Suppose that a market research firm is hired to estimate the percent of adults living in a large city who have cell phones. One thousand randomly selected adult residents in this city are surveyed to determine whether they have cell phones. Of the 1,000 people sampled, 627 responded yes – they own cell phones. Using a 90% confidence level, compute a confidence interval estimate for the true proportion of adult residents of this city who have cell phones.
Lower bound: ["39.5%", "66.4%", "60.2%", "58.7%"]
Upper bound: ["68.1%", "44.7%", "65.2%", "70.9%"]
7. Twenty-four (24) students in a finance class were asked about the number of hours they spent studying for a quiz. The data was used to make inferences regarding the other students taking the course. There data are below:
4.5 22 7 14.5 9 9 3.5 8 11 7.5 18 20
7.5 9 10.5 15 19 2.5 5 9 8.5 14 20 8
Compute a 95 percent confidence interval of the average number of hours studied.
Lower bound: ["8.56", "7.50", "7.75", "8.75"]
Upper bound: ["14.44", "13.28", "12.44", "11.01"]

Answers

Answer 1

The 95% confidence interval for the average number of hours studied is [7.75, 12.44].

How to determine the 95% confidence interval for the average number of hours studied

Given:

Sample size (n) = 1000

Number of respondents with cell phones (x) = 627

Confidence level = 90%

Using the formula:

Confidence Interval = x/n ± Z * √[(x/n)(1 - x/n)/n]

The Z-value corresponds to the desired confidence level. For a 90% confidence level, the Z-value is approximately 1.645.

Substituting the values into the formula, we can calculate the confidence interval:

Lower bound = (627/1000) - 1.645 * √[(627/1000)(1 - 627/1000)/1000]

Upper bound = (627/1000) + 1.645 * √[(627/1000)(1 - 627/1000)/1000]

Calculating the values, we get:

Lower bound: 58.7%

Upper bound: 70.9%

Therefore, the confidence interval estimate for the true proportion of adult residents in the city who have cell phones is [58.7%, 70.9%].

For the second question, to compute a 95% confidence interval for the average number of hours studied, we can use the formula for a confidence interval for a mean.

Given:

Sample size (n) = 24

Sample mean (xbar) = 10.12

Standard deviation (s) = 5.86

Confidence level = 95%

Using the formula:

Confidence Interval = xbar ± t * (s/√n)

The t-value corresponds to the desired confidence level and degrees of freedom (n-1). For a 95% confidence level with 23 degrees of freedom, the t-value is approximately 2.069.

Substituting the values into the formula, we can calculate the confidence interval:

Lower bound = 10.12 - 2.069 * (5.86/√24)

Upper bound = 10.12 + 2.069 * (5.86/√24)

Calculating the values, we get:

Lower bound: 7.75

Upper bound: 12.44

Therefore, the 95% confidence interval for the average number of hours studied is [7.75, 12.44].

Learn more about confidence interval at https://brainly.com/question/15712887

#SPJ4


Related Questions

Evaluate the limit using the appropriate Limit Law(s). (If an answer does not exist, enter DNE.) \[ \lim _{x \rightarrow 4}\left(2 x^{3}-3 x^{2}+x-8\right) \]

Answers

By Evaluate the limit using the appropriate Limit Law The limit \(\lim_{x \to 4}(2x^3 - 3x^2 + x - 8)\) evaluates to \(76\).

To evaluate the limit \(\lim_{x \to 4}(2x^3 - 3x^2 + x - 8)\), we can apply the limit laws to simplify the expression.

Let's break down the expression and apply the limit laws step by step:

\[

\begin{aligned}

\lim_{x \to 4}(2x^3 - 3x^2 + x - 8) &= \lim_{x \to 4}2x^3 - \lim_{x \to 4}3x^2 + \lim_{x \to 4}x - \lim_{x \to 4}8 \\

&= 2\lim_{x \to 4}x^3 - 3\lim_{x \to 4}x^2 + \lim_{x \to 4}x - 8\lim_{x \to 4}1 \\

&= 2(4^3) - 3(4^2) + 4 - 8 \\

&= 2(64) - 3(16) + 4 - 8 \\

&= 128 - 48 + 4 - 8 \\

&= 76.

\end{aligned}

\]

So, the limit \(\lim_{x \to 4}(2x^3 - 3x^2 + x - 8)\) evaluates to \(76\).

By applying the limit laws, we were able to simplify the expression and find the numerical value of the limit.

Learn more about limit here :-

https://brainly.com/question/12207539

#SPJ11

Consider randomly selecting a student at USF, and let A be the event that the selected student has a Visa card and B be the analogous event for MasterCard. Suppose that Pr(A)=0.6 and Pr(B)=0.4 (a) Could it be the case that Pr(A∩B)=0.5 ? Why or why not? (b) From now on, suppose that Pr(A∩B)=0.3. What is the probability that the selected student has at least one of these two types of cards? (c) What is the probability that the selected student has neither type of card? (d) Calculate the probability that the selected student has exactly one of the two types of cards.

Answers

the value of F, when testing the null hypothesis H₀: σ₁² - σ₂² = 0, is approximately 1.7132.

Since we are testing the null hypothesis H₀: σ₁² - σ₂² = 0, where σ₁² and σ₂² are the variances of populations A and B, respectively, we can use the F-test to calculate the value of F.

The F-statistic is calculated as F = (s₁² / s₂²), where s₁² and s₂² are the sample variances of populations A and B, respectively.

Given:

n₁ = n₂ = 25

s₁² = 197.1

s₂² = 114.9

Plugging in the values, we get:

F = (197.1 / 114.9) ≈ 1.7132

To know more about variances visit:

brainly.com/question/13708253

#SPJ11

Find all solutions of the given system of equations and check your answer graphically. (If there is nosolution,enter NO SOLUTION. If the system is dependent, express your answer in terms of x, where y=y(x).)4x−3y=512x−9y=15(x,y)=( 45 + 43y ×)

Answers

To solve the given system of equations:

4x - 3y = 5

12x - 9y = 15

We can use the method of elimination or substitution to find the solutions.

Let's start by using the method of elimination. We'll multiply equation 1 by 3 and equation 2 by -1 to create a system of equations with matching coefficients for y:

3(4x - 3y) = 3(5) => 12x - 9y = 15

-1(12x - 9y) = -1(15) => -12x + 9y = -15

Adding the two equations, we eliminate the terms with x:

(12x - 9y) + (-12x + 9y) = 15 + (-15)

0 = 0

The resulting equation 0 = 0 is always true, which means that the system of equations is dependent. This implies that there are infinitely many solutions expressed in terms of x.

Let's express the solution in terms of x, where y = y(x):

From the original equation 4x - 3y = 5, we can rearrange it to solve for y:

y = (4x - 5) / 3

Therefore, the solutions to the system of equations are given by the equation (x, y) = (x, (4x - 5) / 3).

To check the solution graphically, we can plot the line represented by the equation y = (4x - 5) / 3. It will be a straight line with a slope of 4/3 and a y-intercept of -5/3. This line will pass through all points that satisfy the system of equations.

Learn more about equations here

https://brainly.com/question/29657983

#SPJ11

Find a polynomial equation with real coefficients that has the given roots. You may leave the equation in factored form. 2,-5,8

Answers

The polynomial equation with the given roots is f(x) = x^3 - 5x^2 - 34x + 80, which can also be written in factored form as (x - 2)(x + 5)(x - 8) = 0.

To find a polynomial equation with the given roots 2, -5, and 8, we can use the fact that a polynomial equation with real coefficients has roots equal to its factors. Therefore, the equation can be written as:

(x - 2)(x + 5)(x - 8) = 0

Expanding this equation:

(x^2 - 2x + 5x - 10)(x - 8) = 0

(x^2 + 3x - 10)(x - 8) = 0

Multiplying further:

x^3 - 8x^2 + 3x^2 - 24x - 10x + 80 = 0

x^3 - 5x^2 - 34x + 80 = 0

Therefore, the polynomial equation with real coefficients and roots 2, -5, and 8 is:

f(x) = x^3 - 5x^2 - 34x + 80.

Visit here to learn more about equation:    

brainly.com/question/29174899

#SPJ11

The property taxes on a boat were $1710. What was the tax rate if the boat was valued at $285,000 ? Follow the problem -solving process and round your answer to the nearest hundredth of a percent, if

Answers

The tax rate on the boat, rounded to the nearest hundredth of a percent, is approximately 0.60%.

To determine the tax rate on the boat, we need to divide the property taxes ($1710) by the value of the boat ($285,000) and express the result as a percentage.

Tax Rate = (Property Taxes / Value of the Boat) * 100

Tax Rate = (1710 / 285000) * 100

Simplifying the expression:

Tax Rate ≈ 0.006 * 100

Tax Rate ≈ 0.6

Rounding the tax rate to the nearest hundredth of a percent, we get:

Tax Rate ≈ 0.60%

Therefore, the tax rate on the boat, rounded to the nearest hundredth of a percent, is approximately 0.60%.

To learn more about tax rate

https://brainly.com/question/28735352

#SPJ11

a. The product of any three consecutive integers is divisible by \( 6 . \) (3 marks)

Answers

The statement is true. The product of any three consecutive integers is divisible by 6.

To prove this, we can consider three consecutive integers as \( n-1, n, \) and \( n+1, \) where \( n \) is an integer.

We can express these integers as follows:

\( n-1 = n-2+1 \)

\( n = n \)

\( n+1 = n+1 \)

Now, let's calculate their product:

\( (n-2+1) \times n \times (n+1) \)

Expanding this expression, we get:

\( (n-2)n(n+1) \)

From the properties of multiplication, we know that the order of multiplication does not affect the product. Therefore, we can rearrange the terms to simplify the expression:

\( n(n-2)(n+1) \)

Now, let's analyze the factors:

- One of the integers is divisible by 2 (either \( n \) or \( n-2 \)) since consecutive integers alternate between even and odd.

- One of the integers is divisible by 3 (either \( n \) or \( n+1 \)) since consecutive integers leave a remainder of 0, 1, or 2 when divided by 3.

Therefore, the product \( n(n-2)(n+1) \) contains factors of both 2 and 3, making it divisible by 6.

Hence, we have proven that the product of any three consecutive integers is divisible by 6.

Learn more about consecutive integers here:

brainly.com/question/841485

#SPJ11

However, for the ODE problems in Exercises 1-4. Each of these problems is called a boundary-value problem, and we will study these problems in detail in Section 1.7. For now, decide whether each of these problems is well- posed, in terms of existence and uniqueness of solutions.
1. y" + y = 0, y(0) = y(2) = 0,0≤ x ≤2
2. y" + y = 0, y(0) = у(π) = 0,0 ≤ x ≤ π

Answers

For the problem y" + y = 0, y(0) = y(2) = 0, 0 ≤ x ≤ 2 there is a unique solution and For the problem y" + y = 0, y(0) = у(π) = 0, 0 ≤ x ≤ π there is a unique solution.

To determine whether each of the given boundary-value problems is well-posed in terms of the existence and uniqueness of solutions, we need to analyze if the problem satisfies certain conditions.

For the problem y" + y = 0, y(0) = y(2) = 0, 0 ≤ x ≤ 2:

This problem is well-posed. The existence of a solution is guaranteed because the second-order linear differential equation is homogeneous and has constant coefficients. The boundary conditions y(0) = y(2) = 0 specify the values of the solution at the boundary points. Since the equation is linear and the homogeneous boundary conditions are given at distinct points, there is a unique solution.

For the problem y" + y = 0, y(0) = у(π) = 0, 0 ≤ x ≤ π:

This problem is also well-posed. The existence of a solution is assured due to the homogeneous nature and constant coefficients of the second-order linear differential equation. The boundary conditions y(0) = у(π) = 0 specify the values of the solution at the boundary points. Similarly to the first problem, the linearity of the equation and the distinct homogeneous boundary conditions guarantee a unique solution.

In both cases, the problems are well-posed because they satisfy the conditions for existence and uniqueness of solutions. The existence is guaranteed by the linearity and properties of the differential equation, while the uniqueness is ensured by the distinct boundary conditions at different points. These concepts are further explored and studied in detail in Section 1.7 of the material.

Learn more about second-order linear differential equation here:

brainly.com/question/32924482

#SPJ11

Use the Product Rule to evaluate and simplify d/dx((x-3)(4x+2)).

Answers

Answer:

8x - 10

Step-by-step explanation:

Let [tex]f(x)=x-3[/tex] and [tex]g(x)=4x+2[/tex], hence, [tex]f'(x)=1[/tex] and [tex]g'(x)=4[/tex]:

[tex]\displaystyle \frac{d}{dx}f(x)g(x)=f'(x)g(x)+f(x)g'(x)=1(4x+2)+(x-3)\cdot4=4x+2+4(x-3)=4x+2+4x-12=8x-10[/tex]

Evaluate ∫3x^2sin(x^3 )cos(x^3)dx by
(a) using the substitution u=sin(x^3) and
(b) using the substitution u=cos(x^3)
Explain why the answers from (a) and (b) are seemingly very different.

Answers

The answers from (a) and (b) are seemingly very different because the limits of integration would be different due to the different values of sin⁻¹u and cos⁻¹u.

Given integral:

∫3x²sin(x³)cos(x³)dx

(a) Using the substitution

u=sin(x³)

Substituting u=sin(x³),

we get

x³=sin⁻¹(u)

Differentiating both sides with respect to x, we get

3x²dx = du

Thus, the given integral becomes

∫u du= (u²/2) + C

= (sin²(x³)/2) + C

(b) Using the substitution

u=cos(x³)

Substituting u=cos(x³),

we get

x³=cos⁻¹(u)

Differentiating both sides with respect to x, we get

3x²dx = -du

Thus, the given integral becomes-

∫u du= - (u²/2) + C

= - (cos²(x³)/2) + C

Thus, the answers from (a) and (b) are seemingly very different because the limits of integration would be different due to the different values of sin⁻¹u and cos⁻¹u.

To know more about integration visit:

https://brainly.com/question/31744185

#SPJ11

The displacement (in meters) of a particle moving in a straight line is given by s=t 2
−9t+17, where t is measured in seconds. (a) Find the average velocity over each time interval. (i) [3,4] m/s (ii) [3.5,4] m/s (iii) [4,5] m/s (iv) [4,4,5] m/s (b) Find the instantaneous velocity when t=4. m/s

Answers

(a) Average velocities over each time interval:

(i) [3,4]: -2 m/s

(ii) [3.5,4]: -2.5 m/s

(iii) [4,5]: 0 m/s

(iv) [4,4.5]: -1.5 m/s

(b) Instantaneous velocity at t = 4: -1 m/s

(a) To find the average velocity over each time interval, we need to calculate the change in displacement divided by the change in time for each interval.

(i) [3,4] interval:

Average velocity = (s(4) - s(3)) / (4 - 3)

= (4^2 - 9(4) + 17) - (3^2 - 9(3) + 17) / (4 - 3)

= (16 - 36 + 17) - (9 - 27 + 17) / 1

= -2 m/s

(ii) [3.5,4] interval:

Average velocity = (s(4) - s(3.5)) / (4 - 3.5)

= (4^2 - 9(4) + 17) - (3.5^2 - 9(3.5) + 17) / (4 - 3.5)

= (16 - 36 + 17) - (12.25 - 31.5 + 17) / 0.5

= -2.5 m/s

(iii) [4,5] interval:

Average velocity = (s(5) - s(4)) / (5 - 4)

= (5^2 - 9(5) + 17) - (4^2 - 9(4) + 17) / (5 - 4)

= (25 - 45 + 17) - (16 - 36 + 17) / 1

= 0 m/s

(iv) [4,4.5] interval:

Average velocity = (s(4.5) - s(4)) / (4.5 - 4)

= (4.5^2 - 9(4.5) + 17) - (4^2 - 9(4) + 17) / (4.5 - 4)

= (20.25 - 40.5 + 17) - (16 - 36 + 17) / 0.5

= -1.5 m/s

(b) To find the instantaneous velocity at t = 4, we need to find the derivative of the displacement function with respect to time and evaluate it at t = 4.

s(t) = t^2 - 9t + 17

Taking the derivative:

v(t) = s'(t) = 2t - 9

Instantaneous velocity at t = 4:

v(4) = 2(4) - 9

= 8 - 9

= -1 m/s

To learn more about average velocity visit : https://brainly.com/question/1844960

#SPJ11

Use synthetic division to find the result when 4x^(4)-9x^(3)+14x^(2)-12x-1 is divided by x-1. If there is a remainder, express the Fesult in the form q(x)+(r(x))/(b(x)).

Answers

A synthetic division to find the result q(x) + (r(x))/(b(x)) the result is 4x³ - 5x² + 9x - 3 - 4/(x - 1)

To perform synthetic division, to set up the polynomial and the divisor in the correct format.

Given polynomial: 4x² - 9x³ + 14x² - 12x - 1

Divisor: x - 1

To set up the synthetic division, the coefficients of the polynomial in descending order of powers of x, including zero coefficients if any term is missing.

Coefficients: 4, -9, 14, -12, -1 (Note that the coefficient of x^3 is -9, not 0)

Next,  the synthetic division tableau:

The numbers in the row beneath the line represent the coefficients of the quotient polynomial. The last number, -4, is the remainder.

Therefore, the result of dividing 4x² - 9x³ + 14x² - 12x - 1 by x - 1 is:

Quotient: 4x³- 5x²+ 9x - 3

Remainder: -4

To know more about  synthetic here

https://brainly.com/question/31673428

#SPJ4

may not convert these predicates to variables (no ∀x∈D,p→q - use the same words that are already in the statement): ∀n∈Z, if n 2
−2n−15>0, then n>5 or n<−3. A. State the negation of the given statement. B. State the contraposition of the given statement. C. State the converse of the given statement. D. State the inverse of the given statement. E. Which statements in A.-D. are logically equivalent? You may give the name(s) or letter(s) of the statements.

Answers

A predicate is a statement or a proposition that contains variables and becomes a proposition when specific values are assigned to those variables. Variables, on the other hand, are symbols that represent unspecified or arbitrary elements within a statement or equation. They are placeholders that can take on different values.

Given, For all n in Z, if n2 - 2n - 15 > 0, then n > 5 or n < -3. We are required to answer the following: State the negation of the given statement. State the contraposition of the given statement. State the converse of the given statement. State the inverse of the given statement. Which statements in A.-D. are logically equivalent? Negation of the given statement:∃ n ∈ Z, n2 - 2n - 15 ≤ 0 and n > 5 or n < -3

Contrapositive of the given statement: For all n in Z, if n ≤ 5 and n ≥ -3, then n2 - 2n - 15 ≤ 0 Converse of the given statement: For all n in Z, if n > 5 or n < -3, then n2 - 2n - 15 > 0 Inverse of the given statement: For all n in Z, if n2 - 2n - 15 ≤ 0, then n ≤ 5 or n ≥ -3. From the given statements, we can conclude that the contrapositive and inverse statements are logically equivalent. Therefore, statements B and D are logically equivalent.

For similar logical reasoning problems visit:

https://brainly.com/question/30659571

#SPJ11

If you pick a random book out of 100, what is the probability you will fully read it? Given: Out of 100, 45 are short, 30 are medium, 25 are long. The probability you fully read a book depends on the length. The probability of fully reading a short book is 0.60, medium book is 0.35, and long book is 0.2.

Answers

Given that out of 100 books, 45 are short, 30 are medium and 25 are long. Also, the probability of fully reading a short book is 0.60, medium book is 0.35, and long book is 0.2.So, the probability of fully reading a short book is 0.6.

The probability of fully reading a medium book is 0.35.The probability of fully reading a long book is 0.2.To find the probability of fully reading a book of any length, we need to calculate the weighted average of these probabilities using the number of books of each length. It can be given by:Probability = (45/100 × 0.6) + (30/100 × 0.35) + (25/100 × 0.2)= 0.27 + 0.105 + 0.05= 0.425Hence, the probability of fully reading a book picked randomly from a group of 100 books is 0.425 or 42.5%.

The probability of reading a book picked randomly from a group of 100 books depends on the length of the book. Out of 100 books, 45 are short, 30 are medium and 25 are long. The probability of fully reading a short book is 0.6, medium book is 0.35, and long book is 0.2.To find the probability of fully reading a book of any length, we need to calculate the weighted average of these probabilities using the number of books of each length. The probability of fully reading a book picked randomly from a group of 100 books is 0.425 or 42.5%.So, if you pick a random book out of 100, there is a 42.5% chance that you will fully read it. This means that out of 100 books, only 42-43 books can be fully read and the rest will be partially read or not read at all. Therefore, it is important to choose a book that interests you and matches your reading level.

Thus, the probability of fully reading a book picked randomly from a group of 100 books is 0.425 or 42.5%.

To know more about medium  visit

https://brainly.com/question/28323213

#SPJ11

Compute the directional derivatives of the given function at the given point P in the direction of the given vector. Be sure to use the unit vector for the direction vector. f(x,y)={(x^ 2)(y^3)
+2]xy−3 in the direction of (3,4) at the point P=(1,−1).

Answers

the directional derivative of the given function

[tex]f(x,y)={x^ 2y^3+2]xy−3}[/tex] in the direction of (3,4) at the point P=(1,−1) is 6.8 units.

It is possible to calculate directional derivatives by utilizing the formula below:

[tex]$$D_uf(a,b)=\frac{\partial f}{\partial x}(a,b)u_1+\frac{\partial f}{\partial y}(a,b)u_2$$[/tex]

[tex]$$f(x,y)[/tex]

=[tex]{(x^ 2)(y^3)+2]xy−3}$$$$\frac{\partial f}{\partial x}[/tex]

=[tex]2xy^3y+2y-\frac{\partial f}{\partial y}[/tex]

=[tex]3x^2y^2+2x$$$$\text{Direction vector}[/tex]

=[tex]\begin{pmatrix} 3 \\ 4 \end{pmatrix}$$[/tex]

To obtain the unit vector in the direction of the direction vector, we must divide the direction vector by its magnitude as shown below:

[tex]$$\mid v\mid=\sqrt{3^2+4^2}=\sqrt{9+16}=\sqrt{25}=5$$[/tex]

[tex]$$\text{Unit vector}=\frac{1}{5}\begin{pmatrix} 3 \\ 4 \end{pmatrix}=\begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix}$$[/tex]

Now let us compute the directional derivative as shown below:

[tex]$$D_uf(1,-1)=\frac{\partial f}{\partial x}(1,-1)\frac{3}{5}+\frac{\partial f}{\partial y}(1,-1)\frac{4}{5}$$[/tex]

[tex]$$D_uf(1,-1)=\left(2(-1)(-1)^3+2(-1)\right)\frac{3}{5}+\left(3(1)^2(-1)^2+2(1)\right)\frac{4}{5}$$$$D_uf(1,-1)=\frac{34}{5}$$[/tex]

Hence, the directional derivative of the given function

[tex]f(x,y)={x^ 2y^3+2]xy−3}[/tex]

in the direction of (3,4) at the point P=(1,−1) is 6.8 units.

To know more about vector visit:

https://brainly.com/question/24256726

#SPJ11

Suppose the random variable X follows a normal distribution with a mean 107 and a standard deviation 25. Calculate each of the following. a) The 85 th percentile of the distribution of X is: b) The 38 th percentile of the distribution of X is:

Answers

a.  The 85th percentile of the distribution of X is approximately 132.01.

b. The 38th percentile of the distribution of X is approximately 99.3.

To solve this problem, we can use a standard normal distribution table or calculator and the formula for calculating z-scores.

a) We want to find the value of X that corresponds to the 85th percentile of the normal distribution. First, we need to find the z-score that corresponds to the 85th percentile:

z = invNorm(0.85) ≈ 1.04

where invNorm is the inverse normal cumulative distribution function.

Then, we can use the z-score formula to find the corresponding X-value:

X = μ + zσ

X = 107 + 1.04(25)

X ≈ 132.01

Therefore, the 85th percentile of the distribution of X is approximately 132.01.

b) We want to find the value of X that corresponds to the 38th percentile of the normal distribution. To do this, we first need to find the z-score that corresponds to the 38th percentile:

z = invNorm(0.38) ≈ -0.28

Again, using the z-score formula, we get:

X = μ + zσ

X = 107 - 0.28(25)

X ≈ 99.3

Therefore, the 38th percentile of the distribution of X is approximately 99.3.

Learn more about distribution from

https://brainly.com/question/23286309

#SPJ11

. Rick is betting the same way over and over at the roulette table: $15 on "Odds" which covers the eighteen odd numbers. Note that the payout for an 18-number bet is 1:1. He plans to bet this way 30 times in a row. Rick says as long as he hasn't lost a total of $25 or more by the end of it, he'll be happy. Prove mathematically which is more likely: Rick will lose $25 or more, or will lose less than 25$?

Answers

To determine which outcome is more likely, we need to analyze the probabilities of Rick losing $25 or more and Rick losing less than $25.

Rick's bet has a 1:1 payout, meaning he wins $15 for each successful bet and loses $15 for each unsuccessful bet.

Let's consider the possible scenarios:

1. Rick loses all 30 bets: The probability of losing each individual bet is 18/38 since there are 18 odd numbers out of 38 total numbers on the roulette wheel. The probability of losing all 30 bets is (18/38)^30.

2. Rick wins at least one bet: The complement of losing all 30 bets is winning at least one bet. The probability of winning at least one bet can be calculated as 1 - P(losing all 30 bets).

Now let's calculate these probabilities:

Probability of losing all 30 bets:

P(Losing $25 or more) = (18/38)^30

Probability of winning at least one bet:

P(Losing less than $25) = 1 - P(Losing $25 or more)

By comparing these probabilities, we can determine which outcome is more likely.

Learn more about probabilities here:

https://brainly.com/question/29381779

#SPJ11

The median weight of a boy whose age is between 0 and 36 months can be approximated by the function w(t)=8.65+1.25t−0.0046t ^2 +0.000749t^3 ,where t is measured in months and w is measured in pounds. Use this approximation to find the following for a boy with median weight in parts a) through c) below. a) The rate of change of weight with respect to time. w ′
(t)=

Answers

Therefore, the rate of change of weight with respect to time is [tex]w'(t) = 1.25 - 0.0092t + 0.002247t^2.[/tex]

To find the rate of change of weight with respect to time, we need to differentiate the function w(t) with respect to t. Differentiating each term of the function, we get:

[tex]w'(t) = d/dt (8.65) + d/dt (1.25t) - d/dt (0.0046t^2) + d/dt (0.000749t^3)[/tex]

The derivative of a constant term is zero, so the first term, d/dt (8.65), becomes 0.

The derivative of 1.25t with respect to t is simply 1.25.

The derivative of [tex]-0.0046t^2[/tex] with respect to t is -0.0092t.

The derivative of [tex]0.000749t^3[/tex] with respect to t is [tex]0.002247t^2.[/tex]

Putting it all together, we have:

[tex]w'(t) = 1.25 - 0.0092t + 0.002247t^2[/tex]

To know more about rate of change,

https://brainly.com/question/30338132

#SPJ11

Find the position function x(t) of a moving particle with the given acceleration a(t), initial position x_0 =x(0), and inisital velocity c_0 = v(0)
a(t)=6(t+2)^2 , v(0)=-1 , x(0)=1

Answers

The position function of the moving particle is x(t) = ½(t + 2)⁴ - 9t - 7.

Given data,

Acceleration of the particle a(t) = 6(t + 2)²

Initial position

x(0) = x₀

= 1

Initial velocity

v(0) = v₀

= -1

We know that acceleration is the second derivative of position function, i.e., a(t) = x''(t)

Integrating both sides w.r.t t, we get

x'(t) = ∫a(t) dt

=> x'(t) = ∫6(t + 2)²dt

= 2(t + 2)³ + C₁

Putting the value of initial velocity

v₀ = -1x'(0) = v₀

=> 2(0 + 2)³ + C₁ = -1

=> C₁ = -1 - 8

= -9

Now, we havex'(t) = 2(t + 2)³ - 9 Integrating both sides w.r.t t, we get

x(t) = ∫x'(t) dt

=> x(t) = ∫(2(t + 2)³ - 9) dt

=> x(t) = ½(t + 2)⁴ - 9t + C₂

Putting the value of initial position

x₀ = 1x(0) = x₀

=> ½(0 + 2)⁴ - 9(0) + C₂ = 1

=> C₂ = 1 - ½(2)⁴

=> C₂ = -7

Final position function x(t) = ½(t + 2)⁴ - 9t - 7

Know more about the position function

https://brainly.com/question/29295368

#SPJ11

Determine the standard equation of the ellipse using the given information. Center at (6,4); focus at (6,9), ellipse passes through the point (9,4) The equation of the ellipse in standard form is

Answers

The equation of the ellipse which has its center at (6,4); focus at (6,9), and passes through the point (9,4), in standard form is (x−6)²/16+(y−4)²/9=1.

Given:

Center at (6,4);

focus at (6,9),

and the ellipse passes through the point (9,4)

To determine the standard equation of the ellipse, we can use the standard formula as follows;

For an ellipse with center (h, k), semi-major axis of length a and semi-minor axis of length b, the standard form of the equation is:

(x−h)²/a²+(y−k)²/b²=1

Where (h, k) is the center of the ellipse

To find the equation of the ellipse in standard form, we need to find the values of h, k, a, and b

The center of the ellipse is given as (h,k)=(6,4)

Since the foci are (6,9) and the center is (6,4), we know that the distance from the center to the foci is given by c = 5 (distance formula)

The point (9, 4) lies on the ellipse

Therefore, we can write the equation as follows:

(x−6)²/a²+(y−4)²/b²=1

Since the focus is at (6,9), we know that c = 5 which is also given by the distance between (6, 9) and (6, 4)

Thus, using the formula, we get:

(c²=a²−b²)b²=a²−c²b²=a²−5²b²=a²−25

Substituting these values in the equation of the ellipse we obtained earlier, we get:

(x−6)²/a²+(y−4)²/(a²−25)=1

Now, we need to use the point (9, 4) that the ellipse passes through to find the value of a²

Substituting (9,4) into the equation, we get:

(9−6)²/a²+(4−4)²/(a²−25)=1

Simplifying and solving for a², we get

a²=16a=4

Substituting these values into the equation of the ellipse, we get:

(x−6)²/16+(y−4)²/9=1

Thus, the equation of the ellipse in standard form is (x−6)²/16+(y−4)²/9=1

To know more about ellipse refer here:

https://brainly.com/question/9448628

#SPJ11

Which of the following statements is always true about checking the existence of an edge between two vertices in a graph with vertices?
1. It can only be done in time.
2. It can only be done in time.
3.It can always be done in time.
4. It depends on the implementation we use for the graph representation (adjacency list vs. adjacency matrix).

Answers

The following statement is always true about checking the existence of an edge between two vertices in a graph with vertices:

It depends on the implementation we use for the graph representation (adjacency list vs. adjacency matrix). The correct option is 4.

In graph theory, a graph is a set of vertices and edges that connect them. A graph may be represented in two ways: an adjacency matrix or an adjacency list.

An adjacency matrix is a two-dimensional array with the dimensions being equal to the number of vertices in the graph. Each element of the array represents the presence of an edge between two vertices. In an adjacency matrix, checking for the existence of an edge between two vertices can always be done in O(1) constant time.

An adjacency list is a collection of linked lists or arrays. Each vertex in the graph is associated with an array of adjacent vertices. In an adjacency list, the time required to check for the existence of an edge between two vertices depends on the number of edges in the graph and the way the adjacency list is implemented, it can be O(E) time in the worst case. Therefore, it depends on the implementation we use for the graph representation (adjacency list vs. adjacency matrix).

Hence, the statement "It depends on the implementation we use for the graph representation (adjacency list vs. adjacency matrix)" is always true about checking the existence of an edge between two vertices in a graph with vertices.

To know more about adjacency matrix, refer to the link below:

https://brainly.com/question/33168421#

#SPJ11

pick 1
On a table are three coins-two fair nickels and one unfair nickel for which Pr (H)=3 / 4 . An experiment consists of randomly selecting one coin from the tabie and flipping it one time, noting wh

Answers

The required probability is 0.25, which means that there is a 25% chance of getting a tail on the given coin.

Firstly, we will identify the sample space of the given experiment. The sample space is defined as the set of all possible outcomes of the experiment. Here, the experiment consists of randomly selecting one coin from the table and flipping it one time, noting whether it is a head or a tail. Therefore, the sample space for the given experiment is S = {H, T}.

The given probability states that the probability of obtaining a head on the unfair nickel is Pr(H) = 3/4. As the given coin is unfair, it means that the probability of obtaining a tail on this coin is

Pr(T) = 1 - Pr(H) = 1 - 3/4 = 1/4.

Hence, the probability of obtaining a tail on the given coin is 1/4 or 0.25.

Therefore, the required probability is 0.25, which means that there is a 25% chance of getting a tail on the given coin.

Know more about  probability here,

https://brainly.com/question/31828911

#SPJ11

Andres Michael bought a new boat. He took out a loan for $24,010 at 4.5% interest for 4 years. He made a $4,990 partial payment at 4 months and another partial payment of $2,660 at 9 months. How much is due at maturity? Note: Do not round intermediate calculations. Round your answer to the nearest cent.

Answers

To calculate the amount due at maturity, we need to determine the remaining balance of the loan after the partial payments have been made. First, let's calculate the interest accrued on the loan over the 4-year period. The formula for calculating the interest is given by:

Interest = Principal * Rate * Time

Principal is the initial loan amount, Rate is the interest rate, and Time is the duration in years.

Interest = $24,010 * 0.045 * 4 = $4,320.90

Next, let's subtract the partial payments from the initial loan amount:

Remaining balance = Initial loan amount - Partial payment 1 - Partial payment 2

Remaining balance = $24,010 - $4,990 - $2,660 = $16,360

Finally, we add the accrued interest to the remaining balance to find the amount due at maturity:

Amount due at maturity = Remaining balance + Interest

Amount due at maturity = $16,360 + $4,320.90 = $20,680.90

Therefore, the amount due at maturity is $20,680.90.

Learn about balance here:

https://brainly.com/question/28699858

#SPJ11

Consider the DE. (e ^x siny+tany)dx+(e^x cosy+xsec 2 y)dy== the the General solution is: a. None of these b. e ^x sin(y)−xtan(y)=0 c. e^x sin(y)+xtan(y)=0 d. e ^xsin(y)+tan(y)=C

Answers

The general solution to the differential equation is given by: e^x sin y + xtan y = C, where C is a constant. the correct answer is option (b) e^x sin(y) − xtan(y) = 0.

To solve the differential equation (e^x sin y + tan y)dx + (e^x cos y + x sec^2 y)dy = 0, we first need to check if it is exact by confirming if M_y = N_x. We have:

M = e^x sin y + tan y

N = e^x cos y + x sec^2 y

Differentiating M with respect to y, we get:

M_y = e^x cos y + sec^2 y

Differentiating N with respect to x, we get:

N_x = e^x cos y + sec^2 y

Since M_y = N_x, the equation is exact. We can now find a potential function f(x,y) such that df/dx = M and df/dy = N. Integrating M with respect to x, we get:

f(x,y) = ∫(e^x sin y + tan y) dx = e^x sin y + xtan y + g(y)

Taking the partial derivative of f(x,y) with respect to y and equating it to N, we get:

∂f/∂y = e^x cos y + xtan^2 y + g'(y) = e^x cos y + x sec^2 y

Comparing coefficients, we get:

g'(y) = 0

xtan^2 y = xsec^2 y

The second equation simplifies to tan^2 y = sec^2 y, which is true for all y except when y = nπ/2, where n is an integer. Hence, the general solution to the differential equation is given by:

e^x sin y + xtan y = C, where C is a constant.

Therefore, the correct answer is option (b) e^x sin(y) − xtan(y) = 0.

Learn more about equation  from

https://brainly.com/question/29174899

#SPJ11

In the equation Ci i

+1=(ai i

bi i

)+(ai i

+b i

)⋅Ci i

, the generate term is (ai.bi) (ai+bi) (a i

+b i

)⋅C i

None of the above

Answers

In the equation Ci+1 = (ai bi) + (ai+bi)⋅Ci, the term (ai bi)⋅(ai+bi) is the generate term.

In the equation Ci+1 = (ai bi) + (ai+bi)⋅Ci, the term (ai bi)⋅(ai+bi) is not the generate term.

Let's break down the equation to understand its components:

Ci+1 represents the value of the i+1-th term.

(ai bi) is the propagate term, which is the result of multiplying the values ai and bi.

(ai+bi)⋅Ci is the generate term, where Ci represents the value of the i-th term. The generate term is multiplied by (ai+bi) to generate the next term Ci+1.

Therefore, in the given equation, the term (ai+bi)⋅Ci is the generate term, not (ai bi)⋅(ai+bi).

Learn more about equation from

https://brainly.com/question/29174899

#SPJ11

S={1,2,3,…,18,19,20} Let sets A and B be subsets of S, where: Set A={2,4,5,6,8,9,10,13,14,15,17,18,19} Set B={1,3,7,8,11,14,15,16,17,18,19,20} Find the following: LIST the elements in the set (A∩Bc) : (A∩Bc)={ Enter the elements as a list, separated by commas. If the result is the empty set, enter DNE LIST the elements in the set (B∩Ac) : (B∩Ac)={ Enter the elements as a list, separated by commas. If the result is the empty set, enter DNE You may want to draw a Venn Diagram to help answer this question.

Answers

(A∩Bc) = {2, 4, 5, 6, 9, 10, 13}

(B∩Ac) = {3, 7, 11, 16, 20}

The set (A∩Bc) represents the elements that are in set A but not in set B. In this case, the elements 2, 4, 5, 6, 9, 10, and 13 belong to A but do not belong to B. Therefore, (A∩Bc) = {2, 4, 5, 6, 9, 10, 13}.

The set (B∩Ac) represents the elements that are in set B but not in set A. In this case, the elements 3, 7, 11, 16, and 20 belong to B but do not belong to A. Therefore, (B∩Ac) = {3, 7, 11, 16, 20}.

Please note that these explanations are within the context of the given sets A and B, and the intersection and complement operations performed on them.

Learn more about sets:

https://brainly.com/question/13458417

#SPJ11

Find an equation of the line that satisfies the given conditions. Through (-8,-7); perpendicular to the line (-5,5) and (-1,3)

Answers

Therefore, the equation of the line that passes through the point (-8, -7) and is perpendicular to the line passing through (-5, 5) and (-1, 3) is y = 2x + 9.

To find the equation of a line that passes through the point (-8, -7) and is perpendicular to the line passing through (-5, 5) and (-1, 3), we need to determine the slope of the given line and then find the negative reciprocal of that slope to get the slope of the perpendicular line.

First, let's calculate the slope of the given line using the formula:

m = (y2 - y1) / (x2 - x1)

m = (3 - 5) / (-1 - (-5))

m = -2 / 4

m = -1/2

The negative reciprocal of -1/2 is 2/1 or simply 2.

Now that we have the slope of the perpendicular line, we can use the point-slope form of a linear equation:

y - y1 = m(x - x1)

Substituting the point (-8, -7) and the slope 2 into the equation, we get:

y - (-7) = 2(x - (-8))

y + 7 = 2(x + 8)

y + 7 = 2x + 16

Simplifying:

y = 2x + 16 - 7

y = 2x + 9

To know more about equation,

https://brainly.com/question/29142742

#SPJ11

[−1, 0] referred to in the Intermediate Value Theorem for f (x) = −x2 + 2x + 3 for M = 2.

Answers

The Intermediate Value Theorem is a theorem that states that if f(x) is continuous over the closed interval [a, b] and M is any number between f(a) and f(b), then there exists at least one number c in the interval (a, b) such that f(c) = M.

Here, we have f(x) = -x^2 + 2x + 3 and the interval [−1, 0]. We are also given that M = 2. To apply the Intermediate Value Theorem, we need to check if M lies between f(−1) and f(0).

f(−1) = -(-1)^2 + 2(-1) + 3 = 4
f(0) = -(0)^2 + 2(0) + 3 = 3

Since 3 < M < 4, M lies between f(−1) and f(0), and therefore, there exists at least one number c in the interval (−1, 0) such that f(c) = M. However, we cannot determine the exact value of c using the Intermediate Value Theorem alone.

To know more about Intermediate Value Theorem visit:

https://brainly.com/question/29712240

#SPJ11

Find all solutions of the equation ∣ cos(2x)− 1/2∣ =1/2

Answers

The equation |cos(2x) - 1/2| = 1/2 has two solutions: 2x = π/3 + 2πn and 2x = 5π/3 + 2πn, where n is an integer.

To solve the equation, we consider two cases: cos(2x) - 1/2 = 1/2 and cos(2x) - 1/2 = -1/2.

In the first case, we have cos(2x) - 1/2 = 1/2. Adding 1/2 to both sides gives cos(2x) = 1. Solving for 2x, we find 2x = π/3 + 2πn.

In the second case, we have cos(2x) - 1/2 = -1/2. Adding 1/2 to both sides gives cos(2x) = 0. Solving for 2x, we find 2x = 5π/3 + 2πn.

Therefore, the solutions to the equation |cos(2x) - 1/2| = 1/2 are 2x = π/3 + 2πn and 2x = 5π/3 + 2πn, where n is an integer.

To solve the equation |cos(2x) - 1/2| = 1/2, we consider two cases: cos(2x) - 1/2 = 1/2 and cos(2x) - 1/2 = -1/2.

In the first case, we have cos(2x) - 1/2 = 1/2. Adding 1/2 to both sides of the equation gives cos(2x) = 1. We know that the cosine function takes on a value of 1 at multiples of 2π. Therefore, we can solve for 2x by setting cos(2x) equal to 1 and finding the corresponding values of x. Using the identity cos(2x) = 1, we obtain 2x = π/3 + 2πn, where n is an integer. This equation gives us the solutions for x.

In the second case, we have cos(2x) - 1/2 = -1/2. Adding 1/2 to both sides of the equation gives cos(2x) = 0. The cosine function takes on a value of 0 at odd multiples of π/2. Solving for 2x, we obtain 2x = 5π/3 + 2πn, where n is an integer. This equation provides us with additional solutions for x.

Therefore, the complete set of solutions to the equation |cos(2x) - 1/2| = 1/2 is given by combining the solutions from both cases: 2x = π/3 + 2πn and 2x = 5π/3 + 2πn, where n is an integer. These equations represent the values of x that satisfy the original equation.

Learn more about integer here:

brainly.com/question/490943

#SPJ11

3) A certain type of battery has a mean lifetime of
17.5 hours with a standard deviation of 0.75 hours.
How many standard deviations below the mean is a
battery that only lasts 16.2 hours? (What is the z
score?)
>

Answers

The correct answer is a battery that lasts 16.2 hours is approximately 1.733 standard deviations below the mean.

To calculate the z-score, we can use the formula:

z = (x - μ) / σ

Where:

x is the value we want to standardize (16.2 hours in this case).

μ is the mean of the distribution (17.5 hours).

σ is the standard deviation of the distribution (0.75 hours).

Let's calculate the z-score:

z = (16.2 - 17.5) / 0.75

z = -1.3 / 0.75

z ≈ -1.733

Therefore, a battery that lasts 16.2 hours is approximately 1.733 standard deviations below the mean.The z-score is a measure of how many standard deviations a particular value is away from the mean of a distribution. By calculating the z-score, we can determine the relative position of a value within a distribution.

In this case, we have a battery with a mean lifetime of 17.5 hours and a standard deviation of 0.75 hours. We want to find the z-score for a battery that lasts 16.2 hours.

To calculate the z-score, we use the formula:

z = (x - μ) / σ

Where:

x is the value we want to standardize (16.2 hours).

μ is the mean of the distribution (17.5 hours).

σ is the standard deviation of the distribution (0.75 hours).

Substituting the values into the formula, we get:

Learn more about statistics here:

https://brainly.com/question/12805356

#SPJ8

consider the following list of numbers. 127, 686, 122, 514, 608, 51, 45 place the numbers, in the order given, into a binary search tree.

Answers

The binary search tree is constructed using the given list of numbers: 127, 122, 51, 45, 686, 514, 608.

To construct a binary search tree (BST) using the given list of numbers, we start with an empty tree and insert the numbers one by one according to the rules of a BST.

Here is the step-by-step process to construct the BST:

1. Start with an empty binary search tree.

2. Insert the first number, 127, as the root of the tree.

3. Insert the second number, 686. Since 686 is greater than 127, it becomes the right child of the root.

4. Insert the third number, 122. Since 122 is less than 127, it becomes the left child of the root.

5. Insert the fourth number, 514. Since 514 is greater than 127 and less than 686, it becomes the right child of 122.

6. Insert the fifth number, 608. Since 608 is greater than 127 and less than 686, it becomes the right child of 514.

7. Insert the sixth number, 51. Since 51 is less than 127 and less than 122, it becomes the left child of 122.

8. Insert the seventh number, 45. Since 45 is less than 127 and less than 122, it becomes the left child of 51.

The resulting binary search tree would look like this.

To know more about binary search tree, refer here:

https://brainly.com/question/13152677

#SPJ4

Other Questions
. The Wisconsin Lottery has a game called Badger 5: Choose five numbers from 1 to 31. You can't select the same number twice, and your selections are placed in numerical order. After each drawing, the numbers drawn are put in numerical order. Here's an example of what one lottery drawing could look like:13 14 15 30Find the probability that a person's Badger 5 lottery ticket will have exactly two winning numbers. Your corporation is considering replacing older equipment. The old machine is fully depreciated and cost $52,500.00 seven years ago. The old equipment currently has no market value. The new equipment costs $51,800.00. The new equipment will be depreciated to zero using straight-line depreciation for the four-year life of the project. At the end of the project, the equipment is expected to have a salvage value of $14,000.00. The new equipment is expected to save the firm $30,000.00 annually by increasing efficiency and cost savings. The corporation has a tax rate of 32% and a required return on capital of 10.2%. Question 1 What is the total initial cash outflow? (Round to the nearest dollar, and show your answer as a negative number.) Question 2 What are the estimated annual operating cash flows? (Calculate your answer to the nearest dollar amount.) Question 3 What is the terminal cash flow? (Calculate your answer to the nearest dollar.) Question 4 What is the NPV for this project? (Calculate your answer to the nearest dollar.) How do I find unwanted apps on Android?. In conceptual level design, we will focus on capturing data requirement (entity types and their relationships) from the requirement. You dont need to worry about the actual database table structures at this stage. You dont need to identify primary key and foreign key, you need to identify unique values attributes and mark them with underline.Consider following requirement to track information for a mini hospital, use EERD to capture the data requirement (entities, attributes, relationships). Identify entities with common attributes and show the inheritance relationships among them.You can choose from Chens notation, crows foot notation, or UML.The hospital tracks information for patients, physician, other personnel. The physician could be a patient as well.All the patients have an ID, first name, last name, gender, phone, birthdate, admit date, billing address.All the physicians have ID, first name, last name, gender, phone, birthdate, office number, title.There are other personnel in the system, we need to track their first name, last name, gender, phone, birthdate.A patient has one responsible physician. We only need to track the responsible physician in this system.One physician can take care of many or no patients.Some patients are outpatient who are treated and released, others are resident patients who stay in hospital for at least one night. The system stores checkback date for outpatients, and discharge date for resident patients.All resident patients are assigned to a bed. A bed can be assigned to one resident patient.A resident patient can occupy more than one bed (for family members).A bed can be auto adjusted bed, manual adjusted bed, or just normal none-adjustable bed.All beds have bed ID, max weight, room number. Auto adjusted beds have specifications like is the bed need to plug into power outlet, the type of the remote control. The manual adjust beds have specification like the location of the handle.Please use design software Consider the simple linear regression model y= 0+ 1x+, but suppose that 0is known and therefore does not need to be estimated. (a) What is the least squares estimator for 1? Comment on your answer - does this make sense? (b) What is the variance of the least squares estimator ^1that you found in part (a)? (c) Find a 100(1)% CI for 1. Is this interval narrower than the CI we found in the setting that both the intercept and slope are unknown and must be estimated? A rosette test to screen for fetomaternal hemorrhage (FMH) is indicated in all of the following situations, EXCEPT:A) weak D-positive infantB) D-positive infantC) D-positive motherD) D-negative mother Bob resents eating junk food.O EnjoysO LovesO HatesO Admits A bond has a $1,000 par value, 16 years to maturity, and pays a coupon of 6.5% per year, quarterly. The bond is callable in six years at $1,125. If the bond's price is $1,036.89, what is its yield to call?1) 7.14%2) 7.20%3) 7.34%4) 7.29%5) 7.40% toys""r""us is now at macys which means geoffrey the giraffe is part of the macys family now. when is his birthday? if a system's entire set of microoperations consists of 41 statements, how many bits must be used for its microop code? jon's regular physician provides preventive and routine care and also has specialized training in treating conditions of the skeletal and muscular systems. which type of physician does he see? Consider two nodes, A and B, that use the slotted ALOHA protocol to contend for a channel. Suppose node A has more data to transmit than node B, and node A's retransmission probability p Ais greater than node B's retransmission probability, p B. a. Provide a formula for node A's average throughput. What is the total efficiency of the protocol with these two nodes? b. If p A=2p B, is node A's average throughput twice as large as that of node B ? Why or why not? If not, how can you choose p Aand p Bto make that happen? c. In general, suppose there are N nodes, among which node A has retransmission probability 2p and all other nodes have retransmission probability p. Provide expressions to compute the average throughputs of node A and of any other node. Who has responsibility for intelligence and intelligence operations?. Convert the hexadecimal number 3AB8 (base 16 ) to binary. evaluations of hospice care indicate that, compared to patients who receive traditional treatment, hospice patients: A. live longer.B. receive more invasive procedures.C. report higher levels of anxiety.D. receive more interpersonal care. washington selected his cabinet from the southern states. true false early networks did not resemble the networks in use today because they were mainly proprietary and performed poorly compared with today's deployments. A) true b) False the study of international crime rates is an example of select one: a. mesosociology. b. microsociology. c. macrosociology. d. global sociology. Let Y have the lognormal distribution with mean 71.2 and variance 158.40. Compute the following probabilities. (You may find it useful to reference the z table. Round your intermediate calculations to at least 4 decimal places and final answers to 4 decimal places.) Match the descriptions with the words.talking a bill to deathformal charges brought against a public official for high crimes and misdemeanorsamendment attached to a bill likely to pass that does not necessarily relate to the billanything that the government backs as moneyensures that one branch is not more powerful than another