Answer:
The parameter is the population proportion of fans who listened to her new single and has an estimated value of 90%.
Step-by-step explanation:
The parameter is a value that corresponds to a population, while an a value that corresponds to a sample is know as statistic.
She takes a sample to estimate, with a point estimate and probably with a confidence interval around this point estimate, the true proportion of fans who listened to her new single.
This is the paramater: the population proportion of fans who listened to her new single.
Its value comes from an estimation based on the sample proportion (point estimate).
The sample proportion is 90%, so we can estimate, as there is no bias, that the population proportion is also 90%.
The graph of linear function f passes through the point (1, −9) and has a slope of −3.
Answer:
Equation of a line y = mx + c
m = slope
Using point (1,-9) and slope -3
y + 9 = -3(x - 1)
y + 9 = -3x + 3
y = -3x + 3 - 9
y = -3x - 6
Hope this helps.
the ratio of men to women in a village is 12: 25. if there are 120men, (a)how many women are there ?, (b) what is the total number of men to women
Answer:
a) 250 women
b) 370 in total
Step-by-step explanation:
Men : Women
12 : 25
120 : 250
a) If there are 120 men that means 12 was multiplied 10 times to get 120 so to get the amount for women we multiply 25 ten times which will give 250.
b) the sum will be 120 + 250 = 370
Please answer this correctly
Answer:
The mode would not change
Step-by-step explanation:
Mode is the frequency of 1 number. In this case, the mode is 3. If we add 8, the frequency of 3 would not change; there would still be 4 3's, and 3 would still have the most of itself.
Which of the following is equivalent 8-3x>2(3x-5)
Answer:
2 >x
Step-by-step explanation:
8-3x>2(3x-5)
distribute
8-3x>6x-10
Add 3x to each side
8+3x-3x>6x+3x -10
8 > 9x-10
Add 10 to each side
8+10 > 9x -10+10
18 > 9x
Divide by 9
18/9 > 9x/9
2 >x
Answer:
[tex]x < 2[/tex]
hope this helps you
brainliest appreciated
good luck! have a nice day!
Step-by-step explanation:
[tex]8 - 3x > 2(3x - 5) \\ 8 - 3x > 6x - 10 \\ 8 + 10 > 3x +6 x \\ 18 > 9x \\ \frac{18}{9} > \frac{9x}{9} \\ 2 > x[/tex]
A problem requires finding the distance traveled in miles. Which would not be a reasonable answer? Justify your response. A. minus10 B. 1.8 C. 10 and one half D. 50
Answer:
A. minus 10,
Step-by-step explanation:
The distance travelled must be positive.
Therefore minus 10 would not be a reasonable answer.
A probability distribution is a listing of all the outcomes of an experiment and the probability associated with each outcome. The outcomes are mutually exclusive, and the list of outcomes is exhaustive.
1. True
2. False
Answer:
True.
Step-by-step explanation:
A probability distribution is a listing of all the outcomes of an experiment and the probability associated with each outcome. Probability distribution is associated with the following characteristics or properties;
1. The outcomes are mutually exclusive.
2. The list of outcomes is exhaustive, which simply means that the sum of all probabilities of the outcomes must equal one (1).
3. The probability for a particular value or outcome must be between 0 and 1.
Since a probability distribution gives the likelihood of an outcome or event, a single random variable is divided into two main categories, namely;
I. Probability density functions for continuous variables.
II. Discrete probability distributions for discrete variables.
For example, when a coin is tossed, you can only have a head or tail (H or T).
Also, when you throw a die, the only possible outcome is 1/6 and the total probability for it all must equal to one (1).
Kinda been stuck on this one, someone pls let me know
Answer:
255
Step-by-step explanation:
use calculator
Answer:
255
Step-by-step explanation:
∑ᵢ₌₁⁸ 2ⁱ⁻¹
Using brute force method:
S = 2⁰ + 2¹ + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷
S = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128
S = 255
Using formula:
S = a₁ (1 − rⁿ) / (1 − r)
S = 1 (1 − 2⁸) / (1 − 2)
S = 255
What are the x-intercepts of the graph of the function below?
y = x^2 – 3x - 28
A. (-7,0) and (-4,0)
B. (7,0) and (-4,0)
C. (7,0) and (4,0)
D. (-7,0) and (4.0)
Answer:
The x intercepts are (7,0) and (-4,0)
Step-by-step explanation:
y = x^2 – 3x - 28
Set y=0
0 = x^2 – 3x - 28
Factor. What 2 numbers multiply to -28 and add to -3
-7*4 = -28
-7+4 = -3
0 = (x-7)(x+4)
Using the zero product property
0 = (x-7) 0 = x+4
x=7 x = -4
The x intercepts are (7,0) and (-4,0)
To the right are the outcomes that are possible when a couple has three children. Assume that boys and girls are equally likely, so that the eight simple events are equally likely. Find the probability that when a couple has three children, there are exactly 0 girls.
Answer:
12.5% probability that when a couple has three children, there are exactly 0 girls.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Possible outcomes:
b for boy, g for girl
g - g - g
g - g - b
g - b - g
g - b - b
b - g - g
b - g - b
b - b - g
b - b - b
8 outcomes, one of which (b - b - b) with exactly 0 girls.
So
1/8 = 0.125
12.5% probability that when a couple has three children, there are exactly 0 girls.
The probability that when a couple has three children, there are exactly 0 girls is 12.5%
Calculation of the probability:Here we assume b for boy, g for girl
Now the probability conditions are
g - g - g
g - g - b
g - b - g
g - b - b
b - g - g
b - g - b
b - b - g
b - b - b
There are 8 outcomes, one of which (b - b - b) with exactly 0 girls.
So
[tex]= 1\div 8[/tex]
= 0.125
Learn more about probability here: https://brainly.com/question/24613748
Sarah kept track of the total number of books she
read. Sarah's graph shows that after 1 week she read a
total of 2 books. After 2 weeks she had read a total of 4
books.
After which week had Sarah read a total of 9 books?
A:8
B:10
C:5
D:6
Answer:
A) 8
Step-by-step explanation:
look at the graph where she has 9 books
If the legs of a right triangle are 10 and 24, then the
hypotenuse is
26.
Step-by-step explanation:
To figure out the missing side of a right triangle, we will use the Pythagorean theorem. This is...
[tex]a^2+b^2=c^2[/tex]
With this Pythagorean theorem, a and b will always be the legs and the c will always be the hypotenuse, no matter what. Now knowing this, we can plug the legs into the equation.
[tex]10^2+24^2=c^2[/tex]
[tex]100+576=c^2[/tex]
Add the legs together.
[tex]676=c^2[/tex]
Now, since c is squared we will have to find the square root of 676.
[tex]\sqrt{676}[/tex]
= 26
Consider the function represented by 9x + 3y = 12 with x as the independent variable. How can this function be written using
function notation?
Fly) = -
f(x) = - 3x + 4
f(x) =
FCV) = -3y+ 4
Answer:
f(x) = -3x + 4
Step-by-step explanation:
Step 1: Write it in slope-intercept form
9x + 3y = 12
3y = -9x + 12
y = -3x + 4
Step 2: Replace y with f(x)
f(x) = -3x + 4
In math, function f(x) is equal to the variable y.
In right triangle PQR, What is tan P
Answer:
c. 3/4
Step-by-step explanation:
tan is opposite over adjacent and based off of the included information its 3/4
At what point will the graph of the equations 3x +y =7&
y=1 intersect?
=======================================================
Work Shown:
Substitute y = 1 into the first equation. Basically we replace every y with 1. From here we solve for x
3x+y = 7
3x+1 = 7
3x+1-1 = 7-1 .... subtracting 1 from both sides
3x = 6
3x/3 = 6/3 .... dividing both sides by 3
x = 2
We have x = 2 pair up with y = 1. The two equations intersect at (2,1)
As a check, plugging (x,y) = (2,1) into the first equation should lead to a true statement
3x+y = 7
3(2)+1 = 7
6+1 = 7
7 = 7 and it does lead to a true statement
The graph is shown below.
78% of U.S. adults think that political correctness is a problem in America today. You randomly select six U.S. adults and ask them whether they think that political correctness is a problem in America today. The random variable represents the number of U.S. adults who think that political correctness is a problem in America today. Answer the questions below.
1. Find the mean of the binomial distribution (Round to the nearest tenth as needed.)
2. Find the variance of the binomial distribution. (Round to the nearest tenth as needed.)
3. Find the standard deviation of the binomial distribution. (Round to the nearest tenth as needed.)
4. Most samples of 6 adults would differ from the mean by no more than nothing. (Type integers or decimals rounded to the nearest tenth as needed.)
Answer:
Step-by-step explanation:
Let x be a random variable representing the number of U.S. adults who think that political correctness is a problem in America today. This is a binomial distribution since the outcomes are two ways. The probability of success, p = 78/100 = 0.78
The probability of failure, q would be 1 - p = 1 - 0.78 = 0.22
n = 6
a) Mean = np = 6 × 0.78 = 4.68
b) Variance = npq = 6 × 0.78 × 0.22 = 1.0
c) Standard deviation = √npq = √(6 × 0.78 × 0.22) = 1.0
d) The standard deviation is used to express the spread of the data from the mean. Therefore, most samples of 6 adults would differ from the mean by no more than 1.0
Find the work done in emptying a cylindrical tank filled with water. The water is being pumped out from the 6 top. The tank has a diameter of 4 feet and is 6 feet tall. The tank is on ground level. Water is 62.4 lbs/ft
Answer:
908360.67 lb-ft
Step-by-step explanation:
height of tank= 6 ft
diameter of the tank = 4 ft
density of water p = 62.4 lbs/ft
A is the cross sectional area of the tank
A = [tex]\pi r^{2}[/tex]
where r = diameter/2 = 4/2 = 2 ft
A = 3.142 x [tex]2^{2}[/tex] = 12.568 ft^2
work done = force x distance through which force is moved
work = F x d
Force due to the water = pgAh
where g = acceleration due to gravity = 32.174 ft/s^2
Force = 62.4 x 32.174 x 12.568 x 6 = 151393.44 lb
work done = force x distance moved
work = 151393.44 x 6 = 908360.67 lb-ft
Does the equation Axequalsb have a solution for each b in set of real numbers RSuperscript 4? A. No, because A has a pivot position in every row. B. Yes, because the columns of A span set of real numbers RSuperscript 4. C. Yes, because A does not have a pivot position in every row. D. No, because the columns of A do not span set of real numbers R
Answer:
C. Yes, because A does not have a pivot position in every row.
Step-by-step explanation:
The pivot position in the matrix is determined by entries in non zero rows. The pivot position may be in the row or a column. By Invertible Matrix Theorem the equation Axequalsb has non trivial solution. A has fewer pivot positions therefore A is not invertible. Ax will map RSuperscript into real numbers for n times. A has pivot position if left parenthesis bold x right parenthesis.
Five-thirds divided by one-third =
Answer:
Step-by-step explanation: [tex]\frac{5}{3}[/tex]÷[tex]\frac{1}{3}[/tex] =
(Decimal: 0.555556)
The SAT exam is used in admissions decisions by many four-year colleges and universities. In 2006, The College Board carried out a study of 6,498 SAT essays that were selected at random from the more than 1.4 million SAT exams taken in the 2005 - 2006 academic year. For this sample of essays, 15% were written in cursive and 85% were printed in block letters. The results showed that the average score for essays written in cursive was higher than the average score for essays that were printed.
A. is this study an observational study or an experiment? Explain your answer.
B. is it reasonable to conclude that writing the essay in cursive was the cause of the higher scores? Explain your answer?
Answer:
Step-by-step explanation:
A. This study is an observation study as there is manipulative to the data on the part of the researcher. They only collected information based on what was seen and observed. There were no treatment conditions.
B. It is not reasonable to conclude that writing the essay in cursive is the cause for higher scores as the causation factor inducing higher scores here in this case might not be on how the essays are put down. So an experiment will be needed to be carried out to find this out.
Help me please thank u
Answer:
160cm
74mm
3.6km is 3600m
Step-by-step explanation:
1. 6 x 100= 160cm
7.4cm x 10 =74mm
3.6 x 1000= 3600m
To express the polynomial 4a^3 + a^2 - 6a^5 + 2a^3 - 4a + 1 in standard form, which terms should be combined?
Answer:
Step-by-step explanation:
-6a^5+6a^3+a^2-4a+1
Answer:
4a^3 and 2a^3
Step-by-step explanation:
you always start by combining like terms
The two figures are similar. Write a proportion to find the missing measure. Then find the value of x.
Answer:
First option is the right choice.
Step-by-step explanation:
x/95 = 15/19
x = 75
Best Regards!
Answer:
Option A
Step-by-step explanation:
Triangle ABC and DEF are similar.
Taking proportion of their sides to find the value of the unknown.
=> x/15 = 95/19
Cross Multiplying
=> 19x = 1425
Dividing both sides by 9
=> x = 75
Please answer this correctly without making mistakes as my work is due today
Answer:
2
Step-by-step explanation:
Arranging them in ascending order we have the scores as;
[tex]2, 3, 3, 4, 4, 6, 8, 9, 9, 9[/tex]
The median is the average of the 5th and 6th scores.
[tex] \frac{4 + 6}{2} \\ \frac{10}{2} \\ 5[/tex]
The new set of scores become
[tex]2,3,3,4,6,8,9,9,9,9[/tex]
The median is;
[tex] \frac{6 + 8}{2} \\ \frac{14}{2} \\ 7[/tex]
The difference is
[tex]7 - 5 = 2[/tex]
Hope it helps! Vote for brainliest!
A grocery store owner claims that the mean amount spent per checkout is more than $74. A test is made of H0: μ = 74 versus H1: μ > 74. The null hypothesis is rejected. State the appropriate conclusion. Group of answer choices
Answer:
Step-by-step explanation:
The question is incomplete. The complete question is:
A grocery store owner claims that the mean amount spent per checkout is more than $74. A test is made of H0: μ = 74 versus H1: μ > 74. The null hypothesis is rejected. State the appropriate conclusion. A) There is not enough evidence to conclude that the mean checkout price is greater than $74. B) The mean checkout amount is less than or equal to $74 C) The mean checkout amount is greater than $74. D) There is not enough evidence to conclude that the mean checkout price is less than or equal to $74
Solution:
The alternative hypothesis is the opposite of the null hypothesis. It is the hypothesis that is true if the null hypothesis is false.
Since the null hypothesis is rejected, it means that there was enough evidence to make us accept the alternative hypothesis. Considering the given scenario, the correct option would be
B)The mean checkout amount is greater than $74
The average amount of water in randomly selected 16-ounce bottles of water is 16.15 ounces with a standard deviation of 0.45 ounces. If a random sample of thirty-five 16-ounce bottles of water are selected, what is the probability that the mean of this sample is less than 15.99 ounces of water? Answer: (round to 4 decimal places)
Answer:
0.0179 = 1.79% probability that the mean of this sample is less than 15.99 ounces of water.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question, we have that:
[tex]\mu = 16.15, \sigma = 0.45, n = 35, s = \frac{0.45}{\sqrt{35}} = 0.0761[/tex]
What is the probability that the mean of this sample is less than 15.99 ounces of water?
This is the pvalue of Z when X = 15.99. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{15.99 - 16.15}{0.0761}[/tex]
[tex]Z = -2.1[/tex]
[tex]Z = -2.1[/tex] has a pvalue of 0.0179
0.0179 = 1.79% probability that the mean of this sample is less than 15.99 ounces of water.
Which best compares the slope and y-intercepts of the linear functions f and g where f= 1/3 x + 3 and g is shown in the table? X =0,1,2,3 and g(x) =3,6,9,12
Answer:
different slope same intercept
Step-by-step explanation:
g(x)= 3x+3
this means they both intercept the y axis at 3 but the incline of g is much greater then f since the slope is much larger.Hope this is what you were looking for
Translate to an algebraic expression.
28 more than d
Answer: d + 28
Step-by-step explanation:
Answer:
d+28
Step-by-step explanation:
it is easier to remeber that you should always flip the wording so for this on "d" would be first then add the 28
find the mean of x,2x,3x,4x,5
Answer:
Mean = 3x
Step-by-step explanation:
Mean = [tex]\frac{SumOfObservations}{TotalNumberOfObservations}[/tex]
Mean = [tex]\frac{x+2x+3x+4x+5x}{5}[/tex]
Mean = [tex]\frac{15x}{5}[/tex]
Mean = [tex]\frac{15x}{5}[/tex]
Mean = 3x
A rotary cutter has a radius of 4 centimeters. The hole in the middle of
the cutter has a radius of 0.5 centimeter. What is the area of one side of
the cutter?
10 of 11 QUESTIONS
3.577 cm
15.757 cm?
1671 cm2
13.571 cm2
Answer:
15.757 im not sure but i came up with that one.
Step-by-step explanation:
Can someone plz help me solved this problem! I’m giving you 10 points! I need help plz help me! Will mark you as brainiest!
Answer: time = 20 seconds
Step-by-step explanation:
h(t) = -16t² + 316t + 80
The shape of this graph is an upside parabola ∩.
It lands on the ground when height (h) = 0
Set the equation equal to zero, factor, and solve for t.
0 = -16t² + 316t + 80
0 = 4t² - 79t - 20 divided both sides by -4
0 = (4t + 1)(t - 20) factored the equation
t = -1/4 t = 20 Applied Zero Product Property and solved for t
Since we know time cannot be negative, disregard t = -1/4
The only valid solution is: t = 20