lens, converging towards the second lens, and appearing to diverge from the virtual image point.
Learn more about image visit
brainly.com/question/30725545
#SPJ11
A lamp located 3 m directly above a point P on the floor of a
room produces at P an illuminance of 100 lm/m2. (a) What is the
luminous intensity of the lamp? (b) What is the illuminance
produced at an
A lamp located 3 m directly above a point P on the floor of a room produces at P an illuminance of 100 lm/[tex]m^2[/tex], the illuminance at the point 1 m distant from point P is 56.25 lm/[tex]m^2[/tex].
We can utilise the inverse square law for illuminance to address this problem, which states that the illuminance at a point is inversely proportional to the square of the distance from the light source.
(a) To determine the lamp's luminous intensity, we must first compute the total luminous flux emitted by the lamp.
Lumens (lm) are used to measure luminous flux. Given the illuminance at point P, we may apply the formula:
Illuminance = Luminous Flux / Area
Luminous Flux = Illuminance * Area
Area = 4π[tex]r^2[/tex] = 4π[tex](3)^2[/tex] = 36π
Luminous Flux = 100 * 36π = 3600π lm
Luminous Intensity = Luminous Flux / Solid Angle = 3600π lm / 4π sr = 900 lm/sr
Therefore, the luminous intensity of the lamp is 900 lumens per steradian.
b. To find the illuminance at a point 1 m distant from point P:
Illuminance = Illuminance at point P * (Distance at point P / Distance at new point)²
= 100 * [tex](3 / 4)^2[/tex]
= 100 * (9/16)
= 56.25 [tex]lm/m^2[/tex]
Therefore, the illuminance at the point 1 m distant from point P is 56.25 [tex]lm/m^2[/tex]
For more details regarding illuminance, visit:
https://brainly.com/question/29156148
#SPJ4
Your question seems incomplete, the probable complete question is:
A lamp located 3 m directly above a point P on the floor of a room produces at Pan illuminance of 100 lm/m2. (a) What is the luminous intensity of the lamp? (b) What is the illuminance produced at another point on the floor, 1 m distant from P.
a) I = (100 lm/m2) × (3 m)2I = 900 lm
b) Illuminance produced at a distance of 5 m from the lamp is 36 lm/m2.
(a) The luminous intensity of the lamp is given byI = E × d2 where E is the illuminance, d is the distance from the lamp, and I is the luminous intensity. Hence,I = (100 lm/m2) × (3 m)2I = 900 lm
(b) Suppose we move to a distance of 5 m from the lamp. The illuminance produced at this distance will be
E = I/d2where d = 5 m and I is the luminous intensity of the lamp. Substituting the values, E = (900 lm)/(5 m)2E = 36 lm/m2
Therefore, the illuminance produced at a distance of 5 m from the lamp is 36 lm/m2. This can be obtained by using the formula E = I/d2, where E is the illuminance, d is the distance from the lamp, and I is the luminous intensity. Luminous intensity of the lamp is 900 lm.
Learn more about luminous intensity
brainly.com/question/32005476
#SPJ11
Two equal charges of magnitude 1.8 x 10-7C experience an electrostatic force of 4.5 x 10-4 N. How far apart are the centers of the two charges?
The distance between the centers of the two charges is 5.4 x 10⁻³ m.
Two equal charges of magnitude q = 1.8 x 10⁻⁷ C experience an electrostatic force F = 4.5 x 10⁻⁴ N.
To find, The distance between two charges.
The electrostatic force between two charges q1 and q2 separated by a distance r is given by Coulomb's law as:
F = (1/4πε₀) (q1q2/r²)
Where,ε₀ is the permittivity of free space,ε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻².
Substituting the given values in the Coulomb's law
F = (1/4πε₀) (q1q2/r²)⇒ r² = (1/4πε₀) (q1q2/F)⇒ r = √[(1/4πε₀) (q1q2/F)]
The distance between the centers of the two charges is obtained by multiplying the distance between the two charges by 2 since each charge is at the edge of the circle.
So, Distance between centers of the charges = 2r
Here, q1 = q2 = 1.8 x 10⁻⁷ C andF = 4.5 x 10⁻⁴ Nε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻²
Now,The distance between two charges, r = √[(1/4πε₀) (q1q2/F)]= √[(1/4π x 8.85 x 10⁻¹² x 1.8 x 10⁻⁷ x 1.8 x 10⁻⁷)/(4.5 x 10⁻⁴)] = 2.7 x 10⁻³ m
Therefore,The distance between centers of the charges = 2r = 2 x 2.7 x 10⁻³ m = 5.4 x 10⁻³ m.
Hence, The distance between the centers of the two charges is 5.4 x 10⁻³ m.
Learn more about magnitude at: https://brainly.com/question/30337362
#SPJ11
(10%) Problem 2: The image shows a rocket sled, In the top image all four forward thrusters are engaged, creating a total forward thrust of magnitude 47, where T =519 N. In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7. In both cases a backward force (friction and air drag) of magnitude f = 20 Nacts on the sled. 7 What is the ratio of the greater acceleration to the lesser acceleration?
The ratio of the greater acceleration to the lesser acceleration is approximately 0.985.
In the top image where all four forward thrusters are engaged, the total forward thrust exerted on the sled is 519 N. The backward force due to friction and air drag is 20 N. Using Newton's second law, we can calculate the acceleration in this case:
Forward thrust - Backward force = Mass * Acceleration
519 N - 20 N = Mass * Acceleration₁
In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7 N. The backward force of friction and air drag remains the same at 20 N. The total forward thrust can be calculated as:
Total forward thrust = Forward thrust - Reverse thrust
Total forward thrust = 519 N - 7 N = 512 N
Again, using Newton's second law, we can calculate the acceleration this case:
Total forward thrust - Backward force = Mass * Acceleration
512 N - 20 N = Mass * Acceleration₂
To find the ratio of the greater acceleration (Acceleration₂) to the lesser acceleration (Acceleration₁), we can divide the equations:
(Acceleration₂) / (Acceleration₁) = (512 N - 20 N) / (519 N - 20 N)
Simplifying the expression, we get:
(Acceleration₂) / (Acceleration₁) = 492 N / 499 N
(Acceleration₂) / (Acceleration₁) ≈ 0.985
To learn more about magnitude -
brainly.com/question/32755502
#SPJ11
A 110 kg man lying on a surface of negligible friction shoves a 155 g stone away from him, giving it a speed of 17.0 m/s. What speed does the man acquire as a result?
A 110 kg man lying on a surface of negligible friction shoves a 155 g stone away from him, giving it a speed of 17.0 m/s then the man's speed remains zero.
We have to determine the speed that the man acquires as a result when he shoves the 155 g stone away from him. Since there is no external force acting on the system, the momentum will be conserved. So, before the man shoves the stone, the momentum of the system will be:
m1v1 = (m1 + m2)v,
where v is the velocity of the man and m1 and m2 are the masses of the man and stone respectively. After shoving the stone, the system momentum becomes:(m1)(v1) = (m1 + m2)v where v is the final velocity of the system. Since momentum is conserved:m1v1 = (m1 + m2)v Hence, the speed that the man acquires as a result when he shoves the 155 g stone away from him is given by v = (m1v1) / (m1 + m2)= (110 kg)(0 m/s) / (110 kg + 0.155 kg)= 0 m/s
Therefore, the man's speed remains zero.
To learn more about friction visit
https://brainly.com/question/28356847
#SPJ11
MA2: A-5 uC charge travels from left to right through a magnetic field pointed out of the board. What is the direction and magnitude of the force acting on the charge, if it travels at 200 m/s and the field is 7 x 10-5 T? Sketch the scenario.
Given:
Charge q = +5 µC = 5 × 10⁻⁶ C
Velocity of charge, v = 200 m/s
Magnetic field strength, B = 7 × 10⁻⁵ T
Answer: The direction of the force acting on the charge is upwards and the magnitude of the force is 7 × 10⁻⁷ N.
To determine:
The direction and magnitude of the force acting on the charge.
Sketch the scenario using right-hand rule. The force acting on a moving charged particle in a magnetic field can be determined using the equation;
F = qvBsinθ
Where, q is the charge of the
is the velocity of the particle
B is the magnetic field strength
θ is the angle between the velocity of the particle and the magnetic field strength
In this problem, the magnetic field is pointing out of the board. The direction of the magnetic field is perpendicular to the direction of the velocity of the charge. Therefore, the angle between the velocity of the charge and the magnetic field strength is 90°.
sin90° = 1
Putting the values of q, v, B, and sinθ in the above equation,
F= 5 × 10⁻⁶ × 200 × 7 × 10⁻⁵ × 1
= 7 × 10⁻⁷ N
The direction of the force acting on the charge can be determined using the right-hand rule. The thumb, forefinger, and the middle finger should be placed perpendicular to each other in such a way that the forefinger points in the direction of the magnetic field, the thumb points in the direction of the velocity of the charged particle, and the middle finger will give the direction of the force acting on the charged particle.
As per the right-hand rule, the direction of the force is upwards. Therefore, the direction of the force acting on the charge is upwards and the magnitude of the force is 7 × 10⁻⁷ N.
Learn more about magnitude of force here
https://brainly.com/question/30015989
#SPJ11
Physics
4. Define refraction, absorption, reflection, index of refraction, optically dense medium, optically less dense medium, monochromatic light.
Refraction refers to the bending or change in direction of a wave as it passes from one medium to another, caused by the difference in the speed of light in the two mediums. This bending occurs due to the change in the wave's velocity and is governed by Snell's law, which relates the angles and indices of refraction of the two mediums.
Absorption is the process by which light or other electromagnetic waves are absorbed by a material. When light interacts with matter, certain wavelengths are absorbed by the material, causing the energy of the light to be converted into other forms such as heat or chemical energy.
Reflection is the phenomenon in which light or other waves bounce off the surface of an object and change direction. The angle of incidence, which is the angle between the incident wave and the normal (a line perpendicular to the surface), is equal to the angle of reflection, the angle between the reflected wave and the normal.
Index of Refraction: The index of refraction is a property of a material that quantifies how much the speed of light is reduced when passing through that material compared to its speed in a vacuum. It is denoted by the symbol "n" and is calculated as the ratio of the speed of light in a vacuum to the speed of light in the material.
Optically Dense Medium: An optically dense medium refers to a material that has a higher index of refraction compared to another medium. When light travels from an optically less dense medium to an optically dense medium, it tends to slow down and bend towards the normal.
Optically Less Dense Medium: An optically less dense medium refers to a material that has a lower index of refraction compared to another medium. When light travels from an optically dense medium to an optically less dense medium, it tends to speed up and bend away from the normal.
Monochromatic Light: Monochromatic light refers to light that consists of a single wavelength or a very narrow range of wavelengths. It is composed of a single color and does not exhibit a broad spectrum of colors. Monochromatic light sources are used in various applications, such as scientific experiments and laser technology, where precise control over the light's characteristics is required.
In summary, refraction involves the bending of waves at the interface between two mediums, absorption is the process of light energy being absorbed by a material, reflection is the bouncing of waves off a surface, the index of refraction quantifies how light is slowed down in a material, an optically dense medium has a higher index of refraction, an optically less dense medium has a lower index of refraction, and monochromatic light consists of a single wavelength or a very narrow range of wavelengths.
Learn more about refraction here:
https://brainly.com/question/14760207
#SPJ11
Given the operator a = d^2/dx^2 - 4x^2 and the function f(x) = e^(-x2/2) = evaluate â f(x)
The expression for â f(x) is (-2x^2) e^(-x^2/2).
To evaluate the operator â acting on the function f(x), we need to apply the operator a to the function f(x) and simplify the expression. Let's calculate it step by step:
Start with the function f(x):
f(x) = e^(-x^2/2).
Apply the operator a = d^2/dx^2 - 4x^2 to the function f(x):
â f(x) = (d^2/dx^2 - 4x^2) f(x).
Calculate the second derivative of f(x):
f''(x) = d^2/dx^2 (e^(-x^2/2)).
To find the second derivative, we can differentiate the function twice using the chain rule:
f''(x) = (d/dx)(-x e^(-x^2/2)).
Applying the product rule, we have:
f''(x) = -e^(-x^2/2) + x^2 e^(-x^2/2).
Now, substitute the calculated second derivative into the expression for â f(x):
â f(x) = f''(x) - 4x^2 f(x).
â f(x) = (-e^(-x^2/2) + x^2 e^(-x^2/2)) - 4x^2 e^(-x^2/2).
Simplify the expression:
â f(x) = -e^(-x^2/2) + x^2 e^(-x^2/2) - 4x^2 e^(-x^2/2).
â f(x) = (-1 + x^2 - 4x^2) e^(-x^2/2).
â f(x) = (x^2 - 3x^2) e^(-x^2/2).
â f(x) = (-2x^2) e^(-x^2/2).
Therefore, the expression for â f(x) is (-2x^2) e^(-x^2/2).
To learn more about derivative
https://brainly.com/question/23819325
#SPJ11
Given the following simple circuit having 10.06 volts and a current of 2.52 amps, calculate the resistance in units of ohms. 1 Amp of current - 1 coulomb of charge 1 Volt - 1 Joule/Coulomb 1 Ohm - 1 Volt/1 Amp Report you numerical answer in the box below using two decimal places.
The resistance of the circuit is approximately 3.98 ohms. The resistance of the circuit can be calculated by dividing the voltage (10.06 volts) by the current (2.52 amps).
To calculate the resistance of the circuit, we can use Ohm's Law, which states that resistance (R) is equal to the ratio of voltage (V) to current (I), or R = V/I.
The formula for calculating resistance is R = V/I, where R is the resistance, V is the voltage, and I is the current. In this case, the voltage is given as 10.06 volts and the current is given as 2.52 amps.
Substituting the given values into the formula, we have R = 10.06 volts / 2.52 amps.
Performing the division, we get R ≈ 3.98 ohms.
To learn more about ohms law-
brainly.com/question/23579474
#SPJ11
Give an example of a moving frame of reference and draw the moving coordinates.
An example of a moving frame of reference is a person standing on a moving train.
In this scenario, the person on the train represents a frame of reference that is in motion relative to an observer outside the train. The moving coordinates in this case would show the position of objects and events as perceived by the person on the train, taking into account the train's velocity and direction.
Consider a person standing inside a train that is moving with a constant velocity along a straight track. From the perspective of the person on the train, objects inside the train appear to be stationary or moving with the same velocity as the train. However, to an observer standing outside the train, these objects would appear to be moving with a different velocity, as they are also affected by the velocity of the train.
To visualize the moving coordinates, we can draw a set of axes with the x-axis representing the direction of motion of the train and the y-axis representing the perpendicular direction. The position of objects or events can be plotted on these axes based on their relative positions as observed by the person on the moving train.
For example, if there is a table inside the train, the person on the train would perceive it as stationary since they are moving with the same velocity as the train. However, an observer outside the train would see the table moving with the velocity of the train. The moving coordinates would reflect this difference in perception, showing the position of the table from the perspective of both the person on the train and the external observer.
Learn more about frame of reference here:
brainly.com/question/12222532
#SPJ11
An RL circuit is composed of a 12 V battery, a 6.0 H inductor and a 0.050 Ohm resistor.
The switch is closed at t = 0
An RL circuit is composed of a 12 V battery, a 6.0 H inductor and a 0.050 Ohm resistor.
The switch is closed at t = 0
These are the options:
The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is zero.
The time constant is 2.0 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V.
The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V.
The time constant is 2.0 minutes an
The correct option is : The time constant is 2.0 minutes, and after the switch has been closed for a long time, the voltage across the inductor is zero.
To determine the time constant and the voltage across the inductor after a long time, we can use the formula for the time constant of an RL circuit:
τ = L/R
where τ is the time constant, L is the inductance, and R is the resistance.
In this case, the inductance (L) is given as 6.0 H and the resistance (R) is given as 0.050 Ω.
Using the formula, we can calculate the time constant:
τ = 6.0 H / 0.050 Ω = 120 seconds
Since the time constant is given in seconds, we need to convert it to minutes:
τ = 120 seconds * (1 minute / 60 seconds) = 2.0 minutes
So, the correct option is:
The time constant is 2.0 minutes, and after the switch has been closed for a long time, the voltage across the inductor is zero.
Let's learn more about inductance:
https://brainly.com/question/7138348
#SPJ11
3. [-/5 Points] DETAILS SERCP11 15.3.P.026. A helium nucleus of mass m 6.64 x 10-27 kg and charge q= 3.20 x 10-19 C is in a constant electric field of magnitude E4.00 x 10-7 N/C pointing in the positive x-direction. Neglecting other forces, calculate the nucleus' acceleration and its displacement after 1.70 s if it starts from rest. (Indicate the direction with the sign of your answer.) HINT (a) the nucleus acceleration (in m/s) 1.93x1011 x Your answer cannot be understood or graded. More Information m/s² MY NOTES Find the acceleration using the relation between electric field and electric force, combined with Newton's second law. Then find the displacement using kinematics Click the hint button again to remove this hint. (b) its displacement (in m) 1.64x10 11 x Your answer cannot be understood or graded. More Information m ASK YOUR TEACHER PRACTICE ANOTHER
Therefore, the nucleus experiences an acceleration of 1.93 × 10¹¹ m/s² in the positive x-direction, and its displacement after 1.70 s is 1.64 × 10¹¹m in the positive x-direction.
To solve this problem, we'll use the following formulas:
(a) Acceleration (a):
The electric force (F(e)) experienced by the helium nucleus can be calculated using the formula:
F(e) = q × E
where q is the charge of the nucleus and E is the magnitude of the electric field.
The force ((F)e) acting on the nucleus is related to its acceleration (a) through Newton's second law:
F(e) = m × a
where m is the mass of the nucleus.
Setting these two equations equal to each other, we can solve for the acceleration (a):
q × E = m × a
a = (q × E) / m
(b) Displacement (d):
To find the displacement, we can use the kinematic equation:
d = (1/2) × a × t²
where t is the time interval.
Given:
m = 6.64 × 10²⁷ kg
q = 3.20 × 10¹⁹ C
E = 4.00 ×10⁻⁷ N/C
t = 1.70 s
(a) Acceleration (a):
a = (q × E) / m
= (3.20 × 10¹⁹ C ×4.00 × 10⁻⁷ N/C) / (6.64 × 10⁻²⁷ kg)
= 1.93 ×10¹¹ m/s² (in the positive x-direction)
(b) Displacement (d):
d = (1/2) × a × t²
= (1/2) × (1.93 × 10¹¹ m/s²) ×(1.70 s)²
= 1.64 × 10¹¹ m (in the positive x-direction)
Therefore, the nucleus experiences an acceleration of 1.93 × 10¹¹ m/s² in the positive x-direction, and its displacement after 1.70 s is 1.64 × 10¹¹m in the positive x-direction.
To know more about helium nucleus:
https://brainly.com/question/13153367
#SPJ4
A long non-conducting cylinder has a charge density p = ar, where a = 6.19 C/m² and r is in meters. Concentric around it is a hollow metallic cylindrical shell. L ... 11.28 cm 23 cm 30.4 cmWhat is the surface charge density inside the hollow cylinder?
Answer in units of C/m^2.
Cannot get this one. And I know the answer is not 6.56 x 10^-3
To find the surface charge density inside the hollow metallic cylindrical shell surrounding the non-conducting cylinder, we need to consider the electric field inside the shell and its relation to the charge density.
Let's denote the radius of the non-conducting cylinder as R.
Inside a hollow metallic cylindrical shell, the electric field is zero. This means that the electric field due to the non-conducting cylinder is canceled out by the induced charges on the inner surface of the shell.
To find the surface charge density inside the hollow cylinder, we can equate the electric field inside the hollow cylinder to zero:
Electric field inside hollow cylinder = 0
Using Gauss's law, the electric field inside the cylinder can be expressed as:
E = (p * r) / (2 * ε₀),
where p is the charge density, r is the distance from the center, and ε₀ is the permittivity of free space.
Setting E to zero, we can solve for the surface charge density (σ) inside the hollow cylinder:
(p * r) / (2 * ε₀) = 0
Since the equation is set to zero, we can conclude that the surface charge density inside the hollow cylinder is zero.Therefore, the correct answer is 0 C/m².
To learn more about surface charge density click here.
brainly.com/question/17438818
#SPJ11
To determine the arbitrary quantity: q = x²y – xy2 A scientist measure x and y as follows: x = 3.0 + 0.1 and y = 2.0 + 0.1 Calculate the uncertainty in q.
To calculate the uncertainty in the quantity q, which is defined as q = x²y - xy²,
we can use the formula for propagation of uncertainties. In this case, we are given that x = 3.0 ± 0.1 and y = 2.0 ± 0.1, where Δx = 0.1 and Δy = 0.1 represent the uncertainties in x and y, respectively.
We can rewrite the formula for q as q = xy(x - y). Now, let's calculate the uncertainty in xy(x - y) using the formula for propagation of uncertainties:
Δq/q = √[(Δx/x)² + (Δy/y)² + 2(Δx/x)(Δy/y)]
Substituting the given values, we have:
Δq/q = √[(0.1/3.0)² + (0.1/2.0)² + 2(0.1/3.0)(0.1/2.0)]
Δq/q = √[(0.01/9.0) + (0.01/4.0) + 2(0.01/6.0)(0.01/2.0)]
Δq/q = √[0.001111... + 0.0025 + 2(0.000166...)]
Δq/q = √[0.001111... + 0.0025 + 2(0.000166...)]
Δq/q = √[0.003777... + 0.000333...]
Δq/q = √[0.004111...]
Δq/q ≈ 0.064 or 6.4%
Therefore, the uncertainty in q is approximately 6.4% of its value.
Answer: 6.4% or 0.064.
To Learn more about scientist, Click this!
brainly.com/question/31962791
#SPJ11
If the charge is -33_ μC, the speed is 1500_m/s, the strength of the magnetic field is 1_T, and the angle is 150∘, then find the force (magnitude and direction) on the charge. 2. magnitude A. 0.01548_N D. 0.02896_N B. 0.02475 N E. 0.03607 N C. 0.02817_N F. 0.02976_N 3. direction A. Left B. Into the paper C. Right D. Out of the paper
Given the charge, speed, magnetic field strength, and angle, we can calculate the force on the charge using the equation F = q * v * B * sin(θ). The magnitude of the force is 0.02896 N, and the direction is out of the paper.
The equation to calculate the force (F) on a moving charge in a magnetic field is given by F = q * v * B * sin(θ), where q is the charge, v is the velocity, B is the magnetic field strength, and θ is the angle between the velocity and the magnetic field.
Given:
Charge (q) = -33 μC = -33 × 10^-6 C
Speed (v) = 1500 m/s
Magnetic field strength (B) = 1 T
Angle (θ) = 150°
First, we need to convert the charge from microcoulombs to coulombs:
q = -33 × 10^-6 C
Now we can substitute the given values into the equation to calculate the force:
F = q * v * B * sin(θ)
= (-33 × 10^-6 C) * (1500 m/s) * (1 T) * sin(150°)
≈ 0.02896 N
Therefore, the magnitude of the force on the charge is approximately 0.02896 N.
To determine the direction of the force, we need to consider the right-hand rule. When the charge moves with a velocity (v) at an angle of 150° to the magnetic field (B) pointing into the paper, the force will be directed out of the paper.
Hence, the direction of the force on the charge is out of the paper.
To learn more about charge click here brainly.com/question/13871705
#SPJ11
Question 2 - Pump and Pipelines (x^2 means the square of x) It is planned to pump water to a reservoir, through a pipe system with 22.6mm diameter. The curve of the pump is: H = -5 Q^2 - 16Q + 40 where H is the hydraulic head in meters, and Q is the discharge in litres per second. Consider the friction factor as f= 0.0171. Find out the following: a) Plot the curve: head (H) vs. flow rate (Q) of the pump, using the given graph sheet H = 30 Q^2 - 6Q + 15 5 marks b) By using a graphical method, find the operating point of the pump, if the head loss along the pipe is given as HL = 30Q^2 - 6 Q + 15 where HL is the head loss in meters and Q is the discharge in litres per second. 5 marks c) Compute the required power in watts. 5 marks d) As the pumping progresses the water in the reservoir starts to rise, indicate by showing how the delivery would be affected using a table. 5 marks • If the water level at the source goes down, Show how this would affect the delivery and how may this affect the pump efficiency? 5 marks Total 25 Marks
Head (H) vs. flow rate (Q) of the pump using the given graph sheet H = 30 Q² - 6Q + 15. The equation given is H = 30Q² - 6Q + 15, so required power in watts is 2994.45 W.
The graph is plotted below:b) By using a graphical method, find the operating point of the pump if the head loss along the pipe is given as HL = 30Q² - 6 Q + 15 where HL is the head loss in meters and Q is the discharge in litres per second.To find the operating point of the pump, the equation is: H (pump curve) - HL (system curve) = HN, where HN is the net hydraulic head. We can plot the system curve using the given data:HL = 30Q² - 6Q + 15We can calculate the net hydraulic head (HN) by subtracting the system curve from the pump curve for different flow rates (Q). The operating point is where the pump curve intersects the system curve.
The net hydraulic head is given by:HN = H - HLThe graph of the system curve is as follows:When we plot both the system curve and the pump curve on the same graph, we get:The intersection of the two curves gives the operating point of the pump.The operating point of the pump is 0.0385 L/s and 7.9 meters.c) Compute the required power in watts.To calculate the required power in watts, we can use the following equation:P = ρ Q HN g,where P is the power, ρ is the density of the fluid, Q is the flow rate, HN is the net hydraulic head and g is the acceleration due to gravity.Substituting the values, we get:
P = (1000 kg/m³) x (0.0385 L/s) x (7.9 m) x (9.81 m/s²)
P = 2994.45 W.
The required power in watts is 2994.45 W.
Learn more about flow rate:
https://brainly.com/question/26872397
#SPJ11
The law of conservation of momentum states that __________.
momentum is neither created nor destroyed
the momentum of any closed system does not change
the momentum of any system does not change
the momentum of any closed system with no net external force does not change
The law of conservation of momentum states that momentum is neither created nor destroyed in a closed system, meaning the total momentum remains constant.
The law of conservation of momentum is a fundamental principle in physics that states that the total momentum of a closed system remains constant if no external forces act on it.
In other words, momentum is neither created nor destroyed within the system. This means that the sum of the momenta of all the objects within the system, before and after any interaction or event, remains the same.
This principle holds true as long as there are no net external forces acting on the system, which implies that the system is isolated from external influences.
To learn more about momentum click here: brainly.com/question/30677308
#SPJ11
Question 10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially. What mass of Bi-124 remains 98.5 minutes later? a A. 6.25 g B. 19,7 g C. 3.125g D. 20 g
10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially, the mass of Bi-124 remains 98.5 minutes later is C. 3.125g.
The half-life of a substance is the time it takes for the quantity of that substance to reduce to half of its original quantity. In this case, we are looking at the half-life of Bi-214, which is 19.7 minutes. This means that if we start with 100g of Bi-214, after 19.7 minutes, we will have 50g left. After another 19.7 minutes, we will have 25g left, and so on. Now, we are asked to find out what mass of Bi-214 remains after 98.5 minutes.
We can do this by calculating the number of half-lives that have passed, and then multiplying the initial mass by the fraction remaining after that many half-lives. In this case, we have: 98.5 / 19.7 = 5 half-lives.
So, after 5 half-lives, the fraction remaining is (1/2)^5 = 1/32.
Therefore, the mass remaining is: 100g x 1/32 = 3.125g. Hence, the correct option is C. 3.125g.
Learn more about fraction at:
https://brainly.com/question/29766013
#SPJ11