Study this image.

The Continental crust and Lithosphere on the right are moving left toward the Continental crust and Lithosphere on the left that are moving right and pushing down below the Asthenosphere. A layer of Ancient oceanic crust is beneath the Lithosphere on the right.

Which feature forms at this plate boundary?

mountains
rift valleys
volcanoes
island chai

Answers

Answer 1

Answer:

Mountains:)

Explanation:

It's the only feature in this list that has an oceanic crust below the Lithosphere

I hope this helps you! Mark as brainliest, please! :)

Answer 2

Mountains are formed at this plate boundary, the bulk of earthquakes are brought on by small-scale movement along plate boundaries, hence option A is correct.

What is plate boundary?

A plate boundary is defined as a three-dimensional surface or region where the velocity of one lithospheric plate in relation to the one next to it significantly changes.

Plate boundaries near the edge of the lithospheric plates might be conservative, divergent, or convergent. Wide zones of distortion are frequently observed at plate borders due to the connection between two plates.

Tectonic plate barrier where the plates are moving in opposite directions, either horizontally or vertically, rather than towards or away from one another, additionally known as a conservative plate boundary.

Therefore, option A is correct.

Learn more about plate boundary, here:

https://brainly.com/question/18256552

#SPJ7


Related Questions

what is the polarity of black pepper

Answers

Answer:

Polarity in chemistry referred to physical properties of compounds related to solubility, melting and boiling properties.

Polarity of black pepper can be seen when black pepper is sprinkled on water. The balck pepper float on water and get displaced if touched.

It means black pepper is non-polar and have no difference in electronegativity between bonded atoms. Black pepper is so light in weight and non-polar, the surface tension of water keep it floating in the water.

How much heat is liberated at constant pressure when 1.41 g of potassium metal reacts with 6.52 mL of liquid iodine monochloride (d = 3.24 g/mL)? 2K(s) + ICl(l) → KCl(s) + KI(s)

Answers

Answer:

The correct answer is -  13.33 kJ of heat

Explanation:

To know which one is the limiting reagent, determine the number of moles of each reagent in order .

n(K) = mass/atomic weight = 1.41/39 = 0.036 moles

Density of ICl = Mass/Volume

3.24 = Mass/6.52

Mass of ICl = 21.12 g

n(ICl) = mass/molar mass = 21.12/162.35 = 0.130 moles

2 moles of K reacts with 1 mole of ICl

0.036 moles of K will react with = 0.036/2 = 0.018 moles of ICl

since the amount of moles of ICl is more than 0.018, it is in excess and hence K is the limiting reagent. Now, use the balance equation to determine the amount of heat liberated:

2 moles of K gives out -740.71 kJ of heat

1 mole of K will give out = -740.71/2 = 370.36 kJ of heat

0.036 moles of K will give out = 0.036 × 370.36 = 13.33 kJ of heat

Thus, the correct answer is -  13.33 kJ of heat

The amount of heat liberated at constant pressure is -13.33 kJ

The given parameters are:

Mass of potassium metal = 1.41gAmount of liquid iodine monochloride = 6.52 mL

Start by calculating the number (n) of moles of each reagent using:

[tex]n = \frac{Mass}{Atomic\ weight }[/tex]

For the potassium metal, we have:

[tex]n_k = \frac{1.41g}{39g/mole}[/tex] ---where 39 is the atomic weight of potassium

[tex]n_k = 0.036\ moles[/tex]

For the liquid iodine monochloride, we start by calculating its mass using:

[tex]Mass = Density \times Volume[/tex]

So, we have:

[tex]Mass = 3.24 \times 6.52[/tex]

[tex]Mass = 21.12g[/tex]

The number of moles is then calculated as:

[tex]n_I=\frac{21.12g}{162.35}[/tex]

[tex]n_I = 0.130\ moles[/tex]

The reaction equation 2K(s) + ICl(l) → KCl(s) + KI(s) means that:

2 moles of potassium reacts with 1 mole of liquid iodine monochloride.

So,  0.036 moles of potassium will react with the following moles of liquid iodine monochloride.

[tex]A = \frac{0.036}{2}[/tex]

[tex]A = 0.018\ moles[/tex]

i.e. 0.036 moles of potassium will react with of liquid iodine monochloride

By comparison: 0.018 moles is less than 0.036 moles

So, the amount of heat liberated at constant pressure is:

[tex]Amount = 0.036 \times -\frac{740.71}{2} kJ[/tex]

[tex]Amount = -13.33 kJ[/tex]

Hence, the amount of heat liberated at constant pressure is -13.33 kJ

Read more about heat at:

https://brainly.com/question/13439286

Why does the excess of base used in these eliminations favor the E2 over the E1 mechanism for elimination

Answers

Answer:

The base is involved in the rate determining step of an E2 reaction mechanism

Explanation:

Let us get back to the basics. Looking at an E1 reaction, the rate determining step is unimolecular, that is;

Rate = k [Carbocation] since the rate determining step is the formation of a carbonation.

For an E2 reaction however, the reaction is bimolecular hence for the rate determining step we can write;

Rate = k[alkyl halide] [base]

The implication of this is that an excess of either the alkyl halide or base will facilitate an E2 reaction.

Hence, when excess base is used, E2 reaction is favoured since the base is involved in its rate determining step. In an E1 reaction, the base is not involved in the rate determining step hence an excess of the base has no effect on an E1 reaction.

The average molecular speed in a sample of Ar gas at a certain temperature is 391 m/s. The average molecular speed in a sample of Ne gas is ______ m/s at the same temperature.

Answers

Answer:

550 m/s

Explanation:

The average molecular speed (v) is the speed associated with a group of molecules on average. We can calculate it using the following expression.

[tex]v = \sqrt{\frac{3 \times R \times T}{M} }[/tex]

where,

R: ideal gas constantT: absolute temperatureM: molar mass of the gas

We can use the info of argon to calculate the temperature for both samples.

[tex]T = \frac{v^{2} \times M}{3 \times R} = \frac{(391m/s)^{2} \times 39.95g/mol}{3 \times 8.314J/k.mol} = 2.45 \times 10^{5} K[/tex]

Now, we can use the same expression to find the average molecular speed in a sample of Ne gas.

[tex]v = \sqrt{\frac{3 \times R \times T}{M} } = \sqrt{\frac{3 \times (8.314J/k.mol) \times 2.45 \times 10^{5}K }{20.18g/mol} } = 550 m/s[/tex]

Write the following isotope in nuclide notation: oxygen-14

Answers

Answer:

[tex]14\\8[/tex]O

Explanation:

The top number always represents the mass number.

The bottom number always represents the atomic number.

The element always goes after the numbers.

If charge is present, that comes after the element.

determine the rate of reaction that follows the rate= k[A]^m[B]^n

Answers

rate=0.2*3^1*3^2=0.2*3*9=5.4(mol/L)s so the correct answer is C.

The NaOH solution is standardized (or its true concentration) is found by reacting it with KHSO4. One of the two products from when NaOH reacts with KHSO4 is H2O. The other product is is a salt consisting of what?

a. NaK (aq)
b. (aq)
c. NaS (aq)
d. None of the above

Answers

the answer to this problem is c
the answer is going to be “C. NaS (aq)” hope you have a good day and hope this helped

The IE1, for iodine, is 1009 kJ/mol. Calculate the wavelength (in nm) of electromagnetic energy need to ionize an iodine atom. 118.6 743.2 488.3 1042

Answers

Answer:

118.6nm

Explanation:

It is possible to calculate wavelength of any energetic process (As an ionization) using:

E = hc / λ (1)

Where E is Energy, h is Planck constant (6.626x10⁻³⁴Js), c speed of light (3x10⁸ms⁻¹) and λ is wavelength In meters.

As the energy to ionize 1 mole of iodine is 1009kJ, one atom requires:

(1009kJ / mol) ₓ (1mol / 6.022x10²³ atoms) = 1.6755x10⁻²¹kJ / atom. = 1.6755x10⁻¹⁸J

Replacing in (1):

λ = hc / E

λ = 6.626x10⁻³⁴Js*3x10⁸ms⁻¹ / 1.6755x10⁻¹⁸J

λ = 1.186x10⁻⁷m

As 1m = 1x10⁹nm:

1.186x10⁻⁷m ₓ (1x10⁹nm / 1m) =

118.6nm

Based on the Valence Shell Electron Pair Repulsion Theory (or VSEPR), molecules will arrange to keep the following as far apart as physically possible
a) mobile electrons
b) valence electron pairs
c) inner shell electrons
d) the electrons closest to the nuclei

Answers

Answer:

B. Valence Electron Pairs

Explanation:

Valence-shell electron-pair repulsion, or VSEPR, describes the shape of molecules by determining the repulsion of valence electrons. Therefore, our answer is B.

Identify the correctly written chemical reaction
A. Reactant + Reactant = Product
B. Reactant + Reactant → Product + Product
C. Reactant + Product → Reactant + Product
D. Product + Product Reactant + Reactant

Answers

Answer:

B. Reactant + Reactant -> Product + Product

Explanation:

Reactants are substances that- as the name suggests- reacts with other substances at the beginning of a reaction

Products are substances that are produced as a result of the reaction

Typically, when writing a chemical reaction, an arrow is used to show the direction the reaction is moving.  In this case, the arrows in options B and C suggest that the reaction only moves in one direction- forwards

And as mentioned above, reactants are the substances at the start of the reaction, they're what mixes together to form a new product.  

To keep things simple:

Products can't be at the beginning of a reaction since they weren't formed yet.

Similarly, reactants can't be part of the products since they already existed and didn't need to be made. In a lot cases, the reactants would be completely used up to make the products

As such, only one possible chemical reaction would follow that reasoning:

    Reactant + Reactant ->  Product + Product

Reactant + Reactant → Product + Product is the correctly written chemical reaction. Hence, option B is correct.

What is a chemical equation?

A chemical equation is a mathematical expression of the chemical reaction which represents the product formation from the reactants.

In an equation, the reactants are written on the left-hand side and the products are written on the right-hand side demonstrated by one-headed or two-headed arrows.

Hence, option B is correct.

Learn more about the chemical equation here:

https://brainly.com/question/12363199

#SPJ2

A volumetric flask contains 25.0 mL of a 14% m/V sugar solution. If 2.5 mL of this solution is added to 22.5 mL of distilled water, what is the % m/V of the new solution.

Answers

Answer:

The new solution is 1.4% m/V

Explanation:

The concentration of the new solution, obtained by adding 22.5 mL of distilled water to 2.5 mL of 14 % m/V sugar solution, is 1.4% m/V.

We have 2.5 mL (V₁) of a concentrated solution and add it to 22.5 mL of distilled water. Assuming the volumes are additives, the volume of the new solution (V₂) is:

[tex]2.5 mL + 22.5 mL = 25.0 mL[/tex]

We want to prepare a dilute solution from a concentrated one, whose concentration is 14% m/V (C₁). We can calculate the concentration of the dilute solution (C₂) using the dilution rule.

[tex]C_1 \times V_1 = C_2 \times V_2\\C_2 = \frac{C_1 \times V_1}{V_2} = \frac{14\% m/V \times 2.5 mL}{25.0 mL} = 1.4 \% m/V[/tex]

The concentration of the new solution, obtained by adding 22.5 mL of distilled water to 2.5 mL of 14 % m/V sugar solution, is 1.4% m/V.

You can learn more about dilution here: https://brainly.com/question/13844449

Place ~0.8 g Fe(NO3)3·9 H2O into a 10 mL volumetric flask and dissolve to the volumetric line with 0.1 M HNO3(aq). (Make sure you pre-rinse the volumetric flask with the 0.1 M HNO3(aq) solution before making the solution. Also, 9 waters of hydration (·9H2O) are present in this chemical, and must be included in the formula weight calculation.) Record the exact mass of iron nitrate used and show the calculation for the solution concentration in your observations.

Before lab, create a plan for the dilution of the Fe(NO3)3(aq) solution created above with DI water. This plan should be clearly outlined in your ELN. Create enough 0.0020 M Fe(NO3)3

How do I go about solving for the dilution plan?

Answers

Answer:

You can take 1mL of your stock solution in a 100mL volumetric flask and complete to volume.

Explanation:

You need to create a 0.00200M solution of Fe(NO₃)₃. First, you have to obtain the concentration of the first solution you made. That is:

0.8g Fe(NO₃)₃.9H₂O × (1mol / 403.9972g) =

0.0020 moles of Fe(NO₃)₃.9H₂O = Moles of Fe(NO₃)₃

In 10mL = 0.010L:

0.0020 moles of Fe(NO₃)₃ / 0.010L = 0.20M Fe(NO₃)₃

This is the concentration of your stock solution, as you want to obtain a 0.0020M solution, you dilution factor must be:

0.20M / 0.0020M = 100

That means you need to dilute your stock solution 100 times.

You can make this dilution, for example,

taking 1mL of your stock solution in a 100mL volumetric flask completing to volume with the solvent, 0.1M HNO₃(aq).

Which of the following types of electromagnetic radiation have higher frequencies than visible light and which have shorter frequencies than visible light?
1. Gamma rays
2. Infrared radiation
3. Ultraviolet liht
4. X-rays
5. Microwaves
6. Radio waves

Answers

Answer:

3,4,1 and 6,5,2

Explanation:

In the electromagnetic spectrum the arrangement of the waves in increasing frequencies and decreasing wavelengths are as follows;

Radio waves

Microwaves

Infrared waves

Visible light rays

Ultraviolet rays

X-rays

Gamma rays

(a simple mnemonic is RMIVUXG)

What is the final pH of a solution with an initial concentration of 2.5mM Ascorbic acid (H2C6H6O6) which has the following Kas: 7.9x10-5 and 1.6x10-12

Answers

Answer:

pH = 3.39

Explanation:

The equilibrium in water of ascorbic acid (With its conjugate base) is:

H₂C₆H₆O₆(aq) + H₂O(l) ⇄ HC₆H₆O₆⁻(aq) + H₃O⁺(aq)

Where the acidic dissociation constant is written as:

Ka = 7.9x10⁻⁵ = [HC₆H₆O₆⁻] [H₃O⁺] / [H₂C₆H₆O₆]

H₂O is not taken in the Ka expression because is a pure liquid.

As initial concentration of H₂C₆H₆O₆ is 2.5x10⁻³M, the equilibrium concentration of each species in the equilibrium is:

[H₂C₆H₆O₆] = 2.5x10⁻³M - X

[HC₆H₆O₆⁻] = X

[H₃O⁺] = X

Replacing in the Ka expression:

7.9x10⁻⁵ = [X] [X] / [2.5x10⁻³M - X]

1.975x10⁻⁷ - 7.9x10⁻⁵X = X²

0 = X² + 7.9x10⁻⁵X - 1.975x10⁻⁷

Solving for X:

X = -0.00048566→  False solution, there is no negative concentrations

X = 0.00040666 → Right solution

As [H₃O⁺] = X, [H₃O⁺] = 0.00040666

pH is defined as -log [H₃O⁺];

pH = -log 0.00040666,

pH = 3.39

Multiply each half reaction by the correct number, in order to balance charges for the two half reactions. Mg--> mg2++2c Au++e--> Au Please i need the answer quick i couldnt find it anywhere on the web

Answers

Answer:

Mg(s) + 2Ag^+(aq) ---->Mg^2+(aq) + 2Ag(s)

Explanation:

The key to balancing redox reaction equations is this; ensure that the number of electrons lost in the oxidation half reaction equation is equal to the number of electrons gained in the reduction half reaction equation. The both half reaction equations can now be combined to give the overall reaction equation.

For the redox reaction under consideration;

Oxidation half equation;

Mg(s) ------> Mg^2+(aq) + 2e

Reduction half equation;

2Ag^+(aq) +2e ----> 2Ag(s)

Overall balanced redox reaction equation;

Mg(s) + 2Ag^+(aq) ---->Mg^2+(aq) + 2Ag(s)

Recall that when a reaction is at equilibrium, the forward and reverse reactions occur at the same rate. To illustrate this idea, consider the reaction of A (small, red spheres) and B (large, blue spheres) to form AB.

A+B ⇌ AB

Notice that the reaction never stops. Even after several minutes, there is A and B left unreacted, and the forward and reverse reactions continue to occur. Also note that amounts of each species (i.e., their concentrations) stay the same.

Required:
What is the value of the equilibrium constant for this reaction?
Assume each atom or molecule represents a 1 M concentration of that substance.

Answers

Answer:

Equilibrium constant Kc = [x]² / [A - x] [B - x]

Explanation:

The equilibrium constant is defined as the ratio of the concentration of the products to that of the reactants at equilibrium

ie Kc = [products] / [reactants].

The balanced equation of the reaction is given as : A + B ⇄ AB

At the beginning of the reaction,

Initial concentration I = A = 1M

                                       B = 1M

                                      AB = 0M

After a period of time and assuming 'x' to be the concentration of product AB formed, the concentrations become

                                         C = reactant A = [A - x] M

                                                 rectant B =   [B - x] M

                                              Product AB =  [x] [x] M

At equilibrium, the concentrations are,

                                            E  = rectant A = [A - x] M

                                                   reactant B = [B - x] M

                                                   product AB = [x]² M

therefore , the equilibrium constant, Kc  = [products]/[reactants]

                                                                   = [x]² / [A - x] [B - x]

How many moles of aqueous potassium ions and sulfate ions are formed when 63.7 g of K2SO4 dissolves in water

Answers

Answer:

WHEN 63.7 g OF K2SO4 IS DISSOLVED IN WATER, 0.73 MOLES OF POTASSIUM ION AND 0.366 MOLES OF SULFATE ION ARE FORMED.

Explanation:

Equation for the reaction:

K2SO4 + H20 ------->2 K+ + SO4^2-

When K2SO4 dissolves in water, potassium ion and sulfate ion are formed.

1 mole of K2SO4 produces 2 moles and 1 mole of SO4^2-

At STP, 1 mole of K2SO4 will be the molar mass of the substance

Molar mass of K2SO4 = ( 39 *2 + 32 + 16*4) g/mol

Molar mass = 174 g/mol

So therefore;

1 mole of K2SO4 contains 174 g and it produces 2 moles of potassium and 1 mole of sulfate ion

When 63.7 g is used; we have:

174 g = 2 moles of K+

63.7 g = ( 63.7 * 2 / 174) moles of K+

= 0.73 moles of K+

Forr sulfate ion, we have:

174 g = 1 mole ofSO4^2-

63.7 g = (63.7 * 1 / 174) moles of SO4^2-

= 0.366 moles of SO4^2-

In other words, when 63.7 g of K2SO4 is dissolved in water, 0.73 moles of potassium ion and 0.366 moles of sulfate ion are formed.

3A 2B --> 5C If compound A has a molar mass of 159.7 g/mol and compound C has a molar mass of 57.6 g/mole, how many grams of compound C will be produced from 18.24 grams of compound A and excess compound B

Answers

Answer:

10.96 grams of compound C will be produced from 18.24 grams of compound A and excess compound B.

Explanation:

3A + 2B ⇒ 5C

By stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction) the following amounts of reagent and products participate in the reaction:

A: 3 molesB: 2 molesC: 5 moles

The excess reagent will be that which is not completely depleted during the reaction.

The amount of product obtained from the reaction will always depend on the amount of limiting reagent in the reaction. Then, being B the excess reagent and therefore A the limiting reagent and knowing that compound A has a molar mass of 159.7 g/mole and compound C has a molar mass of 57.6 g/mole, by stoichiometry the following mass amounts of A and C participate in the reaction:

A: 3 moles* 159.7 g/mole=  479.1 gC: 5 moles* 57.6 g/mole=  288 g

Then it is possible to apply the following rule of three: if by stoichiometry of the reaction 479.1 grams of A produce 288 grams of C, 18.24 grams of A, how much mass of C does it produce?

[tex]mass of C=\frac{18.24 grams of A*288 grams of C}{479.1 grams of A}[/tex]

mass of C= 10.96 grams

10.96 grams of compound C will be produced from 18.24 grams of compound A and excess compound B.

The elements will lose of gain electrons as needed to have an electron configuration that matches a noble gas.
a) true
b) false

Answers

Answer:

true

Explanation:

This is true because elements aim to have a full octet of electrons in their outermost (also called valence) shell. Noble gases already have a full valence shell which is why the elements that are not noble gases aim to be like them.

Answer:

a) true

Explanation:

this is the answer coz elements aim to have a full octet of electrons in their outermost (also called valence) shell.

Consider the following reaction where Kc = 6.50×10-3 at 298 K: 2NOBr(g) 2NO(g) + Br2(g) A reaction mixture was found to contain 9.83×10-2 moles of NOBr(g), 5.44×10-2 moles of NO(g), and 4.13×10-2 moles of Br2(g), in a 1.00 liter container. Is the reaction at equilibrium? If not, what direction must it run in order to reach equilibrium? The reaction quotient, Qc

Answers

Answer:

This reaction isn't yet at an equilibrium. It must shift in the direction of the reactant (namely [tex]\rm NOBr\; (g)[/tex]) in order to reach an equilibrium.

For this mixture, the reaction quotient is [tex]Q_c = 0.0126[/tex].

Explanation:

A reversible reaction is at equilibrium if and only if its reaction quotient [tex]Q_c[/tex] is equal to the equilibrium constant [tex]K_c[/tex].

Start by calculating the equilibrium quotient [tex]Q_c[/tex] of this reaction. Given the reaction:

[tex]\rm 2\; NOBr\; (g) \rightleftharpoons 2\; NO\; (g) + Br_2\; (g)[/tex].

Let [tex][\mathrm{NOBr\; (g)}][/tex], [tex][\mathrm{NO\; (g)}][/tex], and [tex][\mathrm{Br_2\; (g)}][/tex] denote the concentration of the three species. The formula for the reaction quotient of this system will be:

[tex]\displaystyle Q_c = \frac{[\mathrm{NO\; (g)}]^2 \cdot [\mathrm{Br_2\; (g)}]}{[\mathrm{NOBr\; (g)}]^2}[/tex].

(Note, that in this formula, both [tex][\mathrm{NO\; (g)}][/tex] and [tex][\mathrm{NOBr\; (g)}][/tex] are raised to a power of two. That corresponds to the coefficients in the balanced reaction.)

Calculate the reaction quotient given the concentration of each species:

[tex]\displaystyle Q_c = \frac{[\mathrm{NO\; (g)}]^2 \cdot [\mathrm{Br_2\; (g)}]}{[\mathrm{NOBr\; (g)}]^2} \approx 1.26\times 10^{-2} = 0.0126[/tex].

(Note that the unit is ignored.)

Apparently, [tex]Q_c > K_c[/tex]. Since [tex]Q_c[/tex] and [tex]K_c[/tex] are not equal, this reaction is not at an equilibrium. If external factors like temperature stays the same,

Keep in mind that [tex]Q_c[/tex] denotes a quotient. To reduce the value of a quotient, one may:

reduce the value of the numerator, increase the value of the denominator, orboth.

In [tex]Q_c[/tex], that means reducing the concentration of the products while increasing the concentration of the reactants. In other words, the system needs to shift in the direction of the reactants before it could reach an equilibrium.

The solubility of O2 in water is approximately 0.00380 g L-1 of water when the temperature is 25.0°C and the partial pressure of gaseous oxygen is 760. torr. The oxygen gas above the water is replaced by air at the same temperature and pressure, in which the mole fraction of oxygen is 0.210. What will the solubility of oxygen in water be under these new conditions?

Answers

Answer:

The correct answer is 0.00080 gram per liter.

Explanation:

Based on the given information, the solubility of water is 0.00380 gram per liter, the temperature mentioned is 25 degree C, the partial pressure of oxygen gas is 760 torr, and the mole fraction of oxygen is 0.210. There is a need to determine the solubility of oxygen in water.  

Based on Henry's law,  

Solubility of oxygen gas = Henry's constant × partial pressure of oxygen gas

Henry's constant, K = solubility of oxygen gas / partial pressure of oxygen gas

= 0.00380 g/L × 1 mol/32 grams / 760 torr × 1 atm/760 torr

= 0.00012 mol/L/atm

= 0.00012 M/atm

Now the partial pressure of the oxygen gas = mole fraction of oxygen × atmospheric pressure

= 0.210 × 1 atm

= 0.210 atm

Now putting the values in Henry's law equation we get,  

Solubility of oxygen gas = 0.00012 mol/L/atm × 0.210 at,

= 0.000025 mol/L × 32 gram/mol

= 0.00080 gram per liter

What volume of water is required to dilute 120 cm3 of 10 mol dm–3 sulphuric acid to a concentration of 2 mol dm–3?​

Answers

Answer:

0.48 dm3  (or 480 cm3)

Explanation:

First find the original no. of moles existing in the sulphuric acid:

no. of moles = volume (in dm3) x concentration

                     = 120/1000 x 10

                     = 1.2 mol

Then let the total volume of the diluted acid be v dm3.

Since

Concentration = no. of moles / volume,

so by substituting the given information,

2 = 1.2 / v

v = 0.6 dm3

Hence, the volume of water required

= 0.6 - 120/1000

= 0.48 dm3  (or 480 cm3)

Considering the definition of dilution, 600 cm³ of water is required to dilute 120 cm³ of 10 [tex]\frac{mol}{dm^{3} }[/tex] sulphuric acid to a concentration of 2 [tex]\frac{mol}{dm^{3} }[/tex].

First of all, you have to know that when it is desired to prepare a less concentrated solution from a more concentrated one, it is called dilution.

Dilution is the procedure followed to prepare a less concentrated solution from a more concentrated one and consists of reducing the amount of solute per unit volume of solution. This is accomplished simply by adding more solvent to the solution in the same amount of solute.

In a dilution the amount of solute does not change, but as more solvent is added, the concentration of the solute decreases, as the volume of the solution increases.

A dilution is mathematically expressed as:

Ci×Vi = Cf×Vf

where

Ci: initial concentration Vi: initial volume Cf: final concentration Vf: final volume

In this case, you know:

Ci= 10 [tex]\frac{mol}{dm^{3} }[/tex] Vi= 120 cm³ Cf= 2 [tex]\frac{mol}{dm^{3} }[/tex] Vf= ?

Replacing in the definition of dilution:

10[tex]\frac{mol}{dm^{3} }[/tex]× 120 cm³= 2 [tex]\frac{mol}{dm^{3} }[/tex]× Vf

Solving:

Vf= (10[tex]\frac{mol}{dm^{3} }[/tex]× 120 cm³) ÷2 [tex]\frac{mol}{dm^{3} }[/tex]

Vf= 600 cm³

In summary, 600 cm³ of water is required to dilute 120 cm³ of 10 [tex]\frac{mol}{dm^{3} }[/tex] sulphuric acid to a concentration of 2 [tex]\frac{mol}{dm^{3} }[/tex].

Learn more about dilution:

brainly.com/question/20113402?referrer=searchResults brainly.com/question/22762236?referrer=searchResults

How are scientific questions answered?
A. Through observing and measuring the physical world
B. Through testing a theory about the physical world
c. Through forming a hypothesis about the question
D. Through predicting a solution about the question
SUBM

Answers

Answer:

Option B

Explanation:

Scientific question are answered through experimentation, through testing the theory about the physical world.

Answer: its A

through observing and measuring the physical world

Explanation:

g A 25.00 mL sample of 0.0988 M benzoic acid (HC7H5O2, Ka = 6.5 · 10-5) is a monoprotic acid that is titrated with 0.115 M sodium hydroxide. Calculate the pH at the equivalence point.

Answers

Answer:

pH at equivalence point is 8.47

Explanation:

Benzoic acid react with NaOH, thus:

HC₇H₅O₂ + NaOH → C₇H₅O₂⁻ + H₂O + Na⁺

You reach equivalence point when moles of the acid = moles of NaOH.

Moles of benzoic acid are:

0.025L ₓ (0.0988mol / L) = 0.00247 moles

To have 0.00247 moles of NaOH in solution and reach equivalence point you need to add:

0.00247 moles NaOH ₓ (1L / 0.115mol) = 0.0215L of NaOH solution.

Total volume is 0.0465L.

There are produced 0.00247 moles of C₇H₅O₂⁻ and its molarity will be:

0.00247 mol C₇H₅O₂⁻ / 0.0465L = 0.0531M C₇H₅O₂⁻

C₇H₅O₂⁻ is in equilibrium with water, thus:

C₇H₅O₂⁻(aq) + H₂O ⇄ HC₇H₅O₂(aq) + OH⁻(aq)

Where Kb = Kw / Ka = 1x10⁻¹⁴ / 6.5x10⁻⁵ = 1.54x10⁻¹⁰ is:

Kb = 1.54x10⁻¹⁰ = [HC₇H₅O₂] [OH⁻] / [C₇H₅O₂⁻]

The concentrations in equilibrium of the species are:

[HC₇H₅O₂] = X

[OH⁻] = X

[C₇H₅O₂⁻] = 0.0531M - X

Where X represents how much C₇H₅O₂⁻ react, X is reaction coordinate

Replacing in Kb expression:

1.54x10⁻¹⁰ = [HC₇H₅O₂] [OH⁻] / [C₇H₅O₂⁻]

1.54x10⁻¹⁰ = [X] [X] / [0.0531 - X]

8.169x10⁻¹² - 1.54x10⁻¹⁰X = X²

8.169x10⁻¹² - 1.54x10⁻¹⁰X - X² = 0

Solving for X:

X = -2.858x10⁻⁶M → False solution, there is no negative concentrations

X = 2.858x10⁻⁶M → Right solution

As [OH⁻] = X

[OH⁻] = 2.858x10⁻⁶M

pOH is -log [OH⁻]

pOH = 5.54

pH = 14 - pOH

pH = 8.46

pH at equivalence point is 8.47

A solution contains A13+ and Co2+. The addition of 0.3731 L of 1.735 M NaOH results in the complete precipitation of the
ions as Al(OH), and Co(OH)2. The total mass of the precipitate is 22.73 g. Find the masses of Al3+ and Co2+ in the solution.

Answers

Answer:

The correct answer is mass of Al3+ will be 3.23 grams and the mass of Co2+ will be 8.50 grams.

Explanation:

Based on the given information, 0.3731 L of 1.735 M of NaOH is added in a solution resulting in the precipitation of the ions as Al(OH)₃ and Co(OH)₂. Thus, the moles of NaOH will be molarity × V(L) = 1.735 × 0.3731 L = 0.647 moles.  

The mass of the precipitate given is 22.73 grams.  

Now let us assume that the mass of Al(OH)₃ will be x grams and the mass of Co(OH)₂ will be (22.73-x) grams

Therefore, the moles of Al(OH)₃ will be x grams/78 g/mol and as 3OH⁻ ions are needed so the moles will be 3x/78 mole.  

And, the moles of Co(OH)₂ will be (22.73-x)grams/92.94 g/mol and as 2OH⁻ ions are needed so the moles will be 45.46-2x/92.94 moles.

Now the equation will become,  

3x/78 + 45.46-2x/92.94 = 0.647 moles

0.03846 x + 0.489 - 0.02152 x = 0.647  

0.01694 x + 0.489 = 0.647

0.01694 x = 0.158

x = 0.158/0.01694

x = 9.327 grams

Hence, the mass of Al(OH)₃ is 9.327 grams, and the mass of Al³⁺ will be,  

= 9.327 gm/78 g/mol × 27 g/mol = 3.23 grams

Now the mass of Co(OH)₂ will be, (22.73 - 9.327) grams = 13.403 grams

the mass of Co²⁺ will be,  

= 13.403 grams / 92.94 g/mol × 58.94 g/mol = 8.50 grams

7. An element's most stable ion forms an ionic compound with chlorine having the formula XCl2. If the ion of element X has a mass of 89 and 36 electrons, what is the identity of the element, and how many neutrons does it have

Answers

Answer:

The element is strontium and the number of neutrons it have is 51.

Explanation:

Based on the given information, the ionic compound is,  

XCl₂ ⇔ X₂⁺ + 2Cl⁻

X2+ is the ion of the mentioned element

As mentioned in the given question, the number of electrons of the element X is 36 and as seen from the reaction the charge present on the ion is +2. Now the atomic number will be,  

No. of electrons = atomic number - charge

36 = atomic number - 2

Atomic number = 38

Based on the periodic table, the atomic number 38 is for strontium element, and the sign of strontium is Sr. Hence, the element X is Sr.  

Now based on the given information, the mass number of the element is 89. Now the no. of neutrons will be,  

No. of neutrons = mass number - atomic number

= 89 - 38

= 51 neutrons.  

What is the specific heat of a metal with a mass of 14.0 g, heat of 3.45 kJ and a change in temperature of 3.2 ℃?

Answers

i think your question is not complete sir. supposely you can use Q=mc0.
(0.014)(4.2)(3.2)

How many moles of chloride ions are there in 2.5 L of 5 M magnesium chloride?

Answers

Answer:

[tex]n_{Cl^-}=25molCl^-[/tex]

Explanation:

Hello,

In this case, since the given 5-M concentration of magnesium chloride is expressed as:

[tex]5\frac{molMgCl_2}{L}[/tex]

We can notice that one mole of salt contains two moles of chloride ions as the subscript of chlorine is two, in such a way, with the volume of solution we obtain the moles of chloride ions as shown below:

[tex]n_{Cl^-}=5\frac{molMgCl_2}{L}*\frac{2molCl^-}{1molMgCl_2} *2.5L\\\\n_{Cl^-}=25molCl^-[/tex]

Best regards.

Calculate the mass of sodium nitrate( NaNO3), in grams, required to produce 128 g of oxygen, using the following equation: 2NaNO3 --> 2NaNO2 O2

Answers

Answer:

680g of NaNO3.

Explanation:

The balanced equation for the reaction is given below:

2NaNO3 —> 2NaNO2 + O2

Next, we shall determine the mass of NaNO3 that decomposed and the mass of O2 produced from the balanced equation. This is illustrated below:

Molar mass of NaNO3 = 23 + 14 + (16x3) = 85g/mol

Mass of NaNO3 from the balanced equation = 2 x 85 = 170g

Molar mass of O2 = 16x2 = 32g/mol

Mass of O2 from the balanced equation = 1 x 32 = 32g

From the balanced equation above,

170g of NaNO3 decomposed to produce 32g of O2.

Now, we can obtain the mass of NaNO3 needed to produce 128g of O2 as shown below:

From the balanced equation above,

170g of NaNO3 decomposed to produce 32g of O2.

Therefore, Xg of NaNO3 will decompose to produce 128g of O2 i.e

Xg of NaNO3 = (170 x 128)/32

Xg of NaNO3 = 680g

Therefore, 680g of NaNO3 are needed to produce 128g of O2.

A certain radioactive element has a half life of 8694 years. How much of a 8.30 g sample is left after 8323 years

Answers

Answer: The amount of sample left after 8323 years is 4.32g

Explanation:

Expression for rate law for first order kinetics is given by:

[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]

where,

k = rate constant

t = age of sample

a = let initial amount of the reactant

a - x = amount left after decay process  

a) for completion of half life:

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

[tex]t_{\frac{1}{2}}=\frac{0.693}{k}[/tex]

[tex]k=\frac{0.693}{8694years}=7.97\times 10^{-5}years^{-1}[/tex]

b) amount left after 8323 years

[tex]t=\frac{2.303}{7.97\times 10^{-5}}\log\frac{8.30g}{a-x}[/tex]

[tex]8323=\frac{2.303}{7.97\times 10^{-5}}\log\frac{8.30g}{a-x}[/tex]

[tex]0.285=\log\frac{8.30}{a-x}[/tex]

[tex]\frac{8.30}{a-x}=1.92[/tex]

[tex](a-x)=4.32g[/tex]

The amount of sample left after 8323 years is 4.32g

Other Questions
Which equation can be used to find the area of the rectangle? A. A=9+4 B. A=1/2 (9)(4) C. A=9+9+4+4 D. A=(9)(4) In this excerpt from Treasure Island by Robert Louis Stevenson, which sentence helps develop the setting? He was a very silent man by custom. All day he hung round the cove or upon the cliffs with a brass telescope; all evening he sat in a corner of the parlour next the fire and drank rum and water very strong. Mostly he would not speak when spoken to, only look up sudden and fierce and blow through his nose like a fog-horn; and we and the people who came about our house soon learned to let him be. Every day when he came back from his stroll he would ask if any seafaring men had gone by along the road. At first we thought it was the want of company of his own kind that made him ask this question, but at last we began to see he was desirous to avoid them. When a seaman did put up at the Admiral Benbow (as now and then some did, making by the coast road for Bristol) he would look in at him through the curtained door before he entered the parlour; and he was always sure to be as silent as a mouse when any such was present. For me, at least, there was no secret about the matter, for I was, in a way, a sharer in his alarms.He had taken me aside one day and promised me a silver fourpenny on the first of every month if I would only keep my weather-eye open for a seafaring man with one leg and let him know the moment he appeared. Often enough when the first of the month came round and I applied to him for my wage, he would only blow through his nose at me and stare me down, but before the week was out he was sure to think better of it, bring me my four-penny piece, and repeat his orders to look out for the seafaring man with one leg. ICMP(a) is required to solve the NAT traversal problem(b) is used in Traceroute(c) has a new version for IPv6(d) is used by Ping How do you write 0.0683 in scientific notation? ____ 10^____ According to a recent study, some experts believe that 15% of all freshwater fish in a particular country have such high levels of mercury that they are dangerous to eat. Suppose a fish market has 150 fish we consider randomly sampled from the population of edible freshwater fish. Use the Central Limit Theorem (and the Empirical Rule) to find the approximate probability that the market will have a proportion of fish with dangerously high levels of mercury that is more than two standard errors above 0.15. You can use the Central Limit Theorem because the fish were randomly sampled; the population is more than 10 times 150; and n times p is 22.5, and n times (1 minus p) is 127.5, and both are more than 10. A teacher covered the exterior of a rectangular prism-shaped box that measured 8 inches by 9 inches by 10 inches using one sheet of rectangular-shaped wrapping paper that measured 2 feet by 3 feet. There were no gaps or overlapping paper. How many square inches of wrapping paper were left over? Choose an answer What term describes a belief that current inhabitants of an area are better than incoming immigrants? Plato question.. CAN SOMEONE HELP ????? 20 POINTS AND BRAINLIEST!!!!!!!!! America's understanding of democracy is one thing. Americans' understandings of democracy are another thing entirely. For while we like to think about democracy as a value on which all Americans, regardless of political persuasion, agree, politics today is divided not just along ideological lines, but also in terms of visions of democracy. In Democracy at Crossroads: How the One Percent is Silencing our Voices, a report released by the Democracy Initiative Education Fund, voting expert Tova Wang explains how some of the efforts across the states to limit the right to organize and the right to vote while at the same time letting money continue to dominate state politics are not isolated incidents. They are part of a concerted effort and strategic agenda to challenge the idea of democracy in America. For Wang, "carefully targeted voter photo ID laws that disproportionately affect working Americans, communities of color, and young people," as well as the elimination of "restrictions on special interest campaign spending, and reduced disclosure of sources," and laws passed by state legislatures that compromise workers' ability to organize and to bargain collectively, are just a few examples of these collective efforts to undermine democratic progress. From Chayenne Polimdio, New America A. Describe the core value discussed in the excerpt. B. In the context of the excerpt, explain how the core value in part A is affected by the actions of special interest groups.C. In the context of the scenario, explain an action Congress could take to limit the impact of special interest groups as explained in part B. Why was a slave accused of a crime against a white person doomed? Which composition of transformations will create a pair of similar, not congruent triangles?a rotation, then a reflectiona translation, then a rotationa reflection, then a translationa rotation, then a dilation Which of the following structures would normally be found in a plant cell but not in an animal cell? A. cell wall B. cell membrane C. nucleus D. vacuoles Which of the following was shipped from Europe to Africa?EUROPENORTHAMERICAAFRICASOUTHAMERICAO A. GunsB. CottonO C. SpicesD. Slaves Help please ?Solve 2x - 5 = 7 A car dealership spends $140,000 on cars to stock their lot. After a day of sales, they earn a total revenue of $300,000. What is the car dealership's profit A bus needs to cover a distance of 240 km in less than 5 hours. Which of the following inequality represents the speed (s) of the bus?. A rectangular park measuring 32 yards by 24 yards is surrounded by a trail of uniform width. If the area of the park and the trail combine is 1748 square yards, what is the width of the park Which method is most likely used to identify what happened before the start of the Paleozoic era? Scientists study fossils from the Jurassic period. Scientists observe index fossil records of the Mesozoic era. Scientists examine fossil evidence during the Precambrian time. Scientists explore the emergence of mammals and humans in the Cenozoic era. Does the following systems produce an infinite number of solutions 2y + x = 4 ; 2y = -x +4 Why can a magnetic monopole not exist, assuming Maxwell's Equations are currently correct and complete? ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions.