A 7800 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.15 m/s2 and feels no appreciable air resistance. When it has reached a height of 575 m , its engines suddenly fail so that the only force acting on it is now gravity. A) What is the maximum height this rocket will reach above the launch pad? b)How much time after engine failure will elapse before the rocket comes crashing down to the launch pad? c)How fast will it be moving just before it crashes?

Answers

Answer 1

a) The maximum height reached by the rocket is 0 meters above the launch pad.

b) The rocket will crash back to the launch pad after approximately 10.83 seconds,

c)speed just before crashing will be approximately 106.53 m/s downward.

a) To find the maximum height the rocket will reach, we can  we can use the equations of motion for objects in free fall

v ² = u ² + 2as

Where:

v is the final velocity (which will be 0 m/s at the maximum height),

u is the initial velocity,

a is the acceleration, and

s is the displacement.

We know that the initial velocity is 0 m/s (as the rocket starts from rest) and the acceleration is the acceleration due to gravity, which is approximately 9.8 m/s ²(assuming no air resistance).

Plugging in the values:

0²= u²+ 2 * (-9.8 m/s^2) * s

Simplifying:

u^2 = 19.6s

Since the rocket starts from rest, u = 0, so:

0 = 19.6s

This implies that the rocket will reach its maximum height when s = 0.

Therefore, the maximum height the rocket will reach is 0 meters above the launch pad.

b) To find the time it takes for the rocket to come crashing down to the launch pad, we can use the following equation:

s = ut + 0.5at ²

Where:

s is the displacement (575 m),

u is the initial velocity (0 m/s),

a is the acceleration (-9.8 m/s^2), and

t is the time.

Plugging in the values:

575 = 0 * t + 0.5 * (-9.8 m/s ²) * t ²

Simplifying:

-4.9t ² = 575

t ² = -575 / -4.9

t ² = 117.3469

Taking the square root:

t ≈ 10.83 s

Therefore, approximately 10.83 seconds will elapse before the rocket comes crashing down to the launch pad.

c) To find the speed of the rocket just before it crashes, we can use the equation:

v = u + at

Where:

v is the final velocity,

u is the initial velocity (0 m/s),

a is the acceleration (-9.8 m/s²), and

t is the time (10.83 s).

Plugging in the values:

v = 0 + (-9.8 m/s²) * 10.83 s

v ≈ -106.53 m/s

The negative sign indicates that the rocket is moving downward.

Therefore, the rocket will be moving at approximately 106.53 m/s downward just before it crashes.

Learn more about maximum height

brainly.com/question/29566644

#SPJ11


Related Questions

can
i please get the answer to this
Question 6 (1 point) + Doppler shift Destructive interference Standing waves Constructive interference Resonance O Resonant Frequency

Answers

Resonance is a phenomenon that occurs when the frequency of a vibration of an external force matches an object's natural frequency of vibration, resulting in a dramatic increase in amplitude.

When the frequency of the external force equals the natural frequency of the object, resonance is said to occur. This results in an enormous increase in the amplitude of the object's vibration.

In other words, resonance is the tendency of a system to oscillate at greater amplitude at certain frequencies than at others. Resonance occurs when the frequency of an external force coincides with one of the system's natural frequencies.

A standing wave is a type of wave that appears to be stationary in space. Standing waves are produced when two waves with the same amplitude and frequency travelling in opposite directions interfere with one another. As a result, the wave appears to be stationary. Standing waves are found in a variety of systems, including water waves, electromagnetic waves, and sound waves.

The Doppler effect is the apparent shift in frequency or wavelength of a wave that occurs when an observer or source of the wave is moving relative to the wave source. The Doppler effect is observed in a variety of wave types, including light, water, and sound waves.

Constructive interference occurs when two waves with the same frequency and amplitude meet and merge to create a wave of greater amplitude. When two waves combine constructively, the amplitude of the resultant wave is equal to the sum of the two individual waves. When the peaks of two waves meet, constructive interference occurs.

Destructive interference occurs when two waves with the same frequency and amplitude meet and merge to create a wave of lesser amplitude. When two waves combine destructively, the amplitude of the resultant wave is equal to the difference between the amplitudes of the two individual waves. When the peak of one wave coincides with the trough of another wave, destructive interference occurs.

The resonant frequency is the frequency at which a system oscillates with the greatest amplitude when stimulated by an external force with the same frequency as the system's natural frequency. The resonant frequency of a system is determined by its mass and stiffness properties, as well as its damping characteristics.

To know more about Resonance, refer

https://brainly.com/question/29298725

#SPJ11

Question 15 1 pts A spherical drop of water in air acts as a converging lens. How about a spherical bubble of air in water? It will Act as a converging lens Not act as a lens at all Act as a diverging

Answers

The correct option is "Act as a diverging".

Detail Answer:When a spherical bubble of air is formed in water, it behaves as a diverging lens. As it is a lens made of a convex shape, it diverges the light rays that come into contact with it. Therefore, a spherical bubble of air in water will act as a diverging lens.Lens is a transparent device that is used to refract or bend light.

                                There are two types of lenses, i.e., convex and concave. Lenses are made from optical glasses and are of different types depending upon their applications.Lens works on the principle of refraction, and it refracts the light when the light rays pass through it. The lenses have an axis and two opposite ends.

                                            The lens's curved surface is known as the radius of curvature, and the center of the lens is known as the optical center . The type of lens depends upon the curvature of the surface of the lens. The lens's curvature surface can be either spherical or parabolic, depending upon the type of lens.

Learn more about diverging lens.

brainly.com/question/28348284

#SPJ11

3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.

Answers

The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.

The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.

The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.

When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.

The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.

However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

Learn more about spring constant here: brainly.com/question/29975736

#SPJ11

A satellite revolving around Earth has an orbital radius of 1.5 x 10^4 km. Gravity being the only force acting on the satele calculate its time period of motion in seconds. You can use the following numbers for calculation: Mass of Earth = 5.97 x 10^24 kg Radius of Earth = 6.38 x 10^3 km Newton's Gravitational Constant (G) = 6.67 x 10^-11 N m^2/kg^2 Mass of the Satellite = 1050 kg O a. 1.90 x 10^4 s O b. 4.72 x 10^3 s O c. 11.7 x 10^7 s O d. 3.95 x 10^6 s O e. 4.77 x 10^2 s O f. 2.69 x 10^21 s

Answers

The time period of motion of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km is 67805.45 seconds

The time period of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km can be calculated as follows: Given values are:

Mass of Earth (M) = 5.97 x 10^24 kg

Radius of Earth (R) = 6.38 x 10^3 km

Newton's Gravitational Constant (G) = 6.67 x 10^-11 N m^2/kg^2

Mass of the Satellite (m) = 1050 kg

Formula used for finding the time period is

T= 2π√(r^3/GM) where r is the radius of the orbit and M is the mass of the Earth

T= 2π√((1.5 x 10^4 + 6.38 x 10^3)^3/(6.67 x 10^-11 x 5.97 x 10^24))T = 2π x 10800.75T = 67805.45 seconds

The time period of motion of the satellite is 67805.45 seconds.

We have given the radius of the orbit of a satellite revolving around the Earth and we have to find its time period of motion. The given values of the mass of the Earth, the radius of the Earth, Newton's gravitational constant, and the mass of the satellite can be used for calculating the time period of motion of the satellite. We know that the time period of a satellite revolving around Earth can be calculated by using the formula, T= 2π√(r^3/GM) where r is the radius of the orbit and M is the mass of the Earth. Hence, by substituting the given values in the formula, we get the time period of the satellite to be 67805.45 seconds.

The time period of motion of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km is 67805.45 seconds.

To know more about Gravitational Constant visit

brainly.com/question/17239197

#SPJ11

a A simple refractor telescope has an objective lens with a focal length of 1.6 m. Its eyepiece has a 3.80 cm focal length lens. a) What is the telescope's angular magnification?

Answers

The telescope's angular magnification is approximately -42.11, indicating an inverted image.

Angular magnification refers to the ratio of the angle subtended by an object when viewed through a magnifying instrument, such as a telescope or microscope, to the angle subtended by the same object when viewed with the eye. It quantifies the degree of magnification provided by the instrument, indicating how much larger an object appears when viewed through the instrument compared to when viewed without it.

The angular magnification of a telescope can be calculated using the formula:

Angular Magnification = - (focal length of the objective lens) / (focal length of the eyepiece)

Given:

Focal length of the objective lens (f_objective) = 1.6 mFocal length of the eyepiece (f_eyepiece) = 3.80 cm = 0.038 m

Plugging these values into the formula:

Angular Magnification = - (1.6 m) / (0.038 m)

Simplifying the expression:

Angular Magnification ≈ - 42.11

Therefore, the angular magnification of the telescope is approximately -42.11. Note that the negative sign indicates an inverted image.

To learn more about angular magnification, Visit:

https://brainly.com/question/28325488

#SPJ11

Two capacitors, C, = 6.10 MF and Cz = 3.18 F, are connected in parallel, then the combination is connected to a 250 V battery. When the capacitors are charged, each one is removed from the circuit. Next, the two charged capacitors are connected to each other so that the positive plate of one
capacitor is connected to the negative plate of the other capacitor. What is the resulting charge on each capacitor (in uC)?

Answers

The resulting charge on each capacitor, both when connected in parallel to the battery and when connected to each other in series, is approximately 2.32 µC.

When capacitors are connected in parallel, the voltage across them is the same. Therefore, the voltage across the combination of capacitors in the first scenario (connected in parallel to the battery) is 250 V.

For capacitors connected in parallel, the total capacitance (C_total) is the sum of individual capacitances:

C_total = C1 + C2

Given:

C1 = 6.10 µF = 6.10 × 10^(-6) F

C2 = 3.18 F

C_total = C1 + C2

C_total = 6.10 × 10^(-6) F + 3.18 × 10^(-6) F

C_total = 9.28 × 10^(-6) F

Now, we can calculate the charge (Q) on each capacitor when connected in parallel:

Q = C_total × V

Q = 9.28 × 10^(-6) F × 250 V

Q ≈ 2.32 × 10^(-3) C

Therefore, the resulting charge on each capacitor when connected in parallel to the battery is approximately 2.32 µC.

When the capacitors are disconnected from the circuit and connected to each other in series, the charge remains the same on each capacitor.

Thus, the resulting charge on each capacitor when they are connected to each other in series is also approximately 2.32.

To learn more about voltage, Visit:

https://brainly.com/question/30764403

#SPJ11

In an R−C circuit the resistance is 115Ω and Capacitance is 28μF, what will be the time constant? Give your answer in milliseconds. Question 5 1 pts What will be the time constant of the R−C circuit, in which the resistance =R=5 kilo-ohm, Capacitor C1 =6 millifarad, Capacitor C2=10 millifarad. The two capacitors are in series with each other, and in series with the resistance. Write your answer in milliseconds. Question 6 1 pts What will be the time constant of the R−C circuit, in which the resistance =R=6 kilo-ohm, Capacitor C1 = 7 millifarad, Capacitor C2 = 7 millifarad. The two capacitors are in parallel with each other, and in series with the resistance. Write your answer in milliseconds.

Answers

The time constant of the R−C circuit is 132.98 ms.

1: In an R−C circuit, the resistance is 115Ω and capacitance is 28μF.

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC

where

R = Resistance

C = Capacitance= 115 Ω × 28 μ

F= 3220 μs = 3.22 ms

Therefore, the time constant of the R−C circuit is 3.22 ms.

2: In an R−C circuit, the resistance

R = 5 kΩ, Capacitor

C1 = 6 mF and

Capacitor C2 = 10 mF.

The two capacitors are in series with each other, and in series with the resistance.

The total capacitance in the circuit will be

CT = C1 + C2= 6 mF + 10 mF= 16 mF

The equivalent capacitance for capacitors in series is:

1/CT = 1/C1 + 1/C2= (1/6 + 1/10)×10^-3= 0.0267×10^-3F = 26.7 µF

The total resistance in the circuit is:

R Total = R + R series

The resistors are in series, so:

R series = R= 5 kΩ

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC= (5×10^3) × (26.7×10^-6)= 0.1335 s= 133.5 ms

Therefore, the time constant of the R−C circuit is 133.5 ms.

3: In an R−C circuit, the resistance

R = 6 kΩ,

Capacitor C1 = 7 mF, and

Capacitor C2 = 7 mF.

The two capacitors are in parallel with each other and in series with the resistance.

The equivalent capacitance for capacitors in parallel is:

CT = C1 + C2= 7 mF + 7 mF= 14 mF

The total capacitance in the circuit will be:

C Total = CT + C series

The capacitors are in series, so:

1/C series = 1/C1 + 1/C2= (1/7 + 1/7)×10^-3= 0.2857×10^-3F = 285.7 µFC series = 1/0.2857×10^-3= 3498.6 Ω

The total resistance in the circuit is:

R Total = R + C series= 6 kΩ + 3498.6 Ω= 9498.6 Ω

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC= (9.4986×10^3) × (14×10^-6)= 0.1329824 s= 132.98 ms

Therefore, the time constant of the R−C circuit is 132.98 ms.

To know more about R−C circuit visit:

https://brainly.com/question/32250409

#SPJ11

Enter only the last answer c) into moodle.
A solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v
a) Find a simplified algebraic expression using symbols only for the tolal kinetic energy Kior of the ball in terms of M and R
b) IfM = 7.5 kg. R = 10,8 cm and v = 4.5 m/s find the moment of inertia of the bail.
c) Plug in the numbers from part b) into your formula from part a) to get the value of the total kinetic energy

Answers

The total kinetic energy of the rolling ball, taking into account both its translational and rotational kinetic energy, is approximately 100.356 Joules. This is calculated by considering the mass, linear speed, radius, moment of inertia, and angular velocity of the ball.

a) The total kinetic energy of the rolling ball can be expressed as the sum of its translational kinetic energy and rotational kinetic energy.

The translational kinetic energy (Kt) is given by the formula: Kt = 0.5 * M * v^2, where M is the mass of the ball and v is its linear speed.

The rotational kinetic energy (Kr) is given by the formula: Kr = 0.5 * I * ω^2, where I is the moment of inertia of the ball and ω is its angular velocity.

Since the ball is rolling without slipping, the linear speed v is related to the angular velocity ω by the equation: v = R * ω, where R is the radius of the ball.

Therefore, the total kinetic energy (Kior) of the ball can be expressed as: Kior = Kt + Kr = 0.5 * M * v^2 + 0.5 * I * (v/R)^2.

b) To find the moment of inertia (I) of the ball, we can rearrange the equation for ω in terms of v and R: ω = v / R.

Substituting the values, we have: ω = 4.5 m/s / 0.108 m = 41.67 rad/s.

The moment of inertia (I) can be calculated using the equation: I = (2/5) * M * R^2.

Substituting the values, we have: I = (2/5) * 7.5 kg * (0.108 m)^2 = 0.08712 kg·m².

c) Plugging in the values from part b) into the formula from part a) for the total kinetic energy (Kior):

Kior = 0.5 * M * v^2 + 0.5 * I * (v/R)^2

     = 0.5 * 7.5 kg * (4.5 m/s)^2 + 0.5 * 0.08712 kg·m² * (4.5 m/s / 0.108 m)^2

     = 91.125 J + 9.231 J

     = 100.356 J.

Therefore, the total kinetic energy of the ball, with the given values, is approximately 100.356 Joules.

learn more about "inertia":- https://brainly.com/question/1140505

#SPJ11

2. For each pair of systems, circle the one with the larger entropy. If they both have the same entropy, explicitly state it. a. 1 kg of ice or 1 kg of steam b. 1 kg of water at 20°C or 2 kg of water at 20°C c. 1 kg of water at 20°C or 1 kg of water at 50°C d. 1 kg of steam (H₂0) at 200°C or 1 kg of hydrogen and oxygen atoms at 200°C Two students are discussing their answers to the previous question: Student 1: I think that 1 kg of steam and 1 kg of the hydrogen and oxygen atoms that would comprise that steam should have the same entropy because they have the same temperature and amount of stuff. Student 2: But there are three times as many particles moving about with the individual atoms not bound together in a molecule. I think if there are more particles moving, there should be more disorder, meaning its entropy should be higher. Do you agree or disagree with either or both of these students? Briefly explain your reasoning.

Answers

a. 1 kg of steam has the larger entropy. b. 2 kg of water at 20°C has the larger entropy. c. 1 kg of water at 50°C has the larger entropy. d. 1 kg of steam (H2O) at 200°C has the larger entropy.

Thus, the answers to the question are:

a. 1 kg of steam has a larger entropy.

b. 2 kg of water at 20°C has a larger entropy.

c. 1 kg of water at 50°C has a larger entropy.

d. 1 kg of steam (H₂0) at 200°C has a larger entropy.

Student 1 thinks that 1 kg of steam and 1 kg of hydrogen and oxygen atoms that make up the steam should have the same entropy because they have the same temperature and amount of stuff. Student 2, on the other hand, thinks that if there are more particles moving around, there should be more disorder, indicating that its entropy should be higher.I agree with student 2's reasoning. Entropy is directly related to the disorder of a system. Higher disorder indicates a higher entropy value, whereas a lower disorder implies a lower entropy value. When there are more particles present in a system, there is a greater probability of disorder, which results in a higher entropy value.

To know more about entropy:

https://brainly.com/question/20166134

#SPJ11

EM radiation has an average intensity of 1700 W/m2. Which of the following statements about the E or B fields in this radiation is correct? Erms = 800.2 N/C Bmax = 4.42 x 10-6 T Brms = 2.29 x 10-6 T Emax = 1500.0 N/C At a certain place on the surface of the earth, the sunlight has an intensity of about 1.8 x 103 W/m². What is the total electromagnetic energy from this sunlight in 5.5 m³ of space? (Give your answer in joules but don't include the units.) Click Submit to complete this assessment. Question 12 of

Answers

The correct statement about the E or B fields in radiation is that Erms = 800.2 N/C.

EM (electromagnetic) radiation has an average intensity of 1700 W/m². As a result, the electrical field (Erms) is related to the average intensity through the equation E = cB, where E is the electric field, B is the magnetic field, and c is the speed of light.

Erms is related to the average intensity I (in W/m²) through the formula Erms = sqrt(2 I / c ε) which is approximately equal to 800.2 N/C.

For a 5.5 m³ space on the earth's surface, the total electromagnetic energy from sunlight with an intensity of 1.8 x 103 W/m² is 9.9 x 106 J.

The formula for calculating the energy is E = I × A × t, where E is the energy, I is the intensity, A is the area, and t is the time.

Here, the area is 5.5 m³ and the time is 1 second, giving an energy of 9.9 x 106 J.

Learn more about electric field here:

https://brainly.com/question/15800304

#SPJ11

Consider LC circuit where at time t = 0, the energy in capacitor is maximum. What is the minimum time t (t> 0) to maximize the energy in capacitor? (Express t as L,C). (15pts)

Answers

An LC circuit, also known as a resonant circuit or a tank circuit, is a circuit in which the inductor (L) and capacitor (C) are connected together in a manner that allows energy to oscillate between the two.



When an LC circuit has a maximum energy in the capacitor at time

t = 0,

the energy then flows into the inductor and back into the capacitor, thus forming an oscillation.

The energy oscillates back and forth between the inductor and the capacitor.

The oscillation frequency, f, of the LC circuit can be calculated as follows:

$$f = \frac {1} {2\pi \sqrt {LC}} $$

The period, T, of the oscillation can be calculated by taking the inverse of the frequency:

$$T = \frac{1}{f} = 2\pi \sqrt {LC}$$

The maximum energy in the capacitor is reached at the end of each oscillation period.

Since the period of oscillation is

T = 2π√LC,

the end of an oscillation period occurs when.

t = T.

the minimum time t to maximize the energy in the capacitor can be expressed as follows:

$$t = T = 2\pi \sqrt {LC}$$

To know more about resonant visit:

https://brainly.com/question/32273580

#SPJ11

Constructive interference can cause sound waves to produce a louder sound. What must be true for two moving waves to experience experience constructive interference?
A. The wave crests must match.
B. The wave throughs must cancel each other out.
C. The amplitudes must be equal.

Answers

Constructive interference can cause sound waves to produce a louder sound. For two moving waves to experience constructive interference their:

C. Amplitudes must be equal.

Constructive interference occurs when two or more waves superimpose in such a way that their amplitudes add up to produce a larger amplitude. In the case of sound waves, this can result in a louder sound.

For constructive interference to happen, several conditions must be met:

1. Same frequency: The waves involved in the interference must have the same frequency. This means that the peaks and troughs of the waves align in time.

2. Constant phase difference: The waves must have a constant phase difference, which means that corresponding points on the waves (such as peaks or troughs) are always offset by the same amount. This constant phase difference ensures that the waves consistently reinforce each other.

3. Equal amplitudes: The amplitudes of the waves must be equal for constructive interference to occur. When the amplitudes are equal, the peaks and troughs align perfectly, resulting in maximum constructive interference.

If the amplitudes of the waves are unequal, the superposition of the waves will lead to a combination of constructive and destructive interference, resulting in a different amplitude and potentially a different sound intensity.

Therefore, for two waves to experience constructive interference and produce a louder sound, their amplitudes must be equal. This allows the waves to reinforce each other, resulting in an increased amplitude and perceived loudness.

To know more about Constructive interference here

https://brainly.com/question/31857527

#SPJ4

An ideal gas expands isothermally, performing 5.00×10 3
J of work in the process. Calculate the change in internal energy of the gas. Express your answer with the appropriate units. Calculate the heat absorbed during this expansion. Express your answer with the appropriate units.

Answers

For an isothermal expansion of an ideal gas, the change in internal energy is zero. In this case, the gas performs 5.00×10^3 J of work, and the heat absorbed during the expansion is also 5.00×10^3 J.

An isothermal process involves a change in a system while maintaining a constant temperature. In this case, an ideal gas is expanding isothermally and performing work. We need to calculate the change in internal energy of the gas and the heat absorbed during the expansion.

To calculate the change in internal energy (ΔU) of the gas, we can use the first law of thermodynamics, which states that the change in internal energy is equal to the heat (Q) absorbed or released by the system minus the work (W) done on or by the system. Mathematically, it can be represented as:

ΔU = Q - W

Since the process is isothermal, the temperature remains constant, and the change in internal energy is zero. Therefore, we can rewrite the equation as:

0 = Q - W

Given that the work done by the gas is 5.00×10^3 J, we can substitute this value into the equation:

0 = Q - 5.00×10^3 J

Solving for Q, we find that the heat absorbed during this expansion is 5.00×10^3 J.

To know more about the first law of thermodynamics, refer here:

https://brainly.com/question/32101564#

#SPJ11

A certain boat traveling on a river displaces a volume of 6.7 m of water. The density of the water is 1000 kg/m2.) a. What is the mass of the water displaced by the boat? b. What is the weight of the boat?

Answers

According to the question (a). The mass of the water displaced by the boat is 6700 kg. (b). The weight of the boat is 65560 N.

a. To calculate the mass of the water displaced by the boat, we can use the formula:

[tex]\[ \text{mass} = \text{volume} \times \text{density} \][/tex]

Given that the volume of water displaced is 6.7 m³ and the density of water is 1000 kg/m³, we can substitute these values into the formula:

[tex]\[ \text{mass} = 6.7 \, \text{m³} \times 1000 \, \text{kg/m³} \][/tex]

[tex]\[ \text{mass} = 6700 \, \text{kg} \][/tex]

Therefore, the mass of the water displaced by the boat is 6700 kg.

b. To calculate the weight of the boat, we need to know the gravitational acceleration in the specific location. Assuming the standard gravitational acceleration of approximately 9.8 m/s²:

[tex]\[ \text{weight} = \text{mass} \times \text{acceleration due to gravity} \][/tex]

Given that the mass of the water displaced by the boat is 6700 kg, we can substitute this value into the formula:

[tex]\[ \text{weight} = 6700 \, \text{kg} \times 9.8 \, \text{m/s}^2 \][/tex]

[tex]\[ \text{weight} = 65560 \, \text{N} \][/tex]

Therefore, the weight of the boat is 65560 N.

To know more about gravitational visit-

brainly.com/question/29013218

#SPJ11

Give at least one example for each law of motion that you
observed or experienced and explain each in accordance with the
laws of motion.

Answers

Isaac Newton's Three Laws of Motion describe the way that physical objects react to forces exerted on them. The laws describe the relationship between a body and the forces acting on it, as well as the motion of the body as a result of those forces.

Here are some examples for each of the three laws of motion:

First Law of Motion: An object at rest stays at rest, and an object in motion stays in motion at a constant velocity, unless acted upon by a net external force.

EXAMPLE: If you roll a ball on a smooth surface, it will eventually come to a stop. When you kick the ball, it will continue to roll, but it will eventually come to a halt. The ball's resistance to changes in its state of motion is due to the First Law of Motion.

Second Law of Motion: The acceleration of an object is directly proportional to the force acting on it, and inversely proportional to its mass. F = ma

EXAMPLE: When pushing a shopping cart or a bike, you must apply a greater force if it is heavily loaded than if it is empty. This is because the mass of the object has increased, and according to the Second Law of Motion, the greater the mass, the greater the force required to move it.

Third Law of Motion: For every action, there is an equal and opposite reaction.

EXAMPLE: A bird that is flying exerts a force on the air molecules below it. The air molecules, in turn, exert an equal and opposite force on the bird, which allows it to stay aloft. According to the Third Law of Motion, every action has an equal and opposite reaction.

Learn more about Law of Motion at https://brainly.com/question/28171613

#SPJ11

Two spheres with uniform surface charge density, one with a radius of 7.1 cm and the other with a radius of 4.2 cm, are separated by a center-to-center distance of 38 cm. The spheres have a combined charge of + 55jC and repel one another with a
force of 0.71 N. Assume that the chargo of the first sphote is
eator than the charge o the second sobore
What is tho surface chargo density on the sobero bi radicie 7 12

Answers

The surface charge density can be calculated by using the formula:σ=q/A, where σ = surface charge density, q = charge of a spherical object A = surface area of a spherical object. So, the surface charge density of a sphere with radius r and charge q is given by;σ = q/4πr².

The total charge of the spheres, q1 + q2 = 55 μC. The force of repulsion between the two spheres, F = 0.71 N.

To find, The surface charge density on the sphere with radius 7.1 cm,σ1 = q1/4πr1². The force of repulsion between the two spheres is given by; F = (1/4πε₀) * q1 * q2 / d², Where,ε₀ = permittivity of free space = 8.85 x 10^-12 N^-1m^-2C²q1 + q2 = 55 μC => q1 = 55 μC - q2.

We have two equations: F = (1/4πε₀) * q1 * q2 / d²σ1 = q1/4πr1². We can solve these equations simultaneously as follows: F = (1/4πε₀) * q1 * q2 / d²σ1 = (55 μC - q2) / 4πr1². Putting the values in the first equation and solving for q2:0.71 N = (1/4πε₀) * (55 μC - q2) * q2 / (38 cm)²q2² - (55 μC / 0.71 N * 4πε₀ * (38 cm)²) * q2 + [(55 μC)² / 4 * (0.71 N)² * (4πε₀)² * (38 cm)²] = 0q2 = 9.24 μCσ1 = (55 μC - q2) / 4πr1²σ1 = (55 μC - 9.24 μC) / (4π * (7.1 cm)²)σ1 = 23.52 μC/m².

Therefore, the surface charge density on the sphere with radius 7.1 cm is 23.52 μC/m².

Let's learn more about surface charge density :

https://brainly.com/question/14306160

#SPJ11

A long cylindrical wire of radius 4 cm has a current of 8 amps flowing through it. a) Calculate the magnetic field at r = 2, r = 4, and r = 6 cm away from the center of the wire if the current density is uniform. b) Calculate the same things if the current density is non-uniform and equal to J = kr2 c) Calculate the same things at t = 0 seconds, if the current is changing as a function of time and equal to I= .8sin(200t). Assume the wire is made of copper and current density as a function of r is uniform. =

Answers

At the respective distances, the magnetic field is approximate:

At r = 2 cm: 2 ×  10⁻⁵ T

At r = 4 cm: 1 ×  10⁻⁵ T

At r = 6 cm: 6.67 × 10⁻⁶ T

a) When the current density is uniform, the magnetic field at a distance r from the centre of a long cylindrical wire can be calculated using Ampere's law. For a wire with current I and radius R, the magnetic field at a distance r from the centre is given by:

B = (μ₀ × I) / (2πr),

where μ₀ is the permeability of free space (μ₀ ≈ 4π × 10⁻⁷ T m/A).

Substituting the values, we have:

1) At r = 2 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.02 m)

B = (8 × 10⁻⁷ T m) / (0.04 m)

B ≈ 2 × 10⁻⁵ T

2) At r = 4 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.04 m)

B = (8 × 10⁻⁷  T m) / (0.08 m)

B ≈ 1 × 10⁻⁵ T

3) At r = 6 cm:

B = (4π × 10⁻⁷  T m/A * 8 A) / (2π × 0.06 m)

B = (8 × 10⁻⁷  T m) / (0.12 m)

B ≈ 6.67 × 10⁻⁶ T

Therefore, at the respective distances, the magnetic field is approximately:

At r = 2 cm: 2 ×  10⁻⁵ T

At r = 4 cm: 1 ×  10⁻⁵ T

At r = 6 cm: 6.67 × 10⁻⁶ T

b) When the current density is non-uniform and equal to J = kr², we need to integrate the current density over the cross-sectional area of the wire to find the total current flowing through the wire. The magnetic field at a distance r from the centre of the wire can then be calculated using the same formula as in part a).

The total current (I_total) flowing through the wire can be calculated by integrating the current density over the cross-sectional area of the wire:

I_total = ∫(J × dA),

where dA is an element of the cross-sectional area.

Since the current density is given by J = kr², we can rewrite the equation as:

I_total = ∫(kr² × dA).

The magnetic field at a distance r from the centre can then be calculated using the formula:

B = (μ₀ × I_total) / (2πr),

1) At r = 2 cm:

B = (4π × 10⁻⁷ T m/A) × [(8.988 × 10⁹ N m²/C²) × (0.0016π m²)] / (2π × 0.02 m)

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.02 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.02)

B = (0.2296 * 10² × T) / (0.04)

B = 5.74 T

2) At r = 4 cm:

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.04 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.04)

B = (0.2296 * 10² × T) / (0.08)

B = 2.87 T

3) At r=6cm

B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.06 m)

B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.06)

B = (0.2296 * 10² × T) / (0.012)

B = 1.91 T

c) To calculate the magnetic field at t = 0 seconds when the current is changing as a function of time (I = 0.8sin(200t)), we need to use the Biot-Savart law. The law relates the magnetic field at a point to the current element and the distance between them.

The Biot-Savart law is given by:

B = (μ₀ / 4π) × ∫(I (dl x r) / r³),

where

μ₀ is the permeability of free space,

I is the current, dl is an element of the current-carrying wire,

r is the distance between the element and the point where the magnetic field is calculated, and

the integral is taken over the entire length of the wire.

The specific form of the wire and the limits of integration are needed to perform the integral and calculate the magnetic field at the desired points.

Learn more about Magnetic Field from the given link:

https://brainly.com/question/16387830

#SPJ11

Find the wavelength of a 10ºHz EM wave.

Answers

The wavelength of the 10 Hz EM wave is 3.00 × 10⁷ meters. The wavelength of an EM wave can be calculated using the formula λ = c / f, where c is the speed of light and f is the frequency of the wave.

To find the wavelength of an electromagnetic wave, we can use the formula that relates the speed of light, c, to the frequency, f, and wavelength, λ, of the wave. The formula is given by:
c = f × λ where c is the speed of light, approximately 3.00 × 10⁸ m/s meters per second.
In this case, the frequency of the EM wave is given as 10 Hz. To find the wavelength, we rearrange the formula: λ = c / f.
Substituting the values, we have:
λ = (3.00 × 10⁸ m/s) / 10 Hz = 3.00 × 10⁷ meters

Therefore, the wavelength of the 10 Hz EM wave is 3.00 × 10⁷ meters.
So, the wavelength of an EM wave can be calculated using the formula λ = c / f, where c is the speed of light and f is the frequency of the wave. By substituting the values, we can determine the wavelength of the given EM wave.

Learn more about wavelength here:

https://brainly.com/question/30532991

#SPJ11

Two capacitors are connected parallel to each
other. Let C1 = 3.50 F .C2 = 5.10 pF be their
capacitances, and Vat = 57.0 V the potential
difference across the system.
a) Calculate the charge on each capacitor (capacitor 1 and 2)
b) Calculate the potential difference across each capacitor (capacitor 1 and 2)

Answers

The charge on capacitor 1 is approximately 199.5 C, and the charge on capacitor 2 is approximately 2.907 × 10⁻¹⁰ C. The potential difference across capacitor 1 is approximately 57.0 V, and the potential difference across capacitor 2 is approximately 56.941 V.

a) To calculate the charge on each capacitor, we can use the formula:

Q = C × V

Where:

Q is the charge on the capacitor,

C is the capacitance, and

V is the potential difference across the capacitor.

For capacitor 1:

Q1 = C1 × Vat

= 3.50 F × 57.0 V

For capacitor 2:

Q2 = C2 × Vat

= 5.10 pF × 57.0 V

pF stands for picofarads, which is 10⁻¹² F.

Therefore, we need to convert the capacitance of capacitor 2 to farads:

C2 = 5.10 pF

= 5.10 × 10⁻¹² F

Now we can calculate the charges:

Q1 = 3.50 F × 57.0 V

= 199.5 C

Q2 = (5.10 × 10⁻¹² F) × 57.0 V

= 2.907 × 10⁻¹⁰ C

Therefore, the charge on capacitor 1 is approximately 199.5 C, and the charge on capacitor 2 is approximately 2.907 × 10⁻¹⁰ C.

b) To calculate the potential difference across each capacitor, we can use the formula:

V = Q / C

For capacitor 1:

V1 = Q1 / C1

= 199.5 C / 3.50 F

For capacitor 2:

V2 = Q2 / C2

= (2.907 × 10⁻¹⁰ C) / (5.10 × 10⁻¹² F)

Now we can calculate the potential differences:

V1 = 199.5 C / 3.50 F

= 57.0 V

V2 = (2.907 × 10⁻¹⁰ C) / (5.10 × 10⁻¹² F)

= 56.941 V

Learn more about potential difference  -

brainly.com/question/24142403

#SPJ11

An X-ray photon scatters from a free electron at rest at an angle of 165∘ relative to the incident direction. Use h=6.626⋆10−34 Js for Planck constant. Use c=3.00⋆108 m/s for the speed of light in a vacuum. Part A - If the scattered photon has a wavelength of 0.310 nm, what is the wavelength of the incident photon? Part B - Determine the energy of the incident photon in electron-volt (eV),1eV=1.6×10−19 J Part C - Determine the energy of the scattered photon. Part D - Find the kinetic energy of the recoil electron. Unit is eV. Keep 1 digit after the decimal point. Learning Goal: An X-ray photon scatters from a free electron at rest at an angle of 165∘ relative to the incident direction. Use h=6.626⋆10−34Js for Planck constant. Use c=3.00∗108 m/s for the speed of light in a vacuum.

Answers

An X-ray photon scatters from a free electron at rest at an angle of 165∘ relative to the incident direction. Use h=6.626×10⁻³⁴ J s for Planck constant. Use c=3.00×10⁸ m/s for the speed of light in a vacuum.

Part A - If the scattered photon has a wavelength of 0.310 nm,  the wavelength of the incident photon is 0.310 nm.

Part B - The energy of the incident photon in electron-volt is 40.1 eV.

Part C - The energy of the scattered photon is 40.1 eV.

Part D - The kinetic energy of the recoil electron is 0 eV.

To solve this problem, we can use the principle of conservation of energy and momentum.

Part A: To find the wavelength of the incident photon, we can use the energy conservation equation:

Energy of incident photon = Energy of scattered photon

Since the energies of photons are given by the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength, we can write:

hc/λ₁ = hc/λ₂

Where λ₁ is the wavelength of the incident photon and λ₂ is the wavelength of the scattered photon. We are given λ₂ = 0.310 nm. Rearranging the equation, we can solve for λ₁:

λ₁ = λ₂ * (hc/hc) = λ₂

So, the wavelength of the incident photon is also 0.310 nm.

Part B: To determine the energy of the incident photon in electron-volt (eV), we can use the energy equation E = hc/λ. Substituting the given values, we have:

E = (6.626 × 10⁻³⁴ J s * 3.00 × 10⁸ m/s) / (0.310 × 10⁻⁹ m) = 6.42 × 10⁻¹⁵ J

To convert this energy to electron-volt, we divide by the conversion factor 1.6 × 10⁻¹⁹ J/eV:

E = (6.42 × 10⁻¹⁵ J) / (1.6 × 10⁻¹⁹ J/eV) ≈ 40.1 eV

So, the energy of the incident photon is approximately 40.1 eV.

Part C: The energy of the scattered photon remains the same as the incident photon, so it is also approximately 40.1 eV.

Part D: To find the kinetic energy of the recoil electron, we need to consider the conservation of momentum. Since the electron is initially at rest, its initial momentum is zero. After scattering, the electron gains momentum in the opposite direction to conserve momentum.

Using the equation for the momentum of a photon, p = h/λ, we can calculate the momentum change of the photon:

Δp = h/λ₁ - h/λ₂

Substituting the given values, we have:

Δp = (6.626 × 10⁻³⁴ J s) / (0.310 × 10⁻⁹ m) - (6.626 × 10⁻³⁴ J s) / (0.310 × 10⁻⁹ m) = 0

Since the change in momentum of the photon is zero, the recoil electron must have an equal and opposite momentum to conserve momentum. Therefore, the kinetic energy of the recoil electron is zero eV.

To know more about photon here

https://brainly.com/question/33017722

#SPJ4

A man-made satellite of mass 6000 kg is in orbit around the earth, making one revolution in 450 minutes. Assume it has a circular orbit and it is interacting with earth only.
a.) What is the magnitude of the gravitational force exerted on the satellite by earth?
b.) If another satellite is at a circular orbit with 2 times the radius of revolution of the first one, what will be its speed?
c.) If a rocket of negligible mass is attached to the first satellite and the rockets fires off for some time to increase the radius of the first satellite to twice its original mass, with the orbit again circular.
i.) What is the change in its kinetic energy?
ii.) What is the change in its potential energy?
iii.) How much work is done by the rocket engine in changing the orbital radius?
Mass of Earth is 5.97 * 10^24 kg
The radius of Earth is 6.38 * 10^6 m,
G = 6.67 * 10^-11 N*m^2/kg^2

Answers

a) The magnitude of the gravitational force exerted on the satellite by Earth is approximately 3.54 * 10^7 N.

b) The speed of the second satellite in its circular orbit is approximately 7.53 * 10^3 m/s.

c) i) There is no change in kinetic energy (∆KE = 0).

  ii) The change in potential energy is approximately -8.35 * 10^11 J.

  iii) The work done by the rocket engine is approximately -8.35 * 10^11 J.

a) To calculate the magnitude of the gravitational force exerted on the satellite by Earth, we can use the formula:

F = (G × m1 × m2) / r²

where F is the gravitational force, G is the gravitational constant, m1 is the mass of the satellite, m2 is the mass of Earth, and r is the radius of the orbit.

Given:

Mass of the satellite (m1) = 6000 kg

Mass of Earth (m2) = 5.97 × 10²⁴ kg

Radius of the orbit (r) = radius of Earth = 6.38 × 10⁶ m

Gravitational constant (G) = 6.67 × 10⁻¹¹ N×m²/kg²

Plugging in the values:

F = (6.67 × 10⁻¹¹ N×m²/kg² × 6000 kg × 5.97 × 10²⁴ kg) / (6.38 × 10⁶ m)²

F ≈ 3.54 × 10⁷ N

Therefore, the magnitude of the gravitational force exerted on the satellite by Earth is approximately 3.54 * 10^7 N.

b) The speed of a satellite in circular orbit can be calculated using the formula:

v = √(G × m2 / r)

Given that the radius of the second satellite's orbit is 2 times the radius of the first satellite's orbit:

New radius of orbit (r') = 2 × 6.38 * 10⁶ m = 1.276 × 10⁷ m

Plugging in the values:

v' = √(6.67 × 10⁻¹¹ N×m²/kg^2 × 5.97 × 10²⁴ kg / 1.276 × 10⁷ m)

v' ≈ 7.53 × 10³ m/s

Therefore, the speed of the second satellite in its circular orbit is approximately 7.53 * 10^3 m/s.

c) i) The change in kinetic energy can be calculated using the formula:

∆KE = (1/2) × m1 × (∆v)²

Since the satellite is initially in a circular orbit and its speed remains constant throughout, there is no change in kinetic energy (∆KE = 0).

ii) The change in potential energy can be calculated using the formula:

∆PE = - (G × m1 × m2) × ((1/r') - (1/r))

∆PE = - (6.67 × 10⁻¹¹ N*m²/kg² × 6000 kg × 5.97 × 10²⁴ kg) × ((1/1.276 × 10⁷ m) - (1/6.38 × 10⁶ m))

∆PE ≈ -8.35 × 10¹¹ J

The change in potential energy (∆PE) is approximately -8.35 × 10¹¹ J.

iii) The work done by the rocket engine in changing the orbital radius is equal to the change in potential energy (∆PE) since no other external forces are involved. Therefore:

Work done = ∆PE ≈ - 8.35 × 10¹¹ J

The work done by the rocket engine is approximately -8.35 × 10¹¹ J. (Note that the negative sign indicates work is done against the gravitational force.)

Read more on gravitational force here: https://brainly.com/question/940770

#SPJ11

Coherent light with single wavelength falls on two slits separated by 0.610 mm. In the resulting interference pattern on the screen 1.70 m away, adjacent bright fringes are separated by 2.10 mm. What is the wavelength (in nanometers) of the light that falls on the slits? Use formula for the small angles of diffraction (10 pts.)

Answers

The wavelength of the light falling on the slits is approximately 493 nanometers when adjacent bright fringes are separated by 2.10 mm.

To find the wavelength of the light falling on the slits, we can use the formula for the interference pattern in a double-slit experiment:

λ = (d * D) / y

where λ is the wavelength of the light, d is the separation between the slits, D is the distance between the slits and the screen, and y is the separation between adjacent bright fringes on the screen.

Given:

Separation between the slits (d) = 0.610 mm = 0.610 × 10^(-3) m

Distance between the slits and the screen (D) = 1.70 m

Separation between adjacent bright fringes (y) = 2.10 mm = 2.10 × 10^(-3) m

Substituting these values into the formula, we can solve for the wavelength (λ):

λ = (0.610 × 10^(-3) * 1.70) / (2.10 × 10^(-3))

λ = (1.037 × 10^(-3)) / (2.10 × 10^(-3))

λ = 0.4933 m

To convert the wavelength to nanometers, we multiply by 10^9:

λ = 0.4933 × 10^9 nm

λ ≈ 493 nm

Therefore, the wavelength of the light falling on the slits is approximately 493 nanometers.

To know more about bright fringes please refer:

https://brainly.com/question/29487127

#SPJ11

FM frequencies range between 88 MHz and 108 MHz and travel at
the same speed.
What is the shortest FM wavelength? Answer in units of m.
What is the longest FM wavelength? Answer in units of m.

Answers

The shortest FM wavelength is 2.75 m. The longest FM wavelength is 3.41 m.

Frequency Modulation

(FM) is a kind of modulation that entails altering the frequency of a carrier wave to transmit data.

It is mainly used for transmitting audio signals. An FM frequency

ranges

from 88 MHz to 108 MHz, as stated in the problem.

The wavelength can be computed using the

formula

given below:wavelength = speed of light/frequency of waveWe know that the speed of light is 3 x 10^8 m/s. Substituting the minimum frequency value into the formula will result in a maximum wavelength:wavelength = 3 x 10^8/88 x 10^6wavelength = 3.41 mSimilarly, substituting the maximum frequency value will result in a minimum wavelength:wavelength = 3 x 10^8/108 x 10^6wavelength = 2.75 mThe longer the wavelength, the better the signal propagation.

The FM

wavelength

ranges between 2.75 and 3.41 meters, which are relatively short. As a result, FM signals are unable to penetrate buildings and other structures effectively. It has a line-of-sight range of around 30 miles due to its short wavelength. FM is mainly used for local radio stations since it does not have an extensive range.

to know more about

Frequency Modulation

pls visit-

https://brainly.com/question/31075263

#SPJ11

Part A Calculate the displacement current Ip between the square platos, 6.8 cm on a side of a capacitor if the electric field is changing at a rate of 2.1 x 10% V/m. Express your answer to two significant figures and include the appropriate units. lo =

Answers

the displacement current between the square plates of the capacitor is 9694 A. To calculate displacement current, we convert the units appropriately and perform the multiplication.

In this case, the square plates have a side length of 6.8 cm, which gives us an area of (6.8 cm)^2. The electric field is changing at a rate of 2.1 x 10^6 V/m.

The displacement current (Ip) between the square plates of a capacitor can be calculated by multiplying the rate of change of electric field (dE/dt) by the area (A) of the plates.

The area of the square plates is (6.8 cm)^2 = 46.24 cm^2. Converting this to square meters, we have A = 46.24 cm^2 = 0.004624 m^2.

Now, we can calculate the displacement current (Ip) by multiplying the rate of change of electric field (dE/dt) by the area (A):

Ip = (dE/dt) * A = (2.1 x 10^6 V/m) * (0.004624 m^2) = 9694 A

Therefore, the displacement current between the square plates of the capacitor is 9694 A.

Learn more about capacitor here: brainly.com/question/31627158

#SPJ11

a)What is the magnitude of the tangential acceleration of a bug on the rim of an 11.5-in.-diameter disk if the disk accelerates uniformly from rest to an angular speed of 79.0 rev/min in 3.80 s?
b) When the disk is at its final speed, what is the magnitude of the tangential velocity of the bug?
c) One second after the bug starts from rest, what is the magnitude of its tangential acceleration?
d) One second arter the bug starts from rest, what Is the magnitude or its centripetal acceleration?
e) One second after the bug starts from rest, what is its total acceleration? (Take the positive direction to be in the direction of motion.)

Answers

a) The magnitude of the tangential acceleration of the bug on the rim of the disk is approximately 1.209 m/s².

b) The magnitude of the tangential velocity of the bug when the disk is at its final speed is approximately 2.957 m/s.

c) One second after starting from rest, the magnitude of the tangential acceleration of the bug is approximately 1.209 m/s².

d) One second after starting from rest, the magnitude of the centripetal acceleration of the bug is approximately 1.209 m/s².

e) One second after starting from rest, the magnitude of the total acceleration of the bug is approximately 1.710 m/s².

To solve the problem, we need to convert the given quantities to SI units.

Given:

Diameter of the disk = 11.5 inches = 0.2921 meters (1 inch = 0.0254 meters)

Angular speed (ω) = 79.0 rev/min

Time (t) = 3.80 s

(a) Magnitude of tangential acceleration (at):

We can use the formula for angular acceleration:

α = (ωf - ωi) / t

where ωf is the final angular speed and ωi is the initial angular speed (which is 0 in this case).

Since we know that the disk accelerates uniformly from rest, the initial angular speed ωi is 0.

α = ωf / t = (79.0 rev/min) / (3.80 s)

To convert rev/min to rad/s, we use the conversion factor:

1 rev = 2π rad

1 min = 60 s

α = (79.0 rev/min) * (2π rad/rev) * (1 min/60 s) = 8.286 rad/s²

The tangential acceleration (at) can be calculated using the formula:

at = α * r

where r is the radius of the disk.

Radius (r) = diameter / 2 = 0.2921 m / 2 = 0.14605 m

at = (8.286 rad/s²) * (0.14605 m) = 1.209 m/s²

Therefore, the magnitude of the tangential acceleration of the bug on the rim of the disk is approximately 1.209 m/s².

(b) Magnitude of tangential velocity (v):

To calculate the tangential velocity (v) at the final speed, we use the formula:

v = ω * r

v = (79.0 rev/min) * (2π rad/rev) * (1 min/60 s) * (0.14605 m) = 2.957 m/s

Therefore, the magnitude of the tangential velocity of the bug on the rim of the disk when the disk is at its final speed is approximately 2.957 m/s.

(c) Magnitude of tangential acceleration one second after starting from rest:

Given that one second after starting from rest, the time (t) is 1 s.

Using the formula for angular acceleration:

α = (ωf - ωi) / t

where ωi is the initial angular speed (0) and ωf is the final angular speed, we can rearrange the formula to solve for ωf:

ωf = α * t

Substituting the values:

ωf = (8.286 rad/s²) * (1 s) = 8.286 rad/s

To calculate the tangential acceleration (at) one second after starting from rest, we use the formula:

at = α * r

at = (8.286 rad/s²) * (0.14605 m) = 1.209 m/s²

Therefore, the magnitude of the tangential acceleration of the bug one second after starting from rest is approximately 1.209 m/s².

(d) Magnitude of centripetal acceleration:

The centripetal acceleration (ac) can be calculated using the formula:

ac = ω² * r

where ω is the angular speed and r is the radius.

ac = (8.286 rad/s)² * (0.14605 m) = 1.209 m/s²

Therefore, the magnitude of the centripetal acceleration of the bug one second after starting from rest is approximately 1.209 m/s².

(e) Magnitude of total acceleration:

The total acceleration (a) can be calculated by taking the square root of the sum of the squares of the tangential acceleration and centripetal acceleration:

a = √(at² + ac²)

a = √((1.209 m/s²)² + (1.209 m/s²)²) = 1.710 m/s²

Therefore, the magnitude of the total acceleration of the bug one second after starting from rest is approximately 1.710 m/s².

Learn more about tangential acceleration from the link given below.

https://brainly.com/question/15743294

#SPJ4

: 5. Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards. a. setup a conservation of momentum equation. b. Use the equation above to determine the mass of the boat. c. What

Answers

Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.

a. A conservation of momentum equation is:

Final momentum = (mass of the boat + mass of the girls) * velocity of the boat

b. The mass of the boat is -250 kg.

c. Type of collision is inelastic.

a. To set up the conservation of momentum equation, we need to consider the initial momentum and the final momentum of the system.

The initial momentum is zero since the boat and the girls are at rest.

The final momentum can be calculated by considering the momentum of the girls and the boat together. Since the girls dive in the same direction with a velocity of -2.5 m/s and the empty boat moves at 0.15 m/s in the same direction, the final momentum can be expressed as:

Final momentum = (mass of the boat + mass of the girls) * velocity of the boat

b. Using the conservation of momentum equation, we can solve for the mass of the boat:

Initial momentum = Final momentum

0 = (mass of the boat + 5 * 50 kg) * 0.15 m/s

We know the mass of each girl is 50 kg, and there are five girls, so the total mass of the girls is 5 * 50 kg = 250 kg.

0 = (mass of the boat + 250 kg) * 0.15 m/s

Solving for the mass of the boat:

0.15 * mass of the boat + 0.15 * 250 kg = 0

0.15 * mass of the boat = -0.15 * 250 kg

mass of the boat = -0.15 * 250 kg / 0.15

mass of the boat = -250 kg

c. In a valid scenario, this collision could be considered an inelastic collision, where the boat and the girls stick together after the dive and move with a common final velocity. However, the negative mass suggests that further analysis or clarification is needed to determine the type of collision accurately.

To know more about direction here

https://brainly.com/question/32262214

#SPJ4

The complete question is:

Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.

a. setup a conservation of momentum equation.

b. Use the equation above to determine the mass of the boat.

c. What type of collision is this?

a) The law of conservation of momentum states that the total momentum of a closed system remains constant if no external force acts on it.

The initial momentum is zero. Since the boat is at rest, its momentum is zero. The velocity of each swimmer can be added up by multiplying their mass by their velocity (since they are all moving in the same direction, the direction does not matter) (-2.5 m/s). When they jumped, the momentum of the system remained constant. Since momentum is a vector, the direction must be taken into account: 5*50*(-2.5) = -625 Ns. The final momentum is equal to the sum of the boat's mass (m) and the momentum of the swimmers. The final momentum is equal to (m+250)vf, where vf is the final velocity. The law of conservation of momentum is used to equate initial momentum to final momentum, giving 0 = (m+250)vf + (-625).

b) vf = 0.15 m/s is used to simplify the above equation, resulting in 0 = 0.15(m+250) - 625 or m= 500 kg.

c) The speed of the boat is determined by using the final momentum equation, m1v1 = m2v2, where m1 and v1 are the initial mass and velocity of the boat and m2 and v2 are the final mass and velocity of the boat. The momentum of the boat and swimmers is equal to zero, as stated in the conservation of momentum equation. 500*0 + 250*(-2.5) = 0.15(m+250), m = 343.45 kg, and the velocity of the boat is vf = -250/(500 + 343.45) = -0.297 m/s. The answer is rounded to the nearest hundredth.

In conclusion, the mass of the boat is 500 kg, and its speed is -0.297 m/s.

Learn more about momentum

https://brainly.com/question/30677308

#SPJ11

Problem 104. Our universe is undergoing continuous uniform ex. pansion, like an expanding balloon. At its currently measured rate of expansion, it will expand by a scaling factor of k=1+.0005T in T million years. How long will it take to expand by 10% of its present size?

Answers

Given that the rate of expansion of the universe is k = 1 + 0.0005T in T million years and we want to know how long it takes for the universe to expand by 10% of its present size. We can write the equation for the rate of expansion as follows:  k = 1 + 0.0005T

where T is the number of million years. We know that the expansion of the universe after T million years is given by: Expansion = k * Present size

Thus, the expansion of the universe after T million years is:

Expansion = (1 + 0.0005T) * Present size

We are given that the universe has to expand by 10% of its present size.

Therefore,

we can write: Expansion = Present size + 0.1 * Present size= 1.1 * Present size

Equating the two equations of the expansion,

we get: (1 + 0.0005T) * Present size = 1.1 * Present size

dividing both sides by Present size, we get:1 + 0.0005T = 1.1

Dividing both sides by 0.0005, we get: T = (1.1 - 1)/0.0005= 200 million years

Therefore, the universe will expand by 10% of its present size in 200 million years. Hence, the correct answer is 200.

learn more about: rate of expansion

https://brainly.com/question/33332793

#SPJ11

A police car is moving to the right at 27 m/s, while a speeder is coming up from behind at a speed 36 m/s, both speeds being with respect to the ground. The police officer points a radar gun at the oncoming speeder. Assume that the electromagnetic wave emitted by the gun has a frequency of 7.5×109 Hz. Find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.

Answers

In this scenario, a police car is moving to the right at 27 m/s, and a speeder is approaching from behind at 36 m/s.

The police officer points a radar gun at the speeder, emitting an electromagnetic wave with a frequency of 7.5×10^9 Hz. The task is to find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.

The frequency of the wave that returns to the police car after reflecting from the speeder's car is affected by the relative motion of the two vehicles. This phenomenon is known as the Doppler effect.

In this case, since the police car and the speeder are moving relative to each other, the frequency observed by the police car will be shifted. The Doppler effect formula for frequency is given by f' = (v + vr) / (v + vs) * f, where f' is the observed frequency, v is the speed of the wave in the medium (assumed to be the same for both the emitted and reflected waves), vr is the velocity of the radar gun wave relative to the speeder's car, vs is the velocity of the radar gun wave relative to the police car, and f is the emitted frequency.

In this scenario, the difference in frequency can be calculated as the observed frequency minus the emitted frequency: Δf = f' - f. By substituting the given values and evaluating the expression, the difference in frequency can be determined.

Learn more about electromagnetic here: brainly.com/question/31038220

#SPJ11

3. Define or describe each of the following terms. Include a diagram for each. (3 marks each) I. Reflection II. Refraction III. Diffraction IV. Doppler Effect

Answers

We can describe the 1.Reflection II. Refraction III. Diffraction IV. Doppler Effect

I. Reflection:

Reflection is the process by which a wave encounters a boundary or surface and bounces back, changing its direction. It occurs when waves, such as light or sound waves, strike a surface and are redirected without being absorbed or transmitted through the material.

The angle of incidence, which is the angle between the incident wave and the normal (perpendicular) to the surface, is equal to the angle of reflection, the angle between the reflected wave and the normal.

A diagram illustrating reflection would show an incident wave approaching a surface and being reflected back in a different direction, with the angles of incidence and reflection marked.

II. Refraction:

Refraction is the bending or change in direction that occurs when a wave passes from one medium to another, such as light passing from air to water.

It happens because the wave changes speed when it enters a different medium, causing it to change direction. The amount of bending depends on the change in the wave's speed and the angle at which it enters the new medium.

A diagram illustrating refraction would show a wave entering a medium at an angle, bending as it crosses the boundary between the two media, and continuing to propagate in the new medium at a different angle.

III. Diffraction:

Diffraction is the spreading out or bending of waves around obstacles or through openings. It occurs when waves encounter an edge or aperture that is similar in size to their wavelength. As the waves encounter the obstacle or aperture, they diffract or change direction, resulting in a spreading out of the wavefronts.

This phenomenon is most noticeable with waves like light, sound, or water waves.

A diagram illustrating diffraction would show waves approaching an obstacle or passing through an opening and bending or spreading out as they encounter the obstacle or aperture.

IV. Doppler Effect:

The Doppler Effect refers to the change in frequency and perceived pitch or frequency of a wave when the source of the wave and the observer are in relative motion.

It is commonly observed with sound waves but also applies to other types of waves, such as light. When the source and observer move closer together, the perceived frequency increases (higher pitch), and when they move apart, the perceived frequency decreases (lower pitch). This effect is experienced in daily life when, for example, the pitch of a siren seems to change as an emergency vehicle approaches and then passes by.

A diagram illustrating the Doppler Effect would show a source emitting waves, an observer, and the relative motion between them, with wavefronts compressed or expanded depending on the direction of motion.

Learn more about Reflection from the given link

https://brainly.com/question/4070544

#SPJ11

In an oscillating IC circuit with capacitance C, the maximum potential difference across the capacitor during the oscillations is V and the
maximum current through the inductor is I.
NOTE: Give your answer in terms of the variables given.
(a) What is the inductance L?
[:
(b) What is the frequency of the oscillations?
f (c) How much time is required for the charge on the capacitor to rise
from zero to its maximum value?

Answers

The inductance (L) is obtained by dividing V by I multiplied by 2πf, while f is determined by 1/(2π√(LC)).

In an oscillating circuit, the inductance L can be calculated using the formula L = V / (I * 2πf). The inductance is directly proportional to the maximum potential difference across the capacitor (V) and inversely proportional to both the maximum current through the inductor (I) and the frequency of the oscillations (f). By rearranging the formula, we can solve for L.

The frequency of the oscillations can be determined using the formula f = 1 / (2π√(LC)). This formula relates the frequency (f) to the inductance (L) and capacitance (C) in the circuit. The frequency is inversely proportional to the product of the square root of the product of the inductance and capacitance.

To summarize, to find the inductance (L) in an oscillating circuit, we can use the formula L = V / (I * 2πf), where V is the maximum potential difference across the capacitor, I is the maximum current through the inductor, and f is the frequency of the oscillations. The frequency (f) can be determined using the formula f = 1 / (2π√(LC)), where L is the inductance and C is the capacitance.

To learn more about inductance click here:

brainly.com/question/31127300

#SPJ11

Other Questions
How did Moses know what to write? (Read II Peter 1:21) What part might oral tradition have played? rohde p, lewinsohn pm, klein dn, seeley jr, gau jm. key characteristics of major depressive disorder occurring in childhood, adolescence, emerging adulthood, adulthood. clin psychol sci. 2013;1(1):415 Required information [The following information applies to the questions displayed below.] Hickory Company manufactures two products-13,000 units of Product Y and 5,000 units of Product Z. The company uses a plantwide overhead rate based on direct labor-hours. It is considering implementing an activity-based costing (ABC) system that allocates all $813,600 of its manufacturing overhead to four cost pools. The following additional information is available for the company as a whole and for Products Y and Z : 9. Using the ABC system, how much total manufacturing overhead cost would be assigned to Product Y ? (Round all intermediate calculations to 2 decimal places.) 10. Using the ABC system, how much total manufacturing overhead cost would be assigned to Product Z ? 08.09 Segment Two Exam world history Language - Semantic misunderstandings include: equivocation, relative language, static evaluation, abstraction.Explain one of the semantic misunderstandings listed above.Give an explanation of a time when this misunderstanding occurred in your own communication. Be sure to explain the effect the misunderstanding had on your communication.Explain how you could have more effectively used language to clear up the misunderstanding. Include the "language of responsibility" in your response. if you are looking to score an "A" on this questions. TIME REMAINING01:34:01Parallelogram R S T U is shown. Angle S is 70 degrees.What are the missing angle measures in parallelogram RSTU?mR = 70, mT = 110, mU = 110mR = 110, mT = 110, mU = 70mR = 110, mT = 70, mU = 110mR = 70, mT = 110, mU = 70 help me pls!! (screenshot) Before Jack can implement the intervention with his client, he first discusses the procedure with the parents and the teacher and defines the target behavior with them. After the child has been prepared for its use, he works with the parents to determine the consequences that will be available when the child gets home. Which procedure is Jack preparing to implement? O School Wide Positive Behavior Support O Contingency contract O Daily Behavior Report Card O High-p sequence An object falls from height h from rest and travels 0.68h in the last 1.00 s. (a) Find the time of its fall. S (b) Find the height of its fall. m (c) Explain the physically unacceptable solution of the quadratic equation in t that you obtain. Researchers investigating the benefits of single-sex education have found a.improved cooperation between boys and girls once they are allowed to work together. b.that boys are now doing better academically than girls in both math and language arts when belonging to a single-sex institution.c.that in an all-girl classroom, teachers have trouble keeping the girls focused. d.no significant benefits for low-income children of color who participated in single-sex education. Select the correct answer.Clean123 Inc. purchased 20 industrial floor cleaners for $200 each. It pays 50% of its purchase with cash and puts the rest on credit. How will this transaction be recorded, assuming the company uses a perpetual system? A. Service Equipment (debit) 4,000; Cash (credit) 200; Accounts Payable (credit) 200 B. Service Equipment (debit) 4,000; Cash (credit) 400; Accounts Payable (credit) 400 C. Service Equipment (debit) 4,000; Cash (credit) 2000; Accounts Payable (credit) 2000 D. Service Equipment (debit) 4,000; Cash (credit) 4000; Accounts Payable (credit) 4000 1. Transform the following f(x) using the Legendre's polynomial function (i). (ii). 4x32x 3x + 8 x 2x-x-3 - Answer the following - show your work! (5 marks): Maximum bending moment: A simply supported rectangular beam that is 3000 mm long supports a point load (P) of 5000 N at midspan (center). Assume that the dimensions of the beams are as follows: b= 127 mm and h = 254 mm, d=254mm. What is the maximum bending moment developed in the beam? What is the overall stress? f = Mmax (h/2)/bd3/12 Mmax = PL/4 A circuit has a resistor, an inductor and a battery in series. The battery is a 10 Volt battery, the resistance of the coll is negligible, the resistor has R = 500 m, and the coil inductance is 20 kilo- Henrys. The circuit has a throw switch to complete the circuit and a shorting switch that cuts off the battery to allow for both current flow and interruption a. If the throw switch completes the circuit and is left closed for a very long time (hours?) what will be the asymptotic current in the circuit? b. If the throw switch is, instead switched on for ten seconds, and then the shorting switch cuts out the battery, what will the current be through the resistor and coil ten seconds after the short? (i.e. 20 seconds after the first operation.) C. What will be the voltage across the resistor at time b.? Suppose you graduated from college in 2013 and received a starting offer of $75,000. What would your starting salary need to have been in 1976 for you to have the same purchasing power as $75,000 Dustin deposited $1,400 at the end of every month into an RRSP for 8 years. The interest rate earned was 3.25% compounded semi-annually for the first 4 years and changed to 3.50% compounded monthly for the next 4 years. What was the accumulated value of the RRSP at the end of 8 years? Examine the role that framing plays in our decision making. please help me with a current topic of debate such as health care, foreign policy, or gun control laws, and research how each opposing side frames its arguments. How can you use your knowledge of decision making and your scientific thinking skills to make an informed decision about this issue? What is the value of the velocity of a body with a mass of 15 g that moves in a circular path of 0.20 m in diameter and is acted on by a centripetal force of 2 N: d a. 5.34 m/s b. 2.24 m/s C. 2.54 m d. 1.56 Nm A man holds a 2kg watermelon above his head 1.8m above the ground. He holds the watermelon steady so it is not moving. How much work is done by the man as he is holding the watermelon? Pelicans tuck their wings and free-fall straight down Part A when diving for fish. Suppose a pelican starts its dive from a height of 20.0 m and cannot change its If it takes a fish 0.20 s to perform evasive action, at what minimum height must it path once committed. spot the pelican to escape? Assume the fish is at the surface of the water. Express your answer using two significant figures.