The required probabilities are: P(Y > 150) = 0.1444P(Y < 60) = 0.0787
Given that Y has a lognormal distribution with mean μ = 71.2 and variance σ² = 158.40.
The mean and variance of lognormal distribution are given by: E(Y) = exp(μ + σ²/2) and V(Y) = [exp(σ²) - 1]exp(2μ + σ²)
Now we need to calculate the following probabilities:
P(Y > 150)P(Y < 60)We know that if Y has a lognormal distribution with mean μ and variance σ², then the random variable Z = (ln(Y) - μ) / σ follows a standard normal distribution.
That is, Z ~ N(0, 1).
Therefore, P(Y > 150) = P(ln(Y) > ln(150))= P[(ln(Y) - 71.2) / √158.40 > (ln(150) - 71.2) / √158.40]= P(Z > 1.0642) [using Z table]= 1 - P(Z < 1.0642) = 1 - 0.8556 = 0.1444Also, P(Y < 60) = P(ln(Y) < ln(60))= P[(ln(Y) - 71.2) / √158.40 < (ln(60) - 71.2) / √158.40]= P(Z < -1.4189) [using Z table]= 0.0787
Therefore, the required probabilities are:P(Y > 150) = 0.1444P(Y < 60) = 0.078
Learn more about: probabilities
https://brainly.com/question/29381779
#SPJ11
Determine the present value P you must invest to have the future value A at simple interest rate r after time L. A=$3000.00,r=15.0%,t=13 weeks (Round to the nearest cent)
To achieve a future value of $3000.00 after 13 weeks at a simple interest rate of 15.0%, you need to invest approximately $1,016.95 as the present value. This calculation is based on the formula for simple interest and rounding to the nearest cent.
The present value P that you must invest to have a future value A of $3000.00 at a simple interest rate of 15.0% after a time period of 13 weeks is $2,696.85.
To calculate the present value, we can use the formula: P = A / (1 + rt).
Given:
A = $3000.00 (future value)
r = 15.0% (interest rate)
t = 13 weeks
Convert the interest rate to a decimal: r = 15.0% / 100 = 0.15
Calculate the present value:
P = $3000.00 / (1 + 0.15 * 13)
P = $3000.00 / (1 + 1.95)
P ≈ $3000.00 / 2.95
P ≈ $1,016.94915254
Rounding to the nearest cent:
P ≈ $1,016.95
Therefore, the present value you must invest to have a future value of $3000.00 at a simple interest rate of 15.0% after 13 weeks is approximately $1,016.95.
To know more about interest rate, visit
https://brainly.com/question/29451175
#SPJ11
The language Balanced over Σ={(,), } is defined recursively as follows 1. Λ∈ Balanced. 2. ∀x,y∈ Balanced, both xy and (x) are elements of Balanced. A prefix of a string x is a substring of x that occurs at the beginning of x. Prove by induction that a string x belongs to this language if and only if (iff) the statement B(x) is true. B(x) : x contains equal numbers of left and right parentheses, and no prefix of x contains more right than left. Reminder for this and all following assignments: if you need to prove the "iff" statement, i.e., X⟺ Y, you need to prove both directions, namely, "given X, prove that Y follows from X(X⟹Y) ", and "given Y, prove that X follows from Y(X⟸Y) ".
The language Balanced over Σ = {(, )} is defined recursively as follows: Λ ∈ Balanced, and ∀ x, y ∈ Balanced, both xy and (x) are elements of Balanced. To prove by induction that a string x belongs to this language if and only if the statement B(x) is true. B(x): x contains equal numbers of left and right parentheses, and no prefix of x contains more right than left.
The induction proof can be broken down into two parts as follows: (X ⟹ Y) and (Y ⟹ X).
Let's start by proving that (X ⟹ Y):
Base case: Λ ∈ Balanced. The statement B(Λ) is true since it contains no parentheses. Therefore, the base case holds.
Inductive case: Let x ∈ Balanced and suppose that B(x) is true. We must show that B(xy) and B(x) are both true.
Case 1: xy is a balanced string. xy has equal numbers of left and right parentheses. Thus, B(xy) is true.
Case 2: xy is not balanced. Since x is balanced, it must contain equal numbers of left and right parentheses. Therefore, the number of left parentheses in x is greater than or equal to the number of right parentheses. If xy is not balanced, then it must have more right parentheses than left. Since all of the right parentheses in xy come from y, y must have more right than left. Thus, no prefix of y contains more left than right. Therefore, B(x) is true in this case. Thus, the inductive case holds and (X ⟹ Y) is true.
Now let's prove that (Y ⟹ X):
Base case: Λ has equal numbers of left and right parentheses, and no prefix of Λ contains more right than left. Since Λ contains no parentheses, both statements hold. Therefore, the base case holds.
Inductive case: Let x be a string with equal numbers of left and right parentheses, and no prefix of x contains more right than left. We must show that x belongs to this language. We can prove this by showing that x can be constructed using the two rules that define the language. If x contains no parentheses, it is equal to Λ, which belongs to the language. Otherwise, we can write x as (y) or xy, where y and x are both balanced strings. Since y is a substring of x, it follows that no prefix of y contains more right than left. Also, y contains equal numbers of left and right parentheses. Thus, by induction, y belongs to the language. Similarly, since x is a substring of xy, it follows that x contains equal numbers of left and right parentheses. Moreover, x contains no more right parentheses than left because y, which has no more right than left, is a substring of xy. Thus, by induction, x belongs to the language. Therefore, the inductive case holds, and (Y ⟹ X) is true.
In conclusion, since both (X ⟹ Y) and (Y ⟹ X) are true, we can conclude that x belongs to this language if and only if B(x) is true.
Learn more about induction proof:
https://brainly.com/question/30401663
#SPJ11
MODELING WITH MATHEMATICS The function y=3.5x+2.8 represents the cost y (in dollars ) of a taxi ride of x miles. a. Identify the independent and dependent variables. b. You have enough money to travel at most 20 miles in the taxi. Find the domain and range of the function.
a. The independent variable is x (number of miles traveled) and the dependent variable is y (cost of the taxi ride).
b. The domain of the function is x ≤ 20 (maximum distance allowed) and the range is y ≤ 72.8 (maximum cost for a 20-mile ride).
a. The independent variable is x, representing the number of miles traveled in the taxi. The dependent variable is y, representing the cost of the taxi ride in dollars.
b. The given function is y = 3.5x + 2.8, which represents the cost of a taxi ride based on the number of miles traveled. To find the domain and range of the function for a maximum distance of 20 miles, we need to consider the possible values for x and y within that range.
Domain:
Since the maximum distance allowed is 20 miles, the domain of the function is the set of all possible x-values that satisfy this condition. Therefore, the domain of the function is x ≤ 20.
Range:
To determine the range, we need to calculate the possible values for y corresponding to the given domain. Plugging in the maximum distance of 20 miles into the function, we have:
y = 3.5(20) + 2.8
y = 70 + 2.8
y = 72.8
Hence, the range of the function for a maximum distance of 20 miles is y ≤ 72.8.
To know more about domain and range in mathematical functions, refer here:
https://brainly.com/question/30133157#
#SPJ11
The probability that someone is wearing sunglasses and a hat is 0.25 The probability that someone is wearing a hat is 0.4 The probability that someone is wearing sunglasses is 0.5 Using the probability multiplication rule, find the probability that someone is wearing a hat given that they are wearin
To find the probability that someone is wearing a hat given that they are wearing sunglasses, we can use the probability multiplication rule, also known as Bayes' theorem.
Let's denote:
A = event of wearing a hat
B = event of wearing sunglasses
According to the given information:
P(A and B) = 0.25 (the probability that someone is wearing both sunglasses and a hat)
P(A) = 0.4 (the probability that someone is wearing a hat)
P(B) = 0.5 (the probability that someone is wearing sunglasses)
Using Bayes' theorem, the formula is:
P(A|B) = P(A and B) / P(B)
Substituting the given probabilities:
P(A|B) = 0.25 / 0.5
P(A|B) = 0.5
Therefore, the probability that someone is wearing a hat given that they are wearing sunglasses is 0.5, or 50%.
To learn more about Bayes' theorem:https://brainly.com/question/14989160
#SPJ11
For A=⎝⎛112010113⎠⎞, we have A−1=⎝⎛3−1−2010−101⎠⎞ If x=⎝⎛xyz⎠⎞ is a solution to Ax=⎝⎛20−1⎠⎞, then we have x=y=z= Select a blank to ingut an answer
To determine the values of x, y, and z, we can solve the equation Ax = ⎝⎛20−1⎠⎞.
Using the given value of A^-1, we can multiply both sides of the equation by A^-1:
A^-1 * A * x = A^-1 * ⎝⎛20−1⎠⎞
The product of A^-1 * A is the identity matrix I, so we have:
I * x = A^-1 * ⎝⎛20−1⎠⎞
Simplifying further, we get:
x = A^-1 * ⎝⎛20−1⎠⎞
Substituting the given value of A^-1, we have:
x = ⎝⎛3−1−2010−101⎠⎞ * ⎝⎛20−1⎠⎞
Performing the matrix multiplication:
x = ⎝⎛(3*-2) + (-1*0) + (-2*-1)(0*-2) + (1*0) + (0*-1)(1*-2) + (1*0) + (3*-1)⎠⎞ = ⎝⎛(-6) + 0 + 2(0) + 0 + 0(-2) + 0 + (-3)⎠⎞ = ⎝⎛-40-5⎠⎞
Therefore, the values of x, y, and z are x = -4, y = 0, and z = -5.
To learn more about matrix multiplication:https://brainly.com/question/94574
#SPJ11
verify that each given function is a solution of the differential equation. 5. y"-y=0; y_1(t) = e', y_2(t) = cosh t
This equation is not satisfied for all values of t, so y_2(t) = cosh(t) is not a solution of the differential equation y'' - y = 0.
To verify that y_1(t) = e^t is a solution of the differential equation y'' - y = 0, we need to take the second derivative of y_1 and substitute both y_1 and its second derivative into the differential equation:
y_1(t) = e^t
y_1''(t) = e^t
Substituting these into the differential equation, we get:
y_1''(t) - y_1(t) = e^t - e^t = 0
Therefore, y_1(t) = e^t is indeed a solution of the differential equation.
To verify that y_2(t) = cosh(t) is also a solution of the differential equation y'' - y = 0, we follow the same process:
y_2(t) = cosh(t)
y_2''(t) = sinh(t)
Substituting these into the differential equation, we get:
y_2''(t) - y_2(t) = sinh(t) - cosh(t) = 0
This equation is not satisfied for all values of t, so y_2(t) = cosh(t) is not a solution of the differential equation y'' - y = 0.
Learn more about equation from
https://brainly.com/question/29174899
#SPJ11
Evaluate yyye y 2 dv, where e is the solid hemisphere x 2 1 y 2 1 z2 < 9, y > 0.
The result of the triple integral is: [tex]I_E= [\frac{162}{5} ][/tex]
The solid E is the hemisphere of radius 3. It is the right part of the sphere
[tex]x^{2} +y^2+z^2=9[/tex] of radius 3 that corresponds to [tex]y\geq 0[/tex]
Here we slightly modify the spherical coordinates using the y axis as the azimuthal axis as this is more suitable for the given region. That is we interchange the roles of z and y in the standard spherical coordinate configuration. Now the angle [tex]\theta[/tex] is the polar angle on the xz plane measured from the positive x axis and [tex]\phi[/tex] is the azimuthal angle measured from the y axis.
Then the region can be parametrized as follows:
[tex]x=rcos\thetasin\phi\\\\y=rcos\phi\\\\z=rsin\theta\,sin\phi[/tex]
where the ranges of the variables are:
[tex]0\leq r\leq 3\\\\0\leq \theta\leq \pi \\\\0\leq \phi\leq \pi /2[/tex]
Calculate the triple integral. In the method of change of coordinates in triple integration we need the Jacobian of the transformation that is used to transform the volume element. We have,
[tex]J=r^2sin\phi \,\,\,\,\,[Jacobian \, of \,the\, transformation][/tex]
[tex]y^2=r^2cos^2\phi[/tex]
[tex]I_E=\int\int\int_E y^2dV[/tex]
[tex]I_E=\int_0^2^\pi \int^3_0\int_0^\\\pi /2[/tex][tex](r^2cos^2\phi)(r^2sin\phi)d\phi\, dr\, d\theta[/tex]
[tex]I_E=\int_0^2^\pi \int^3_0\int_0^\\\pi /2[/tex] [tex](r^4cos^2\phi sin\phi)d\phi\, dr\, d\theta[/tex]
Substitute [tex]u=cos \phi, du = -sin\phi \, du[/tex]
[tex]I_E=\int_0^2^\pi \int^3_0[-\frac{r^4}{3}cos^3\phi ]_0^\\\pi /2[/tex][tex]dr \, d\theta[/tex]
[tex]I_E=\int_0^2^\pi \int^3_0(\frac{r^4}{3} )dr \, d\theta[/tex]
[tex]I_E=\int_0^2^\pi [\frac{r^5}{15} ]^3_0 \, d\theta[/tex]
[tex]I_E=\int_0^2^\pi [\frac{3^5}{15} ] \, d\theta[/tex]
[tex]I_E= [\frac{81}{5}\theta ][/tex]
[tex]I_E= [\frac{81}{5}(2\theta) ]\\\\I_E= [\frac{162}{5} ][/tex]
The result of the triple integral is: [tex]I_E= [\frac{162}{5} ][/tex]
Learn more about triple integral at:
https://brainly.com/question/30404807
#SPJ4
Complete question is:
Evaluate [tex]\int\int_E\int y^2 \, dV[/tex] , where E is the solid hemisphere [tex]x^{2} +y^2+z^2=9[/tex], [tex]y\geq 0[/tex]
A manufacturing company produces two models of an HDTV per week, x units of model A and y units of model B with a cost (in dollars) given by the following function.
C(x,y)=3x^2+6y^2
If it is necessary (because of shipping considerations) that x+y=90, how many of each type of set should be manufactured per week to minimize cost? What is the minimum cost? To minimize cost, the company should produce units of model A. To minimize cost, the company should produce units of model B. The minimum cost is $
The answer is 15 and 75 for the number of model A and model B sets produced per week, respectively.
Given: C(x, y) = 3x² + 6y²x + y = 90
To find: How many of each type of set should be manufactured per week to minimize cost? What is the minimum cost?Now, Let's use the Lagrange multiplier method.
Let f(x,y) = 3x² + 6y²
and g(x,y) = x + y - 90
The Lagrange function L(x, y, λ)
= f(x,y) + λg(x,y)
is: L(x, y, λ)
= 3x² + 6y² + λ(x + y - 90)
The first-order conditions for finding the critical points of L(x, y, λ) are:
Lx = 6x + λ = 0Ly
= 12y + λ = 0Lλ
= x + y - 90 = 0
Solving the above three equations, we get: x = 15y = 75
Putting these values in Lλ = x + y - 90 = 0, we get λ = -9
Putting these values of x, y and λ in L(x, y, λ)
= 3x² + 6y² + λ(x + y - 90), we get: L(x, y, λ)
= 3(15²) + 6(75²) + (-9)(15 + 75 - 90)L(x, y, λ)
= 168,750The minimum cost of the HDTVs is $168,750.
To minimize the cost, the company should manufacture 15 units of model A and 75 units of model B per week.
To know more about number visit:
https://brainly.com/question/3589540
#SPJ11
Compute ∂x^2sin(x+y)/∂y and ∂x^2sin(x+y)/∂x
The expression to be evaluated is `∂x²sin(x+y)/∂y` and `∂x²sin(x+y)/∂x`. The value of
`∂x²sin(x+y)/∂y = -cos(x+y)` and `
∂x²sin(x+y)/∂x = -cos(x+y)` respectively.
Compute ∂x²sin(x+y)/∂y
To begin, we evaluate `∂x²sin(x+y)/∂y` using the following formula:
`∂²u/∂y∂x = ∂/∂y (∂u/∂x)`.
The following are the differentiating processes:
`∂/∂x(sin(x+y)) = cos(x+y)`
The following are the differentiating processes:`
∂²(sin(x+y))/∂y² = -sin(x+y)
`Therefore, `∂x²sin(x+y)/∂y
= ∂/∂x(∂sin(x+y)/∂y)
= ∂/∂x(-sin(x+y))
= -cos(x+y)`
Compute ∂x²sin(x+y)/∂x
To begin, we evaluate
`∂x²sin(x+y)/∂x`
using the following formula:
`∂²u/∂x² = ∂/∂x (∂u/∂x)`.
The following are the differentiating processes:
`∂/∂x(sin(x+y)) = cos(x+y)`
The following are the differentiating processes:
`∂²(sin(x+y))/∂x²
= -sin(x+y)`
Therefore,
`∂x²sin(x+y)/∂x
= ∂/∂x(∂sin(x+y)/∂x)
= ∂/∂x(-sin(x+y))
= -cos(x+y)`
The value of
`∂x²sin(x+y)/∂y = -cos(x+y)` and `
∂x²sin(x+y)/∂x = -cos(x+y)` respectively.
Answer:
`∂x²sin(x+y)/∂y = -cos(x+y)` and
`∂x²sin(x+y)/∂x = -cos(x+y)`
To know more about expression visit:
https://brainly.com/question/28170201
#SPJ11
U.S. Farms. As the number of farms has decreased in the United States, the average size of the remaining farms has grown larger, as shown in the table below. Enter years since 1900.(1910−10,1920−20,…)A. What is the explanatory variable? Response variable? (1pt) B. Create a scatterplot diagram and identify the form of association between them. Interpret the association in the context of the problem. ( 2 pts) C. What is the correlational coefficient? (1pt) D. Is the correlational coefficient significant or not? Test the significance of "r" value to establish if there is a relationship between the two variables. (2 pts) E. What is the equation of the linear regression line? Use 4 decimal places. (1pt) F. Interpret the slope and they- intercept in the context of the problem. (2 pts) Slope -y- intercept - G. Use the equation of the linear model to predict the acreage per farm for the year 2015. (Round off to the nearest hundredth. (3pts) H. Calculate the year when the Acreage per farm is 100 . (3pts)
The explanatory variable is the year, which represents the independent variable that explains the changes in the average acreage per farm.
The response variable is the average acreage per farm, which depends on the year.
By plotting the data points on a graph with the year on the x-axis and the average acreage per farm on the y-axis, we can visualize the relationship between these variables. The x-axis represents the explanatory variable, and the y-axis represents the response variable.
To analyze this relationship mathematically, we can perform regression analysis, which allows us to determine the trend and quantify the relationship between the explanatory and response variables. In this case, we can use linear regression to fit a line to the data points and determine the slope and intercept of the line.
The slope of the line represents the average change in the response variable (average acreage per farm) for each unit increase in the explanatory variable (year). In this case, the positive slope indicates that, on average, the acreage per farm has been increasing over time.
The intercept of the line represents the average acreage per farm in the year 1900. It provides a reference point for the regression line and helps us understand the initial condition before any changes occurred.
To know more about average here
https://brainly.com/question/16956746
#SPJ4
A boat is 80 miles away from the marina, sailing directly toward it at 20 miles per hour. Write an equation for the distance of the boat from the marina, d, after t hours.
If a boat is 80 miles away from the marina, sailing directly toward it at 20 miles per hour, then the equation for the distance of the boat from the marina, d, after t hours is d= 20t+ 80
To find the equation for the distance, follow these steps:
Assume the distance of the boat from the marina = d. After time t hours, the boat sails at 20 miles/hour, the direction is the same as the distance between boat and marina at time t. Therefore, the equation for the distance of the boat from the marina after t hours can be found by using the formula as follows: d = d₀ + vt, where,d₀ = initial distance between the boat and the marina = 80 miles, v = velocity of the boat = 20 miles/hour, t = time = t hours.Substituting these values, we get d = 80 + 20t ⇒d = 20t + 80.Learn more about distance:
brainly.com/question/26550516
#SPJ11
. Give an example of a relation with the following characteristics: The relation is a function containing two ordered pairs. Reversing the components in each ordered pair results in a relation that is not a function.
A relation with the following characteristics is { (3, 5), (6, 5) }The two ordered pairs in the above relation are (3,5) and (6,5).When we reverse the components of the ordered pairs, we obtain {(5,3),(5,6)}.
If we want to obtain a function, there should be one unique value of y for each value of x. Let's examine the set of ordered pairs obtained after reversing the components:(5,3) and (5,6).
The y-value is the same for both ordered pairs, i.e., 5. Since there are two different x values that correspond to the same y value, this relation fails to be a function.The above example is an instance of a relation that satisfies the mentioned characteristics.
To know more about ordered pairs visit:
https://brainly.com/question/28874341
#SPJ11
the area of the pool was 4x^(2)+3x-10. Given that the depth is 2x-3, what is the wolume of the pool?
The area of a rectangular swimming pool is given by the product of its length and width, while the volume of the pool is the product of the area and its depth.
He area of the pool is given as [tex]4x² + 3x - 10[/tex], while the depth is given as 2x - 3. To find the volume of the pool, we need to multiply the area by the depth. The expression for the area of the pool is: Area[tex]= 4x² + 3x - 10[/tex]Since the length and width of the pool are not given.
We can represent them as follows: Length × Width = 4x² + 3x - 10To find the length and width of the pool, we can factorize the expression for the area: Area
[tex]= 4x² + 3x - 10= (4x - 5)(x + 2)[/tex]
Hence, the length and width of the pool are 4x - 5 and x + 2, respectively.
To know more about area visit:
https://brainly.com/question/30307509
#SPJ11
Find the area of the surface obtained by rotating the curve x=8 cos ^{3} θ, y=8 sin ^{3} θ, 0 ≤ θ ≤ π / 2 about the y -axis.
The area of the surface obtained by rotating the curve x = 8 cos³(θ), y = 8 sin³(θ), 0 ≤ θ ≤ π/2, about the y-axis is 32π/3 square units.
How did we get the value?To find the area of the surface obtained by rotating the curve about the y-axis, we can use the formula for surface area of revolution. The formula is given by:
A = 2π∫[a, b] x × √(1 + (dx/dy)²) dy,
where [a, b] is the interval of integration along the y-axis.
Let's start by finding the expression for dx/dy:
x = 8 cos³(θ)
dx/dθ = -24 cos²(θ)sin(θ)
dx/dy = (dx/dθ) / (dy/dθ)
y = 8 sin³(θ)
dy/dθ = 24 sin²(θ)cos(θ)
dx/dy = (-24 cos²(θ)sin(θ)) / (24 sin²(θ)cos(θ))
= - cos(θ) / sin(θ)
= -cot(θ)
Now, we need to determine the interval of integration, [a, b], which corresponds to the given range of θ, 0 ≤ θ ≤ π/2. In this range, sin(θ) and cos(θ) are always positive, so we can express the interval as [0, π/2].
Using the given information, the formula for the surface area of revolution becomes:
A = 2π∫[0, π/2] (8 cos³(θ)) × √(1 + (-cot(θ))²) dy
= 16π∫[0, π/2] cos³(θ) × √(1 + cot²(θ)) dy
To simplify the integral, we can use the trigonometric identity: 1 + cot²(θ) = csc²(θ).
A = 16π∫[0, π/2] cos³(θ) × √(csc²(θ)) dy
= 16π∫[0, π/2] cos³(θ) × csc(θ) dy
Now, let's proceed with the integration:
A = 16π∫[0, π/2] (cos³(θ) / sin(θ)) dy
To simplify further, we can express the integral in terms of θ instead of y:
A = 16π∫[0, π/2] (cos³(θ) / sin(θ)) (dy/dθ) dθ
= 16π∫[0, π/2] cos³(θ) dθ
Now, we need to evaluate this integral:
A = 16π∫[0, π/2] cos³(θ) dθ
This integral can be solved using various methods, such as integration by parts or trigonometric identities. Let's use the reduction formula to evaluate it:
[tex]∫ cos^n(θ) dθ = (1/n) × cos^(n-1)(θ) × sin(θ) + [(n-1)/n] × ∫ cos^(n-2)(θ) dθ[/tex]
Applying this formula to our integral, we have:
[tex]A = 16π * [(1/3) * cos^2(θ) * sin(θ) + (2/3) * ∫ cos(θ) dθ]\\= 16π * [(1/3) * cos^2(θ) * sin(θ) + (2/3) * sin(θ)]
[/tex]
Now, let's evaluate the definite integral
for the given range [0, π/2]:
[tex]A = 16π * [(1/3) * cos^2(π/2) * sin(π/2) + (2/3) * sin(π/2)] \\= 16π * [(1/3) * 0 * 1 + (2/3) * 1]\\= 16π * (2/3)\\= 32π/3[/tex]
Therefore, the area of the surface obtained by rotating the curve x = 8 cos³(θ), y = 8 sin³(θ), 0 ≤ θ ≤ π/2, about the y-axis is 32π/3 square units.
learn more about rotating surface area: https://brainly.com/question/16519513
#SPJ4
Let P1(z)=a0+a1z+⋯+anzn and P2(z)=b0+b1z+⋯+bmzm be complex polynomials. Assume that these polynomials agree with each other when z is restricted to the real interval (−1/2,1/2). Show that P1(z)=P2(z) for all complex z
By induction on the degree of R(z), we have R(z)=0,and therefore Q(z)=0. This implies that P1(z)=P2(z) for all z
Let us first establish some notations. Since P1(z) and P2(z) are polynomials of degree n and m, respectively, and they agree on the interval (−1/2,1/2), we can denote the differences between P1(z) and P2(z) by the polynomial Q(z) given by, Q(z)=P1(z)−P2(z). It follows that Q(z) has degree at most max(m,n) ≤ m+n.
Thus, we can write Q(z) in the form Q(z)=c0+c1z+⋯+c(m+n)z(m+n) for some complex coefficients c0,c1,...,c(m+n).Since P1(z) and P2(z) agree on the interval (−1/2,1/2), it follows that Q(z) vanishes at z=±1/2. Therefore, we can write Q(z) in the form Q(z)=(z+1/2)k(z−1/2)ℓR(z), where k and ℓ are non-negative integers and R(z) is some polynomial in z of degree m+n−k−ℓ. Since Q(z) vanishes at z=±1/2, we have, R(±1/2)=0.But R(z) is a polynomial of degree m+n−k−ℓ < m+n. Hence, by induction on the degree of R(z), we have, R(z)=0,and therefore Q(z)=0. This implies that P1(z)=P2(z) for all z. Hence, we have proved the desired result.
Learn more about induction
https://brainly.com/question/32376115
#SPJ11
an airplane has crashed on a deserted island off the coast of fiji. the survivors are forced to learn new behaviors in order to adapt to the situation and each other.
In a case whereby the survivors are forced to learn new behaviors in order to adapt to the situation and each other. This is an example of Emergent norm theory.
What is Emergent norm?According to the emerging norm theory, groups of people congregate when a crisis causes them to reassess their preconceived notions of acceptable behavior and come up with new ones.
When a crowd gathers, neither a leader nor any specific norm for crowd conduct exist. Emerging conventions emerged on their own, such as the employment of umbrellas as a symbol of protest and as a defense against police pepper spray. To organize protests, new communication tools including encrypted messaging applications were created.
Learn more about behaviors at:
https://brainly.com/question/1741474
#SPJ4
complete question;
An airplane has crashed on a deserted island off the coast of Fiji. The survivors are forced to learn new behaviors in order to adapt to the situation and each other. This is an example of which theory?
What is the probability of rolling a 1 on a die or rolling an even number on a die? P(E)=P( rolling a 1) −P( rolling an even number) P(E)=P( rolling a 1) ×P( rolling an even number) P(E)=P( rolling a 1 )+P( rolling an even number) P(E)=P( rolling a 1) /P( rolling an even number) Saved In a binomial distribution, which R function would we use to calculate a value given the probability of the outcome being less than that value: qbinom() pbinom() dbinom() rbinom0 ( )
The probability of rolling a 1 on a die or rolling an even number on a die is 1/3. This is because the probability of rolling a 1 is 1/6, the probability of rolling an even number is 1/2
The probability of rolling a 1 on a die or rolling an even number on a die is P(E) = P(rolling a 1) + P(rolling an even number).
There are six possible outcomes of rolling a die: 1, 2, 3, 4, 5, or 6.
There are three even numbers: 2, 4, and 6. So, the probability of rolling an even number is 3/6, which simplifies to 1/2 or 0.5.
The probability of rolling a 1 is 1/6.
Therefore, P(E) = 1/6 + 1/2 = 2/6 or 1/3.
The correct answer is P(E) = P(rolling a 1) + P(rolling an even number).
If we roll a die, then there are six possible outcomes, which are 1, 2, 3, 4, 5, and 6.
There are three even numbers, which are 2, 4, and 6, and there is only one odd number, which is 1.
Thus, the probability of rolling an even number is P(even) = 3/6 = 1/2, and the probability of rolling an odd number is P(odd) = 1/6.
The question asks for the probability of rolling a 1 or an even number. We can solve this problem by using the addition rule of probability, which states that the probability of A or B happening is the sum of the probabilities of A and B, minus the probability of both A and B happening.
We can write this as:
P(1 or even) = P(1) + P(even) - P(1 and even)
However, the probability of rolling a 1 and an even number at the same time is zero, because they are mutually exclusive events.
Therefore, P(1 and even) = 0, and we can simplify the equation as follows:P(1 or even) = P(1) + P(even) = 1/6 + 1/2 = 2/6 = 1/3
In conclusion, the probability of rolling a 1 on a die or rolling an even number on a die is 1/3. This is because the probability of rolling a 1 is 1/6, the probability of rolling an even number is 1/2, and the probability of rolling a 1 and an even number at the same time is 0. To solve this problem, we used the addition rule of probability and found that P(1 or even) = P(1) + P(even) - P(1 and even) = 1/6 + 1/2 - 0 = 1/3. Therefore, the answer is P(E) = P(rolling a 1) + P(rolling an even number).
To know more about probability visit:
brainly.com/question/31828911
#SPJ11
Use pumping Lemma to prove that the following languages are not regular L3={ωωRβ∣ω,β∈{0,1}+} . L4={1i0j1k∣i>j and i0}
The language L3 is not regular. It can be proven using the pumping lemma for regular languages.
Here is the proof:
Assume L3 is a regular language.
Let w = xyβ, where β is a non-empty suffix of ω and x is a prefix of ω of length p or greater.
We can write w as w = xyβ = ωαββ R, where α is the suffix of x of length p or greater. Because L3 is a regular language, there exists a string v such that uviw is also in L3 for every i ≥ 0.
Let i = 0.
Then u0viw = ωαββR is in L3. By the pumping lemma, we have that v = yz and |y| > 0 and |uvyz| ≤ p. But this means that we can pump y any number of times and still get a string in L3, which is a contradiction.
Therefore, L3 is not a regular language.
To know more about language visit:
https://brainly.com/question/32089705
#SPJ11
A researcher in physiology has decided that a good mathematical model for the number of impulses fired after a nerve has been stimulated is given by y=−x 2
+40x−90, where y is the number of responses per millisecond and x is the number of milliseconds since the nerve was stimulated. (a) When will the maximum firing rate be reached? (b) What is the maximum firing rate? (a) The maximum number of impulses fired occurs at milliseconds. (b) The maximum number of impulses per millisecond is
To find the maximum firing rate and the corresponding time when it occurs, we can analyze the given quadratic function y = -x^2 + 40x - 90.Given that y = -x² + 40x - 90 (y is the number of responses per millisecond and x is the number of milliseconds since the nerve was stimulated)Now, we need to find out the maximum firing rate and the corresponding time when it occurs.(a) When will the maximum firing rate be reached? For that, we need to find the vertex of the quadratic equation y = -x² + 40x - 90. The x-coordinate of the vertex can be found by using the formula: `x=-b/2a`Here, a = -1 and b = 40Substituting the values, we get: x = -40 / 2(-1)x = 20 milliseconds Therefore, the maximum firing rate will be reached after 20 milliseconds. (b) What is the maximum firing rate? The maximum firing rate can be found by substituting the value of x obtained above in the quadratic equation. `y = -x² + 40x - 90`Substituting x = 20, we get: y = -(20)² + 40(20) - 90y = -400 + 800 - 90y = 310Therefore, the maximum firing rate is 310 impulses per millisecond. Answer: (a) 20 milliseconds; (b) 310 impulses per millisecond.
To learn more about maximum firing rate :https://brainly.com/question/29803395
#SPJ11
You need to enclose your garden with a fence to keep the deer out. You buy 50 feet of fence and know that the length of your garden is 4 times the width. What are the dimensions of your garden?
The dimensions of the garden are 5 feet by 20 feet.
The width of the garden can be represented as 'w'. The length of the garden is 4 times the width, which can be represented as 4w.
The perimeter of a rectangle, such as a garden, is calculated as:P = 2l + 2w.
In this case, the perimeter is given as 50 feet.
Therefore, we can write:50 = 2(4w) + 2w.
Simplifying the equation, we get:50 = 8w + 2w
50 = 10w
5 = w.
So the width of the garden is 5 feet. The length of the garden is 4 times the width, which is 4 x 5 = 20 feet.
Therefore, the dimensions of the garden are 5 feet by 20 feet.
To know more about dimensions click here:
https://brainly.com/question/32471530
#SPJ11
The survey has bias. (a) Determine the type of bias. (b) Suggest a remedy. A poliing organization conducts a study to estimate the percentage of households that have pets. It mails a questionnaire to 1555 randomly selected households across the country and asks the head of each household if he or she has pets. Of the 1555 households selected, 50 responded. (a) Which of these best describos the blas in the survoy? Sampling bias Response bias Nonresponse biass Undercoverage blas (b) How can the bias be remedied? The survey has bias. (a) Determine the type of bias. (b) Suggest a remedy. A polling organization conducts a study to estimate the percentage of households that have pets. It mails a questionnaire to 1555 randomly selected households across the country and asks the head of each household if he or she has pets. Of the 1555 households selected, 50 responded. Underopverage bias (b) How can the blas be remedied? A. The polling organization should mail the questionnaire to each person in the households.
(a) The type of bias in the survey is non-response bias
(b) The bias can be remedied by increasing the response rate, using follow-up methods, analyzing respondent characteristics, employing alternative survey methods, and utilizing statistical techniques such as weighting or imputation.
(a) Determining the type of bias in the survey:
The survey exhibits nonresponse bias.
Nonresponse bias occurs when the individuals who choose not to respond to the survey differ in important ways from those who do respond, leading to a potential distortion in the survey results.
(b) Suggesting a remedy for the bias:
One possible remedy for nonresponse bias is to increase the response rate.
This can be done by providing incentives or rewards to encourage participation, such as gift cards or entry into a prize draw.
Following up with nonrespondents through phone calls, emails, or personal visits can also help improve the response rate.
Additionally, comparing the characteristics of respondents and nonrespondents and adjusting the results based on any identified biases can help mitigate the bias.
Exploring alternative survey methods, such as online surveys or telephone interviews, may reach a different segment of the population and improve the representation.
Statistical techniques like weighting or imputation can be used to adjust for nonresponse and minimize its impact on the survey estimates.
Therefore, nonresponse bias is present in the survey, and remedies such as increasing the response rate, follow-up methods, analysis of respondent characteristics, alternative survey methods, and statistical adjustments can be employed to address the bias and improve the accuracy of the survey results.
To know more about bias, visit:
https://brainly.com/question/13500874
#SPJ11
Let f be a function from A to B. (a) Show that if f is injective and E⊆A, then f −1
(f(E))=E. Give an example to show that equality need not hold if f is not injective. (b) Show that if f is surjective and H⊆B, then f(f −1
(H))=H. Give an example to show that equality need not hold if f is not surjective.
(a) If f is an injective function from set A to set B and E is a subset of A, then f^(-1)(f(E)) = E. This is because an injective function assigns a unique element of B to each element of A.
Therefore, f(E) will contain distinct elements of B corresponding to the elements of E. Now, taking the inverse image of f(E), f^(-1)(f(E)), will retrieve the elements of A that were originally mapped to the elements of E. Since f is injective, each element in E will have a unique pre-image in A, leading to f^(-1)(f(E)) = E.
Example: Let A = {1, 2, 3}, B = {4, 5}, and f(1) = 4, f(2) = 5, f(3) = 5. Consider E = {1, 2}. f(E) = {4, 5}, and f^(-1)(f(E)) = {1, 2} = E.
(b) If f is a surjective function from set A to set B and H is a subset of B, then f(f^(-1)(H)) = H. This is because a surjective function covers all elements of B. Therefore, when we take the inverse image of H, f^(-1)(H), we obtain all the elements of A that map to elements in H. Applying f to these pre-images will give us the original elements in H, resulting in f(f^(-1)(H)) = H.
Example: Let A = {1, 2}, B = {3, 4}, and f(1) = 3, f(2) = 4. Consider H = {3, 4}. f^(-1)(H) = {1, 2}, and f(f^(-1)(H)) = {3, 4} = H.
In conclusion, when f is injective, f^(-1)(f(E)) = E holds true, and when f is surjective, f(f^(-1)(H)) = H holds true. However, these equalities may not hold if f is not injective or surjective.
To know more about injective, visit;
https://brainly.com/question/32604303
#SPJ11
You are quoted an APR (annual percentage rate) of .0888 on a loan. The APR is a stated rate. The loan has monthly compounding. Q 27 Question 27 (2 points) What is the periodic monthly rate? Select one: .0071 .0074 .0148 .0444 .0800 Q 28 Question 28 (6 points) What is the equivalent effective semiannual rate? Select one: .0012 .0018 .0149 .0299 .0434 .0452 .0925
Q27: The periodic monthly rate is 0.0074, Q28: The equivalent effective semiannual rate is 0.0299.
Q27: To calculate the periodic monthly rate, we divide the APR by the number of compounding periods in a year. Since the loan has monthly compounding, there are 12 compounding periods in a year.
Periodic monthly rate = APR / Number of compounding periods per year
= 0.0888 / 12
= 0.0074
Q28: To find the equivalent effective semiannual rate, we need to consider the compounding period and adjust the periodic rate accordingly. In this case, the loan has monthly compounding, so we need to calculate the effective rate over a semiannual period.
Effective semiannual rate = (1 + periodic rate)^Number of compounding periods per semiannual period - 1
= (1 + 0.0074)^6 - 1
= 1.0299 - 1
= 0.0299
The periodic monthly rate for the loan is 0.0074, and the equivalent effective semiannual rate is 0.0299. These calculations take into account the APR and the frequency of compounding to determine the rates for the loan.
To know more about rate , visit;
https://brainly.com/question/29781084
#SPJ11
You measure the weight of 53 backpacks, and find they have a mean weight of 52 ounces. Assume the population standard deviation is 11.1 ounces. Based on this, what is the maximal margin of error associated with a 96% confidence interval for the true population mean backpack weight. (Use technology; do not assume specific values of z.)
Give your answer as a decimal, to two places
The maximal margin of error associated with a 96% confidence interval for the true population mean backpack weight is approximately 3.842 ounces.
To find the maximal margin of error for a 96% confidence interval, we need to determine the critical value associated with a 96% confidence level and multiply it by the standard deviation of the sample mean.
Since the sample size is large (n > 30) and we have the population standard deviation, we can use the Z-score to find the critical value.
The critical value for a 96% confidence level can be obtained using a standard normal distribution table or a calculator. For a two-tailed test, the critical value is the value that leaves 2% in the tails, which corresponds to an area of 0.02.
The critical value for a 96% confidence level is approximately 2.05.
The maximal margin of error is then given by:
Maximal Margin of Error = Critical Value * (Standard Deviation / √n)
Given:
Mean weight of backpacks (μ) = 52 ounces
Population standard deviation (σ) = 11.1 ounces
Sample size (n) = 53
Critical value for a 96% confidence level = 2.05
Maximal Margin of Error = 2.05 * (11.1 / √53) ≈ 3.842
Therefore, the maximal margin of error associated with a 96% confidence interval for the true population mean backpack weight is approximately 3.842 ounces.
Learn more about population from
https://brainly.com/question/25896797
#SPJ11
The point P(1,0) lies on the curve y=sin( x/13π). (a) If Q is the point (x,sin( x
/13π)), find the slope of the secant line PQ (correct to four decimal places) for the following values of x. (i) 2 (ii) 1.5 (iii) 1.4 (iv) 1.3 (v) 1.2 (vi) 1.1 (vii) 0.5 (c) By choosing appropriate secant lines, estimate the slope of the tangent line at P.
(Round your answer to two decimal places.)
Slope of PQ when x is 2 is 0.1378, x is 1.5 is 0.0579, x is 1.4 is 0.0550, x is 1.3 is 0.0521, x is 1.2 is 0.0493, x is 1.1 is 0.0465, x is 0.5 is -0.0244 and the slope of the tangent line at P is 0.0059.
Given,
y = sin(x/13π), P(1, 0) and Q(x, sin(x/13π).
(i) x = 2
The coordinates of point Q are (2, sin(2/13π))
Slope of PQ = (y₂ - y₁)/(x₂ - x₁)
= (sin(2/13π) - 0)/(2 - 1)
= sin(2/13π)
≈ 0.1378
(ii) x = 1.5
The coordinates of point Q are (1.5, sin(1.5/13π))
Slope of PQ = (y₂ - y₁)/(x₂ - x₁)
= (sin(1.5/13π) - 0)/(1.5 - 1)
= sin(1.5/13π) / 0.5
≈ 0.0579
(iii) x = 1.4
The coordinates of point Q are (1.4, sin(1.4/13π))
Slope of PQ = (y₂ - y₁)/(x₂ - x₁)
= (sin(1.4/13π) - 0)/(1.4 - 1)
= sin(1.4/13π) / 0.4
≈ 0.0550
(iv) x = 1.3
The coordinates of point Q are (1.3, sin(1.3/13π))
Slope of PQ = (y₂ - y₁)/(x₂ - x₁)
= (sin(1.3/13π) - 0)/(1.3 - 1)
= sin(1.3/13π) / 0.3
≈ 0.0521
(v) x = 1.2
The coordinates of point Q are (1.2, sin(1.2/13π))
Slope of PQ = (y₂ - y₁)/(x₂ - x₁)
= (sin(1.2/13π) - 0)/(1.2 - 1)
= sin(1.2/13π) / 0.2
≈ 0.0493
(vi) x = 1.1
The coordinates of point Q are (1.1, sin(1.1/13π))
Slope of PQ = (y₂ - y₁)/(x₂ - x₁)
= (sin(1.1/13π) - 0)/(1.1 - 1)
= sin(1.1/13π) / 0.1
≈ 0.0465
(vii) x = 0.5
The coordinates of point Q are (0.5, sin(0.5/13π))
Slope of PQ = (y₂ - y₁)/(x₂ - x₁)
= (sin(0.5/13π) - 0)/(0.5 - 1)
= sin(0.5/13π) / (-0.5)
≈ -0.0244
By choosing appropriate secant lines, estimate the slope of the tangent line at P.
Since P(1, 0) is a point on the curve, the tangent line at P is the line that passes through P and has the same slope as the curve at P.
We can approximate the slope of the tangent line by choosing a secant line between P and another point Q that is very close to P.
So, let's take Q(1+150, sin(151/13π)).
Slope of PQ = (y₂ - y₁)/(x₂ - x₁)
= (sin(151/13π) - 0)/(151 - 1)
= sin(151/13π) / 150
≈ 0.0059
The slope of the tangent line at P ≈ 0.0059.
Learn more about Secant Line from the given link :
https://brainly.com/question/30162649
#SPJ11
To find the slope of the secant line PQ, substitute the values of x into the given equation and apply the slope formula. To estimate the slope of the tangent line at point P, find the slopes of secant lines that approach point P by choosing values of x closer and closer to 1.
Explanation:To find the slope of the secant line PQ, we need to find the coordinates of point Q for each given value of x. Then we can use the slope formula to calculate the slope. For example, when x = 2, the coordinates of Q are (2, sin(2/13π)). Substitute the values into the slope formula and evaluate. Repeat the same process for the other values of x.
To estimate the slope of the tangent line at point P, we can choose secant lines that get closer and closer to the point. For example, we can choose x = 1.9, x = 1.99, x = 1.999, and so on. Calculate the slope of each secant line and observe the pattern. The slope of the tangent line at point P is the limit of these slopes as x approaches 1.
Learn more about Slope of secant and tangent lines here:https://brainly.com/question/33894348
#SPJ12
Prove that the maximum number of edges in a bipartite subgraph of the Petersen graph is ≤13. (b) Find a bipartite subgraph of the Petersen graph with 12 edges.
(a) Maximum edges in bipartite subgraph of Petersen graph ≤ 13.
(b) Example bipartite subgraph of Petersen graph with 12 edges.
(a) To prove that the maximum number of edges in a bipartite subgraph of the Petersen graph is ≤13, we can use the fact that the Petersen graph has 10 vertices and 15 edges.
Assume that we have a bipartite subgraph of the Petersen graph. Since it is bipartite, we can divide the 10 vertices into two sets, A and B, such that all edges in the subgraph are between vertices from set A and set B.
Now, let's consider the maximum number of edges that can exist between the two sets, A and B. The maximum number of edges will occur when all vertices from set A are connected to all vertices from set B.
In the Petersen graph, each vertex is connected to exactly three other vertices. Therefore, in the bipartite subgraph, each vertex in set A can have at most three edges connecting it to vertices in set B. Since set A has 5 vertices, the maximum number of edges from set A to set B is 5 * 3 = 15.
Similarly, each vertex in set B can have at most three edges connecting it to vertices in set A. Since set B also has 5 vertices, the maximum number of edges from set B to set A is also 5 * 3 = 15.
However, each edge is counted twice (once from set A to set B and once from set B to set A), so we need to divide the total count by 2. Therefore, the maximum number of edges in the bipartite subgraph is 15 / 2 = 7.5, which is less than or equal to 13.
Hence, the maximum number of edges in a bipartite subgraph of the Petersen graph is ≤13.
(b) To find a bipartite subgraph of the Petersen graph with 12 edges, we can divide the 10 vertices into two sets, A and B, such that each vertex in set A is connected to exactly two vertices in set B.
One possible bipartite subgraph with 12 edges can be formed by choosing the following sets:
- Set A: {1, 2, 3, 4, 5}
- Set B: {6, 7, 8, 9, 10}
In this subgraph, each vertex in set A is connected to exactly two vertices in set B, resulting in a total of 10 edges. Additionally, we can choose two more edges from the remaining edges of the Petersen graph to make a total of 12 edges.
Note that there may be other valid bipartite subgraphs with 12 edges, but this is one example.
Learn more about bipartite subgraph:
https://brainly.com/question/28062985
#SPJ11
suppose a u.s. firm purchases some english china. the china costs 1,000 british pounds. at the exchange rate of $1.45 = 1 pound, the dollar price of the china is
The dollar price of china is $1,450 at the given exchange rate.
A US firm purchases some English China. The China costs 1,000 British pounds. The exchange rate is $1.45 = 1 pound. To find the dollar price of the china, we need to convert 1,000 British pounds to US dollars. Using the given exchange rate, we can convert 1,000 British pounds to US dollars as follows: 1,000 British pounds x $1.45/1 pound= $1,450. Therefore, the dollar price of china is $1,450.
To know more about exchange rate: https://brainly.com/question/25970050
#SPJ11
a model scale is 1 in. = 1.5 ft. if the actual object is 18 feet, how long is the model? a) 12 inches b) 16 inches c) 24 inches d) 27 inches
To find the length of the model, we need to use the given scale, which states that 1 inch on the model represents 1.5 feet in reality.
The length of the actual object is given as 18 feet. Let's calculate the length of the model:
Length of model = Length of actual object / Scale factor
Length of model = 18 feet / 1.5 feet/inch
Length of model = 12 inches
Therefore, the length of the model is 12 inches. Therefore, the correct option is (a) 12 inches.
Learn more about Length here :
https://brainly.com/question/29133107
#SPJ11
Given are three simple linear equations in the format of y=mx+b. Equation 1: y=25,105+0.69x Equation 2:y=7,378+1.41x Equation 3:y=12.509+0.92x Instructions 1. Plot and label all equations 1. 2 and 3 on the same graph paper. 2. The graph must show how these equations intersect with each other if they do. Label each equation (8 pts.). 3. Compute each Interception point (coordinate). On the graph label each interception point with its coordinate (8 pts.) 4. Upload your graph in a pdf format (zero point for uploading a non-pdf file) by clicking in the text box below and selecting the paper dip symbol.
According to given information, the graph plotting and uploading steps are given below.
Given linear equations are: y = 25,105 + 0.69xy = 7,378 + 1.41xy = 12.509 + 0.92x
To plot and label the given linear equations, follow these steps:
Draw a graph on a graph paper with x and y-axis.
Draw the line for each linear equation by identifying two points on the line and connecting them using a straight line. To find two points on the line, substitute any value of x and solve for y using the given equation. This will give you one point on the line.
Now, substitute a different value of x and solve for y.
This will give you another point on the line.
Label each line with the equation it represents.
Find the point of intersection of each pair of lines by solving the system of equations formed by those two lines. You can do this by substituting one equation into the other to find the value of x.
Then, substitute this value of x back into either equation to find the value of y. This will give you the point of intersection of those two lines.
Label each point of intersection with its coordinates.
Once you have drawn all three lines and identified their points of intersection, your graph is complete.
Finally, upload your graph in pdf format.
To know more about coordinates, visit:
https://brainly.com/question/32836021
#SPJ11
espn was launched in april 2018 and is a multi-sport, direct-to-consumer video service. its is over 2 million subscribers who are exposed to advertisements at least once a month during the nfl and nba seasons.
In summary, ESPN is a multi-sport, direct-to-consumer video service that was launched in April 2018.
It has gained over 2 million subscribers who are exposed to advertisements during the NFL and NBA seasons.
ESPN is a multi-sport, direct-to-consumer video service that was launched in April 2018.
It has over 2 million subscribers who are exposed to advertisements at least once a month during the NFL and NBA seasons.
The launch of ESPN in 2018 marked the introduction of a new platform for sports enthusiasts to access their favorite sports content.
By offering a direct-to-consumer video service, ESPN allows subscribers to stream sports events and related content anytime and anywhere.
With over 2 million subscribers, ESPN has built a significant user base, indicating the popularity of the service.
These subscribers have the opportunity to watch various sports events and shows throughout the year.
During the NFL and NBA seasons, these subscribers are exposed to advertisements at least once a month.
This advertising strategy allows ESPN to generate revenue while providing quality sports content to its subscribers.
Learn more about: ESPN
https://brainly.com/question/5690196
#SPJ11