(a) The solution to the differential equation is y = (3/2)(sin(2x)/|x|) + C/|x|, where C is a constant.
(b) The solution to the differential equation is y = ((x^2 - 2x + 2)e^x + C)/x^3, where C is a constant.
(a) To solve the differential equation y' + (1/x)y = 3cos(2x), we can use the method of integrating factors. The integrating factor is given by μ(x) = e^(∫(1/x)dx) = e^(ln|x|) = |x|. Multiplying both sides of the equation by |x|, we have |x|y' + y = 3xcos(2x). Now, we can rewrite the left side as (|x|y)' = 3xcos(2x). Integrating both sides with respect to x, we get |x|y = ∫(3xcos(2x))dx. Evaluating the integral and simplifying, we obtain |x|y = (3/2)sin(2x) + C, where C is the constant of integration. Dividing both sides by |x|, we finally have y = (3/2)(sin(2x)/|x|) + C/|x|.
(b) To solve the differential equation xy' + 2y = e^x, we can use the method of integrating factors. The integrating factor is given by μ(x) = e^(∫(2/x)dx) = e^(2ln|x|) = |x|^2. Multiplying both sides of the equation by |x|^2, we have x^3y' + 2x^2y = x^2e^x. Now, we can rewrite the left side as (x^3y)' = x^2e^x. Integrating both sides with respect to x, we get x^3y = ∫(x^2e^x)dx. Evaluating the integral and simplifying, we obtain x^3y = (x^2 - 2x + 2)e^x + C, where C is the constant of integration. Dividing both sides by x^3, we finally have y = ((x^2 - 2x + 2)e^x + C)/x^3.
Learn more about differential equation here :-
https://brainly.com/question/32645495
#SPJ11
Suppose that a random sample of 18 adults has a mean score of 64 on a standardized personality test, with a standard deviation of 4. (A higher score indicates a more personable participant.) If we assume that scores on this test are normally distributed, find a 95% confidence interval for the mean score of all takers of this test. Give the lower limit and upper limit of the 95% confidence interval.
Carry your Intermediate computations to at least three decimal places. Round your answers to one decimal place. (If necessary, consult a list of formulas.)
Lower limit:
Upper limit:
To find the 95% confidence interval for the mean score of all takers of the test, we can use the formula:
Confidence Interval = sample mean ± (critical value * standard error)
First, we need to calculate the critical value. Since the sample size is 18 and we want a 95% confidence level, we look up the critical value for a 95% confidence level and 17 degrees of freedom (n-1) in the t-distribution table. The critical value is approximately 2.110.
Next, we calculate the standard error, which is the standard deviation of the sample divided by the square root of the sample size:
Standard Error = standard deviation / sqrt(sample size)
= 4 / sqrt(18)
≈ 0.943
Now we can calculate the confidence interval:
Confidence Interval = sample mean ± (critical value * standard error)
= 64 ± (2.110 * 0.943)
≈ 64 ± 1.988
≈ (62.0, 66.0)
Therefore, the 95% confidence interval for the mean score of all takers of the test is approximately (62.0, 66.0). The lower limit is 62.0 and the upper limit is 66.0.
Learn more about confidence interval here:
https://brainly.com/question/32546207
#SPJ11
A machine has four components, A, B, C, and D, set up in such a manner that all four parts must work for the machine to work properly. Assume the probability of one part working does not depend on the functionality of any of the other parts. Also assume that the probabilities of the individual parts working are P(A)=P(B)=0.95,P(C)=0.99, and P(D)=0.91. Find the probability that the machine works properly. Round to the nearest ten-thousandth. A) 0.8131 B) 0.8935 C) 0.1869 D) 0.8559
The probability of a machine functioning properly is P(A and B and C and D). The components' working is independent, so the probability is 0.8131. The correct option is A.
Given:P(A) = P(B) = 0.95P(C) = 0.99P(D) = 0.91The machine has four components, A, B, C, and D, set up in such a manner that all four parts must work for the machine to work properly.
Therefore,
The probability that the machine will work properly = P(A and B and C and D)
Probability that the machine works properly
P(A and B and C and D) = P(A) * P(B) * P(C) * P(D)[Since the components' working is independent of each other]
Substituting the values, we get:
P(A and B and C and D) = 0.95 * 0.95 * 0.99 * 0.91
= 0.7956105
≈ 0.8131
Hence, the probability that the machine works properly is 0.8131. Therefore, the correct option is A.
To know more about Probability Visit:
https://brainly.com/question/31828911
#SPJ11
Use The Four-Step Process To Find F′(X) And Then Find F′(0),F′(1), And F′(2). F(X)=2x2−5x+3 F′(X)=
To find the derivative F'(x) of the function F(x) = 2x^2 - 5x + 3, we can use the four-step process:
Find the derivative of the first term.
The derivative of 2x^2 is 4x.
Find the derivative of the second term.
The derivative of -5x is -5.
Find the derivative of the constant term.
The derivative of 3 (a constant) is 0.
Combine the derivatives from Steps 1-3.
F'(x) = 4x - 5 + 0
F'(x) = 4x - 5
Now, we can find F'(0), F'(1), and F'(2) by substituting the respective values of x into the derivative function:
F'(0) = 4(0) - 5 = -5
F'(1) = 4(1) - 5 = -1
F'(2) = 4(2) - 5 = 3
Therefore, F'(0) = -5, F'(1) = -1, and F'(2) = 3.
Learn more about function here: brainly.com/question/30660139
#SPJ11
How many ways exist to encage 5 animals in 11 cages if all of
them should be in different cages.
Answer:
This problem can be solved using the permutation formula, which is:
nPr = n! / (n - r)!
where n is the total number of items (cages in this case) and r is the number of items (animals in this case) that we want to select and arrange.
In this problem, we want to select and arrange 5 animals in 11 different cages, so we can use the permutation formula as follows:
11P5 = 11! / (11 - 5)!
= 11! / 6!
= 11 x 10 x 9 x 8 x 7
= 55,440
Therefore, there are 55,440 ways to encage 5 animals in 11 cages if all of them should be in different cages.
To qualify for the 400-meter finals, the average of a runner's three qualifying times must be 60.74 seconds or less. Robert's three 400-meter scores are 61.04 seconds, 60.54 seconds, and 60.79 seconds. His combined score is 182.37 seconds. What is Robert's average time?
Robert's average time is 60.79 seconds.
To determine Robert's average time, we add up his three qualifying times: 61.04 seconds, 60.54 seconds, and 60.79 seconds. Adding these times together, we get a total of 182.37 seconds.
61.04 + 60.54 + 60.79 = 182.37 seconds.
To find the average time, we divide the total time by the number of scores, which in this case is 3. Dividing 182.37 seconds by 3 gives us an average of 60.79 seconds.
182.37 / 3 = 60.79 seconds.
Therefore, Robert's average time is 60.79 seconds, which meets the qualifying requirement of 60.74 seconds or less to compete in the 400-meter finals.
To know more about calculating averages, refer here:
https://brainly.com/question/680492#
#SPJ11
For each of the following problems, identify the variable, state whether it is quantitative or qualitative, and identify the population. Problem 1 is done as an 1. A nationwide survey of students asks "How many times per week do you eat in a fast-food restaurant? Possible answers are 0,1-3,4 or more. Variable: the number of times in a week that a student eats in a fast food restaurant. Quantitative Population: nationwide group of students.
Problem 2:
Variable: Height
Type: Quantitative
Population: Residents of a specific cityVariable: Political affiliation (e.g., Democrat, Republican, Independent)Population: Registered voters in a state
Problem 4:
Variable: Temperature
Type: Quantitative
Population: City residents during the summer season
Variable: Level of education (e.g., High School, Bachelor's degree, Master's degree)
Type: Qualitative Population: Employees at a particular company Variable: Income Type: Quantitative Population: Residents of a specific county
Variable: Favorite color (e.g., Red, Blue, Green)Type: Qualitative Population: Students in a particular school Variable: Number of hours spent watching TV per day
Type: Quantitativ Population: Children aged 5-12 in a specific neighborhood Problem 9:Variable: Blood type (e.g., A, B, AB, O) Type: Qualitative Population: Patients in a hospital Variable: Sales revenueType: Quantitative Population: Companies in a specific industry
Learn more abou Quantitative here
https://brainly.com/question/32236127
#SPJ11
Find a mathematical model that represents the statement. (Deteine the constant of proportionality.) y varies inversely as x.(y=2 when x=27. ) Find a mathematical model that represents the statement. (Deteine the constant of proportionality.) F is jointly proportional to r and the third power of s. (F=5670 when r=14 and s=3.) Find a mathematical model that represents the statement. (Deteine the constant of proportionality.) z varies directly as the square of x and inversely as y.(z=15 when x=15 and y=12.
(a) The mathematical model for y varies inversely as x is y = k/x, where k is the constant of proportionality. The constant of proportionality can be found using the given values of y and x.
(b) The mathematical model for F being jointly proportional to r and the third power of s is F = k * r * s^3, where k is the constant of proportionality. The constant of proportionality can be determined using the given values of F, r, and s.
(c) The mathematical model for z varies directly as the square of x and inversely as y is z = k * (x^2/y), where k is the constant of proportionality. The constant of proportionality can be calculated using the given values of z, x, and y.
(a) In an inverse variation, the relationship between y and x can be represented as y = k/x, where k is the constant of proportionality. To find k, we substitute the given values of y and x into the equation: 2 = k/27. Solving for k, we have k = 54. Therefore, the mathematical model is y = 54/x.
(b) In a joint variation, the relationship between F, r, and s is represented as F = k * r * s^3, where k is the constant of proportionality. Substituting the given values of F, r, and s into the equation, we have 5670 = k * 14 * 3^3. Solving for k, we find k = 10. Therefore, the mathematical model is F = 10 * r * s^3.
(c) In a combined variation, the relationship between z, x, and y is represented as z = k * (x^2/y), where k is the constant of proportionality. Substituting the given values of z, x, and y into the equation, we have 15 = k * (15^2/12). Solving for k, we get k = 12. Therefore, the mathematical model is z = 12 * (x^2/y).
In summary, the mathematical models representing the given statements are:
(a) y = 54/x (inverse variation)
(b) F = 10 * r * s^3 (joint variation)
(c) z = 12 * (x^2/y) (combined variation).
To know more about proportionality. refer here:
https://brainly.com/question/17793140
#SPJ11
A. Evaluate the different functions given below. Write your answer on a clean sheet of paper.-Show your complete solution. ( 2{pts} each) 1. f(x)=x^{2}+3 x-4 a. f(3 x-4) b. \
a. f(3x - 4) = (3x - 4)^2 + 3(3x - 4) - 4
b. f(-2) = (-2)^2 + 3(-2) - 4
To evaluate the function f(x) = x^2 + 3x - 4 at specific values, we substitute the given values into the function expression.
a. To evaluate f(3x - 4), we substitute 3x - 4 in place of x in the function expression:
f(3x - 4) = (3x - 4)^2 + 3(3x - 4) - 4
Expanding and simplifying the expression:
f(3x - 4) = (9x^2 - 24x + 16) + (9x - 12) - 4
= 9x^2 - 24x + 16 + 9x - 12 - 4
= 9x^2 - 15x
Therefore, f(3x - 4) simplifies to 9x^2 - 15x.
b. To evaluate f(-2), we substitute -2 in place of x in the function expression:
f(-2) = (-2)^2 + 3(-2) - 4
Simplifying the expression:
f(-2) = 4 - 6 - 4
= -6
Therefore, f(-2) is equal to -6.
a. f(3x - 4) simplifies to 9x^2 - 15x.
b. f(-2) is equal to -6.
To know more about functions, visit;
https://brainly.com/question/11624077
#SPJ11
Find the LCD and build up each rational expression so they have a common denominator. (5)/(m^(2)-5m+4),(6m)/(m^(2)+8m-9)
Answer:
[tex]\dfrac{5m+45}{m^3+4m^2-41m+36},\quad\dfrac{6m^2-24m}{m^3+4m^2-41m+36}[/tex]
Step-by-step explanation:
You want the rational expressions written with a common denominator:
(5)/(m^(2)-5m+4), (6m)/(m^(2)+8m-9)
FactorsEach expression can be factored as follows:
[tex]\dfrac{5}{m^2-5m+4}=\dfrac{5}{(m-1)(m-4)},\quad\dfrac{6m}{m^2+8m-9}=\dfrac{6m}{(m-1)(m+9)}[/tex]
Common denominatorThe factors of the LCD will be (m -1)(m -4)(m +9). The first expression needs to be multiplied by (m+9)/(m+9), and the second by (m-4)/(m-4).
Expressed with a common denominator, the rational expressions are ...
[tex]\dfrac{5(m+9)}{(m-1)(m-4)(m+9)},\quad\dfrac{6m(m-4)}{(m-1)(m-4)(m+9)}[/tex]
In expanded form, the rational expressions are ...
[tex]\boxed{\dfrac{5m+45}{m^3+4m^2-41m+36},\quad\dfrac{6m^2-24m}{m^3+4m^2-41m+36}}[/tex]
<95141404393>
Circles h and i have the same radius. jk, a perpendicular bisector to hi, goes through l and is twice the length of hi. if hi acts as a bisector to jk, what type of triangle would hki be?
Triangle HKI is a right triangle with two congruent right angles, also known as an isosceles right triangle.
Since JK is a perpendicular bisector of HI and HI acts as a bisector of JK, we can conclude that HI and JK are perpendicular to each other and intersect at point L.
Given that JK, the perpendicular bisector of HI, goes through L and is twice the length of HI, we can label the length of HI as "x." Therefore, the length of JK would be "2x."
Now let's consider the triangle HKI.
Since HI is a bisector of JK, we can infer that angles HKI and IKH are congruent (they are the angles formed by the bisector HI).
Since HI is perpendicular to JK, we can also infer that angles HKI and IKH are right angles.
Therefore, triangle HKI is a right triangle with angles HKI and IKH being congruent right angles.
In summary, triangle HKI is a right triangle with two congruent right angles, also known as an isosceles right triangle.
To know more about Triangle click here :
https://brainly.com/question/20373010
#SPJ4
6. Let [tex]M_{2 \times 2}[/tex] be the vector space of all [tex]2 \times 2[/tex] matrices. Define [tex]T: M_{2 \times 2} \rightarrow M_{2 \times 2}[/tex] by [tex]T(A)=A+A^T[/tex]. For example, if [tex]A=\left[[tex][tex]\begin{array}{ll}a & b \\ c & d\end{array}\right][/tex], then [tex]T(A)=\left[\begin{array}{cc}2 a & b+c \\ b+c & 2 d\end{array}\right][/tex].[/tex][/tex]
(i) Prove that [tex]T[/tex] is a linear transformation.
(ii) Let [tex]B[/tex] be any element of [tex]M_{2 \times 2}[/tex] such that [tex]B^T=B[/tex]. Find an [tex]A[/tex] in [tex]M_{2 \times 2}[/tex] such that [tex]T(A)=B[/tex]
(iii) Prove that the range of [tex]T[/tex] is the set of [tex]B[/tex] in [tex]M_{2 \times 2}[/tex] with the property that [tex]B^T=B[/tex]
(iv) Find a matrix which spans the kernel of [tex]T[/tex].
(i) T is a linear transformation.
(ii) A = (1/2)B is a matrix in M_{2 x 2} such that T(A) = B.
(iii) The range of T is the set of B in M_{2 x 2} with the property that B^T = B.
(iv) The matrix A = (1/2)[[0, 1], [-1, 0]] spans the kernel of T.
(i) To prove that T is a linear transformation, we need to show that it satisfies two properties: additivity and homogeneity.
Additivity: Let A and B be two matrices in M_{2 x 2}. We need to show that T(A + B) = T(A) + T(B).
Let's calculate T(A + B):
T(A + B) = (A + B) + (A + B)^{T}
= A + B + (A^T + B^T)
= A + A^T + B + B^T
= (A + A^T) + (B + B^T)
= T(A) + T(B)
So, T satisfies additivity.
Homogeneity: Let A be a matrix in M_{2 x 2} and c be a scalar. We need to show that T(cA) = cT(A).
Let's calculate T(cA):
T(cA) = cA + (cA)^T
= cA + (cA^T)
= c(A + A^T)
= cT(A)
So, T satisfies homogeneity.
Therefore, T is a linear transformation.
(ii) If B is an element of M_{2 x 2} such that B^T = B, we need to find an A in M_{2 x 2} such that T(A) = B.
Let's consider the matrix A = (1/2)B.
T(A) = (1/2)B + ((1/2)B)^T
= (1/2)B + (1/2)B^T
= (1/2)B + (1/2)B
= B
So, if A = (1/2)B, then T(A) = B.
(iii) To prove that the range of T is the set of B in M_{2 x 2} with the property that B^T = B, we need to show two things:
1. Every B in the range of T satisfies B^T = B.
2. Every B in M_{2 x 2} with B^T = B is in the range of T.
1. Let B be an element in the range of T. This means there exists an A in M_{2 x 2} such that T(A) = B.
From part (ii), we know that T(A) = B implies B^T = T(A)^T = (A + A^T)^T = A^T + (A^T)^T = A^T + A = B^T.
Therefore, every B in the range of T satisfies B^T = B.
2. Let B be an element in M_{2 x 2} with B^T = B. We need to find an A in M_{2 x 2} such that T(A) = B.
From part (ii), we know that if A = (1/2)B, then T(A) = B.
Since B^T = B, we have (1/2)B^T = (1/2)B = A.
So, A is an element of M_{2 x 2} and T(A) = B.
Therefore, the range of T is the set of B in M_{2 x 2} with the property that B^T = B.
(iv) To find a matrix that spans the kernel of T, we need to find a matrix A such that T(A) = 0, where 0 represents the zero matrix in M_{2 x 2}.
Let's consider the matrix A = (1/2)[[0, 1], [-1, 0]].
T(A) = (1/2)[[0, 1], [-1, 0]] + ((1/2)[[0, 1], [-1, 0]])^T
= (1/2)[[0, 1], [-1, 0]] + (1/2)[[0, -1], [1, 0]]
= [[0, 0], [0, 0]]
So, T(A) = 0, which means A is in the kernel of T.
Therefore, the matrix A = (1/2)[[0, 1], [-1, 0]] spans the kernel of T.
Learn more about linear transformation from the link:
https://brainly.com/question/31969804
#SPJ11
(i) To prove that T is a linear transformation, we need to show that it satisfies the two properties of linearity: additivity and homogeneity.
Additivity:
Let A and B be any two matrices in M_{2 x 2}. We need to show that T(A + B) = T(A) + T(B).
By the definition of T, we have:
T(A + B) = (A + B) + (A + B)^T
= A + B + (A^T + B^T)
= A + A^T + B + B^T
= (A + A^T) + (B + B^T)
= T(A) + T(B)
Hence, T satisfies the property of additivity.
Homogeneity:
Let A be any matrix in M_{2 x 2} and k be any scalar. We need to show that T(kA) = kT(A).
By the definition of T, we have:
T(kA) = kA + (kA)^T
= kA + k(A^T)
= k(A + A^T)
= kT(A)
Hence, T satisfies the property of homogeneity.
Since T satisfies both additivity and homogeneity, it is a linear transformation.
(ii) Let B be any element of M_{2 x 2} such that B^T = B. We need to find an A in M_{2 x 2} such that T(A) = B.
Let's consider A = 0. Then T(A) = 0 + 0^T = 0. However, B might not be zero. Therefore, A = B/2 will satisfy T(A) = B.
Substituting A = B/2 in the definition of T, we have:
T(B/2) = (B/2) + (B/2)^T
= B/2 + (B^T)/2
= B/2 + B/2
= B
Therefore, A = B/2 is an element in M_{2 x 2} such that T(A) = B.
(iii) To prove that the range of T is the set of B in M_{2 x 2} with the property that B^T = B, we need to show two things:
1. Any B in the range of T satisfies B^T = B.
2. Any B in M_{2 x 2} with B^T = B is in the range of T.
1. Let B be any matrix in the range of T. By definition, there exists an A in M_{2 x 2} such that T(A) = B. Therefore, B = A + A^T. Taking the transpose of both sides, we have B^T = (A + A^T)^T = A^T + (A^T)^T = A^T + A. Since A^T + A = B, we have B^T = B. Hence, any B in the range of T satisfies B^T = B.
2. Let B be any matrix in M_{2 x 2} such that B^T = B. We need to find an A in M_{2 x 2} such that T(A) = B. Let A = B/2. Then T(A) = (B/2) + (B/2)^T = B/2 + (B^T)/2 = B/2 + B/2 = B. Hence, any B in M_{2 x 2} with B^T = B is in the range of T.
Therefore, the range of T is the set of B in M_{2 x 2} with the property that B^T = B.
(iv) To find a matrix that spans the kernel of T, we need to find a non-zero matrix A in M_{2 x 2} such that T(A) = 0.
Let A = [1 0; 0 -1]. Then T(A) = [2*1 0+0; 0+0 2*(-1)] = [2 0; 0 -2] ≠ 0.
Therefore, the kernel of T is the set containing only the zero matrix.
To know more about linear tranformation visit:
https://brainly.com/question/13595405
#SPJ11
Which of these are the needed actions to realize TCS?
To realize TCS's vision of "0-4-2," the following options are the needed actions:
A. Agile Ready Partnership
C. Agile Ready Workforce
D. Top-to-bottom Enterprise Agile Company ourselves
E. Agile Ready Workplace
What is the import of these actions?These actions focus on enabling agility across different aspects of the organization, including partnerships, workforce, company culture, and the physical workplace.
By establishing an agile-ready partnership network, developing an agile-ready workforce, transforming the entire company into an agile organization, and creating an agile-ready workplace, TCS aims to drive agility and responsiveness throughout its operations.
Option B, "All get Agile Certified," is not mentioned in the given choices as a specific action required to realize the "0-4-2" vision.
learn more about TCS's vision: https://brainly.com/question/30141736
#SPJ4
The complete question goes thus:
Which of these are the needed actions to realize TCS vision of “0-4-2”?Select the correct option(s):
A. Agile Ready Partnership
B. All get Agile Certified
C. Agile Ready Workforce
D. Top-to-bottom Enterprise Agile Company ourselves
E. Agile Ready Workplace
Which of the following would be the way to declare a variable so that its value cannot be changed. const double RATE =3.50; double constant RATE=3.50; constant RATE=3.50; double const =3.50; double const RATE =3.50;
To declare a variable with a constant value that cannot be changed, you would use the "const" keyword. The correct declaration would be: const double RATE = 3.50;
In this declaration, the variable "RATE" is of type double and is assigned the value 3.50. The "const" keyword indicates that the value of RATE cannot be modified once it is assigned.
The other options provided are incorrect. "double constant RATE=3.50;" and "double const =3.50;" are syntactically incorrect as they don't specify the variable name. "constant RATE=3.50;" is also incorrect as the "constant" keyword is not recognized in most programming languages. "double const RATE = 3.50;" is incorrect as the order of "const" and "RATE" is incorrect.
Therefore, the correct way to declare a variable with a constant value that cannot be changed is by using the "const" keyword, as shown in the first option.
To know more about constant value refer to-
https://brainly.com/question/28297759
#SPJ11
The human resources department of a consulting firm gives a standard creativity test to a randomly selected group of new hires every year. This year, 75 new hires took the test and scored a mean of 112.8 points with a standard deviation of 15.8. Last year, 95 new hires took the test and scored a mean of 117.2 points with a standard deviation of 19. Assume that the population standard deviations of the test scores of all new hires in the current year and the test scores of all new hires last year can be estimated by the sample standard deviations, as the samples used were quite large. Construct a 95% confidence interval for μ₁-μ₂, the difference between the mean test score µ of new hires from the current year and the mean test score µ₂ of new hires from last year. Then find the lower limit and upper limit of the 95% confidence interval.
Carry your intermediate computations to at least three decimal places. Round your answers to at least two decimal places. (If necessary, consult a list of formulas.)
The lower limit of the 95% confidence interval is -11.38 and the upper limit is 2.58.
To calculate a 95% confidence interval for μ₁-μ₂, we use the following formula:
Confidence Interval = (x₁ - x₂) ± z * σ / √n₁ + √n₂
Where x₁ = 112.8,
x₂ = 117.2,
σ₁ = 15.8,
σ₂ = 19,
n₁ = 75,
n₂ = 95, and z is the value of the standard normal distribution that corresponds to the 95% confidence level.
We can find the value of z using a standard normal distribution table or calculator.
For a 95% confidence level, z = 1.96 (rounded to two decimal places).
Plugging in the values, we get:
Confidence Interval = (112.8 - 117.2) ± 1.96 * √(15.8² / 75 + 19² / 95)
Confidence Interval = -4.4 ± 1.96 * 3.575
Confidence Interval = (-11.380, 2.580)
For more related questions on lower limit :
https://brainly.com/question/13531591
#SPJ8
A mathematical sentence with a term in one variable of degree 2 is called a. quadratic equation b. linear equation c. binomial d. monomial
The correct answer is option a. A mathematical sentence with a term in one variable of degree 2 is called a quadratic equation.
A mathematical sentence with a term in one variable of degree 2 is called a quadratic equation. A quadratic equation is a polynomial equation of degree 2, where the highest power of the variable is 2. It can be written in the form ax^2 + bx + c = 0, where a, b, and c are coefficients and x is the variable. The term in one variable of degree 2 represents the squared term, which is the highest power of x in a quadratic equation.
This term is responsible for the U-shaped graph that is characteristic of quadratic functions. Therefore, the correct answer is option a. A mathematical sentence with a term in one variable of degree 2 is called a quadratic equation.
To learn more about quadratic equation click here: brainly.com/question/30098550
#SPJ11
Thomas wants to invite madeline to a party. He has 80% chance of bumping into her at school. Otherwise, he’ll call her on the phone. If he talks to her at school, he’s 90% likely to ask her to a party. However, he’s only 60% likely to ask her over the phone
We sum up the probabilities from both scenarios:
Thomas has about an 84% chance of asking Madeline to the party.
To invite Madeline to a party, Thomas has two options: bumping into her at school or calling her on the phone.
There's an 80% chance he'll bump into her at school, and if that happens, he's 90% likely to ask her to the party.
On the other hand, if they don't meet at school, he'll call her, but he's only 60% likely to ask her over the phone.
To calculate the probability that Thomas will ask Madeline to the party, we need to consider both scenarios.
Scenario 1: Thomas meets Madeline at school
- Probability of bumping into her: 80%
- Probability of asking her to the party: 90%
So the overall probability in this scenario is 80% * 90% = 72%.
Scenario 2: Thomas calls Madeline
- Probability of not meeting at school: 20%
- Probability of asking her over the phone: 60%
So the overall probability in this scenario is 20% * 60% = 12%.
To find the total probability, we sum up the probabilities from both scenarios:
72% + 12% = 84%.
Therefore, Thomas has about an 84% chance of asking Madeline to the party.
To know more about probability, visit:
https://brainly.com/question/31828911
#SPJ11
For the feasible set determine x and y so that the objective function 5x+4y i maximized.
The maximum value of the objective function over the feasible set occurs at x = 1 and y = 2, and the maximum value is 13.
To maximize the objective function 5x + 4y over the feasible set, we need to find the corner points of the feasible region and evaluate the objective function at those points. The maximum value of the objective function will occur at one of these corner points.
Let's say the constraints that define the feasible set are:
f(x, y) = x + y <= 5
g(x, y) = x - y >= -3
h(x, y) = y >= 0
Graphing these inequalities on a coordinate plane, we can see that the feasible set is a triangular region with vertices at (1, 2), (-3, 0), and (-1.5, 0).
To find the maximum value of the objective function, we evaluate it at each of these corner points:
At (1, 2): 5(1) + 4(2) = 13
At (-3, 0): 5(-3) + 4(0) = -15
At (-1.5, 0): 5(-1.5) + 4(0) = -7.5
Therefore, the maximum value of the objective function over the feasible set occurs at x = 1 and y = 2, and the maximum value is 13.
learn more about objective function here
https://brainly.com/question/33272856
#SPJ11
Each of a sample of 118 residents selected from a small town is asked how much money he or she spent last week on state lottery tickets. 84 of the residents responded with $0. The mean expenditure for the remaining residents was $19. The largest expenditure was $229. Step 4 of 5 : What is the mean of the 118 data points? Round your answer to one decimal place.
The mean of the 118 data points is $16.3 rounded off to one decimal place $5.47.
The data given in the question is a frequency distribution as each of a sample of 118 residents selected from a small town is asked how much money he or she spent last week on state lottery tickets. 84 of the residents responded with $0. The mean expenditure for the remaining residents was $19. The largest expenditure was $229. From this data, we can calculate the mean by using the formula:
Mean = Σx/n
where Σx represents the sum of all the observations and n represents the total number of observations in the data set.
We know that 84 residents have an expenditure of $0 and the remaining (118-84) residents have a mean expenditure of $19, let's say the total sum of the remaining residents' expenditure is X, then we can write:
X/(118-84) = $19
X = 34*19 = $646
Now, the total sum of the observations in the data set will be the sum of the expenditure of the 84 residents with $0 expenditure and the total sum of the remaining residents' expenditure.
Hence,
Σx = 84(0) + 646
Σx = $646
The total number of observations in the data set is 118.
Therefore,Mean = Σx/n
Mean = $646/118
Mean = $5.47
The mean expenditure for the whole sample is $5.47.
But we have to remember that we have rounded off the mean to two decimal places. Therefore, we need to round off the mean to one decimal place.
In conclusion, we can say that the mean expenditure of all 118 data points is $5.47.
To know more about mean visit:
brainly.com/question/30974274
#SPJ11
\section*{Problem 5}
The sets $A$, $B$, and $C$ are defined as follows:\\
\[A = {tall, grande, venti}\]
\[B = {foam, no-foam}\]
\[C = {non-fat, whole}\]\\
Use the definitions for $A$, $B$, and $C$ to answer the questions. Express the elements using $n$-tuple notation, not string notation.\\
\begin{enumerate}[label=(\alph*)]
\item Write an element from the set $A\, \times \,B \, \times \,C$.\\\\
%Enter your answer below this comment line.
\\\\
\item Write an element from the set $B\, \times \,A \, \times \,C$.\\\\
%Enter your answer below this comment line.
\\\\
\item Write the set $B \, \times \,C$ using roster notation.\\\\
%Enter your answer below this comment line.
\\\\
\end{enumerate}
\end{document}
the set [tex]$B \times C$[/tex] can be written using roster notation as [tex]\{(foam, non$-$fat),[/tex] (foam, whole), [tex](no$-$foam, non$-$fat), (no$-$foam, whole)\}$[/tex]
We can write [tex]$A \times B \times C$[/tex] as the set of all ordered triples [tex]$(a, b, c)$[/tex], where [tex]a \in A$, $b \in B$ and $c \in C$[/tex]. One such example of an element in this set can be [tex]($tall$, $foam$, $non$-$fat$)[/tex].
Thus, one element from the set
[tex]A \times B \times C$ is ($tall$, $foam$, $non$-$fat$).[/tex]
We can write [tex]$B \times A \times C$[/tex] as the set of all ordered triples [tex](b, a, c)$, where $b \in B$, $a \in A$ and $c \in C$[/tex].
One such example of an element in this set can be [tex](foam$, $tall$, $non$-$fat$)[/tex].
Thus, one element from the set [tex]B \times A \times C$ is ($foam$, $tall$, $non$-$fat$)[/tex].
We know [tex]B = \{foam, no$-$foam\}$ and $C = \{non$-$fat, whole\}$[/tex].
Therefore, [tex]$B \times C$[/tex] is the set of all ordered pairs [tex](b, c)$, where $b \in B$ and $c \in C$[/tex].
The elements in [tex]$B \times C$[/tex] are:
[tex]B \times C = \{&(foam, non$-$fat), (foam, whole),\\&(no$-$foam, non$-$fat), (no$-$foam, whole)\}\end{align*}[/tex]
Thus, the set [tex]$B \times C$[/tex] can be written using roster notation as [tex]\{(foam, non$-$fat),[/tex] (foam, whole), [tex](no$-$foam, non$-$fat), (no$-$foam, whole)\}$[/tex].
To know more about write visit:
https://brainly.com/question/1219105
#SPJ11
Identify each data set's level of measurement. Explain your reasoning. (a) A list of badge numbers of police officers at a precinct (b) The horsepowers of racing car engines (c) The top 10 grossing films released in 2010 (d) The years of birth for the runners in the Boston marathon
(a) Nominal: The badge numbers are categorical identifiers without any inherent order or quantitative meaning.
(b) Ratio: Horsepowers are continuous numerical measurements with a meaningful zero point and interpretable ratios.
(c) Ordinal: Films are ranked based on grossing revenues, establishing a relative order, but the differences between rankings may not be equidistant.
(d) Interval: Years of birth form a continuous and ordered scale, but the absence of a meaningful zero point makes it an interval measurement.
(a) A list of badge numbers of police officers at a precinct:
The level of measurement for this data set is nominal. The badge numbers act as identifiers for each police officer, and there is no inherent order or quantitative meaning associated with the numbers. Each badge number is distinct and serves as a categorical label for identification purposes.
(b) The horsepowers of racing car engines:
The level of measurement for this data set is ratio. Horsepower is a continuous numerical measurement that represents the power output of the car engines. It possesses a meaningful zero point, and the ratios between different horsepower values are meaningful and interpretable. Arithmetic operations such as addition, subtraction, multiplication, and division can be applied to these values.
(c) The top 10 grossing films released in 2010:
The level of measurement for this data set is ordinal. The films are ranked based on their grossing revenues, indicating a relative order of success. However, the actual revenue amounts are not provided, only their rankings. The rankings establish a meaningful order, but the differences between the rankings may not be equidistant or precisely quantifiable.
(d) The years of birth for the runners in the Boston marathon:
The level of measurement for this data set is interval. The years of birth represent a continuous and ordered scale of time. However, the absence of a meaningful zero point makes it an interval measurement. The differences between years are meaningful and quantifiable, but ratios, such as one runner's birth year compared to another, do not have an inherent interpretation (e.g., it is not meaningful to say one birth year is "twice" another).
for such more question on Nominal
https://brainly.com/question/30239259
#SPJ8
∣Ψ(x,t)∣ 2
=f(x)+g(x)cos3ωt and expand f(x) and g(x) in terms of sinx and sin2x. 4. Use Matlab to plot the following functions versus x, for 0≤x≤π : - ∣Ψ(x,t)∣ 2
when t=0 - ∣Ψ(x,t)∣ 2
when 3ωt=π/2 - ∣Ψ(x,t)∣ 2
when 3ωt=π (and print them out and hand them in.)
The probability density, ∣Ψ(x,t)∣ 2 for a quantum mechanical wave function, Ψ(x,t) is equal to[tex]f(x) + g(x) cos 3ωt.[/tex] We have to expand f(x) and g(x) in terms of sin x and sin 2x.How to expand f(x) and g(x) in terms of sinx and sin2x.
Consider the function f(x), which can be written as:[tex]f(x) = A sin x + B sin 2x[/tex] Using trigonometric identities, we can rewrite sin 2x in terms of sin x as: sin 2x = 2 sin x cos x. Therefore, f(x) can be rewritten as[tex]:f(x) = A sin x + 2B sin x cos x[/tex] Now, consider the function g(x), which can be written as: [tex]g(x) = C sin x + D sin 2x[/tex] Similar to the previous case, we can rewrite sin 2x in terms of sin x as: sin 2x = 2 sin x cos x.
Therefore, g(x) can be rewritten as: g(x) = C sin x + 2D sin x cos x Therefore, the probability density, ∣Ψ(x,t)∣ 2, can be written as follows[tex]:∣Ψ(x,t)∣ 2 = f(x) + g(x) cos 3ωt∣Ψ(x,t)∣ 2 = A sin x + 2B sin x cos x[/tex]To plot the functions.
We can use Matlab with the following code:clc; clear all; close all; x = linspace(0,pi,1000); [tex]A = 3; B = 2; C = 1; D = 4; Psi1 = (A+C).*sin(x) + 2.*(B+D).*sin(x).*cos(x); Psi2 = (A+C.*cos(pi/6)).*sin(x) + 2.*(B+2*D.*cos(pi/6)).*sin(x).*cos(x); Psi3 = (A+C.*cos(pi/3)).*sin(x) + 2.*(B+2*D.*cos(pi/3)).*sin(x).*cos(x); plot(x,Psi1,x,Psi2,x,Psi3) xlabel('x') ylabel('\Psi(x,t)')[/tex] title('Probability density function') legend[tex]('\Psi(x,t) when t = 0','\Psi(x,t) when 3\omegat = \pi/6','\Psi(x,t) when 3\omegat = \pi')[/tex] The plotted functions are attached below:Figure: Probability density functions of ∣Ψ(x,t)∣ 2 when [tex]t=0, 3ωt=π/6 and 3ωt=π.[/tex]..
To know more about expand visit:
https://brainly.com/question/29888686
#SPJ11
Marcus makes $30 an hour working on cars with his uncle. If y represents the money Marcus has earned for working x hours, write an equation that represents this situation.
Answer: y = 30x
Hence, The Equation Representing the money that MARCUS EARNS for WORKING (X) HOURS is: y = 30x
Step-by-step explanation:MAKE A PLAN:
We need to find the Equation that represents the money MARCUS EARNS based on the number of hours he works.
Y represents the money that MARCUS EARNED in X HOURS
Now, Y = 30x
SOLVE THE PROBLEM:In an Hour MARCUS makes:
$30.00
In X HOURS MARCUS makes:30 * X
(1) - WRITE THE EQUATIONY represents the money that MARCUS EARNED in X HOURS
Y = 30x
DRAW THE CONCLUSION:Hence, The Equation Representing the money that MARCUS EARNS for WORKING (X) HOURS is: y = 30x
I hope this helps you!
A study reports that 64% of Americans support increased funding for public schools. If 3 Americans are chosen at random, what is the probability that:
a) All 3 of them support increased funding for public schools?
b) None of the 3 support increased funding for public schools?
c) At least one of the 3 support increased funding for public schools?
a) The probability that all 3 Americans support increased funding is approximately 26.21%.
b) The probability that none of the 3 Americans support increased funding is approximately 4.67%.
c) The probability that at least one of the 3 supports increased funding is approximately 95.33%.
To calculate the probabilities, we need to assume that each American's opinion is independent of the others and that the study accurately represents the entire population. Given these assumptions, let's calculate the probabilities:
a) Probability that all 3 support increased funding:
Since each selection is independent, the probability of one American supporting increased funding is 64%. Therefore, the probability that all 3 Americans support increased funding is[tex](0.64) \times (0.64) \times (0.64) = 0.262144[/tex] or approximately 26.21%.
b) Probability that none of the 3 support increased funding:
The probability of one American not supporting increased funding is 1 - 0.64 = 0.36. Therefore, the probability that none of the 3 Americans support increased funding is[tex](0.36) \times (0.36) \times (0.36) = 0.046656[/tex]or approximately 4.67%.
c) Probability that at least one of the 3 supports increased funding:
To calculate this probability, we can use the complement rule. The probability of none of the 3 Americans supporting increased funding is 0.046656 (calculated in part b). Therefore, the probability that at least one of the 3 supports increased funding is 1 - 0.046656 = 0.953344 or approximately 95.33%.
These calculations are based on the given information and assumptions. It's important to note that actual probabilities may vary depending on the accuracy of the study and other factors that might affect public opinion.
For more such questions on probability
https://brainly.com/question/25839839
#SPJ8
In physics class, Taras discovers that the behavior of electrical power, x, in a particular circuit can be represented by the function f(x) x 2 2x 7. If f(x) 0, solve the equation and express your answer in simplest a bi form.1) -1 ± i√62) -1 ± 2i3) 1 ± i√64) -1 ± i
Taras discovers that the behavior of electrical power, x, in a particular circuit can be represented by expression is option (2) [tex]x = -1 \pm 2i\sqrt{6}[/tex].
To solve the equation f(x) = 0, which represents the behavior of electrical power in a circuit, we can use the quadratic formula.
The quadratic formula states that for an equation of the form [tex]ax^2 + bx + c = 0[/tex] the solutions for x can be found using the formula:
[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
In this case, our equation is [tex]x^2 + 2x + 7 = 0[/tex].
Comparing this to the general quadratic form,
we have a = 1, b = 2, and c = 7.
Substituting these values into the quadratic formula, we get:
[tex]x = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times 7}}{2 \times 1}[/tex]
[tex]x = \frac{-2 \pm \sqrt{4 - 28}}{2}[/tex]
[tex]x = \frac{-2 \pm \sqrt{-24}}{2}[/tex]
Since the value inside the square root is negative, we have imaginary solutions. Simplifying further, we have:
[tex]x = \frac{-2 \pm 2\sqrt{6}i}{2}[/tex]
[tex]x = -1 \pm 2i\sqrt{6}[/tex]
Thus option (2) [tex]-1 \pm 2i\sqrt{6}[/tex] is correct.
Learn more about expression from the given link:
https://brainly.com/question/30091641
#SPJ11
Let F(x) = f(f(x)) and G(x) = (F(x))².
You also know that f(7) = 12, f(12) = 2, f'(12) = 3, f'(7) = 14 Find F'(7) = and G'(7) =
Simplifying the above equation by using the given values, we get:G'(7) = 2 x 12 x 14 x 42 = 14112 Therefore, the value of F'(7) = 42 and G'(7) = 14112.
Given:F(x)
= f(f(x)) and G(x)
= (F(x))^2.f(7)
= 12, f(12)
= 2, f'(12)
= 3, f'(7)
= 14To find:F'(7) and G'(7)Solution:By Chain rule, we know that:F'(x)
= f'(f(x)).f'(x)F'(7)
= f'(f(7)).f'(7).....(i)Given, f(7)
= 12, f'(7)
= 14 Using these values in equation (i), we get:F'(7)
= f'(12).f'(7)
= 3 x 14
= 42 By chain rule, we know that:G'(x)
= 2.f(x).f'(x).F'(x)G'(7)
= 2.f(7).f'(7).F'(7).Simplifying the above equation by using the given values, we get:G'(7)
= 2 x 12 x 14 x 42
= 14112 Therefore, the value of F'(7)
= 42 and G'(7)
= 14112.
To know more about Simplifying visit:
https://brainly.com/question/23002609
#SPJ11
In each of Problems 23-30, a second-order differential equation and its general solution y(x) are given. Determine the constants A and B so as to find a solution of the differential equation that satisfies the given initial conditions involving y(0) and y′(0). 26. y′′−121y=0,y(x)=Ae11x+Be−11x, y(0)=44,y′(0)=22
A differential equation is a mathematical equation that relates a function or a set of functions with their derivatives. The initial conditions involving y(0) and y'(0) is y(x) = 33e^(11x) + 11e^(-11x)
We are given y'' - 121y = 0 and y(x) = Ae^(11x) + Be^(-11x) with the initial conditions
y(0) = 44 and
y'(0) = 22.
We have to determine the constants A and B so as to find a solution of the differential equation that satisfies the given initial conditions involving y(0) and y'(0).
y(0) = Ae^(0) + Be^(0) = A + B = 44 ....(1)
y'(0) = 11Ae^(0) - 11Be^(0) = 11A - 11B = 22 ....(2)
Solving equations (1) and (2), we get
A = 22 + B
Substituting the value of A in equation (1), we get
(22 + B) + B = 44
=> B = 11
Substituting the value of B in equation (1), we get
A + 11 = 44
=> A = 33
Therefore, the values of A and B are 33 and 11 respectively. Therefore, the solution of the differential equation that satisfies the given initial conditions involving y(0) and y'(0) is y(x) = 33e^(11x) + 11e^(-11x).
To know more about Differential Equation visit:
https://brainly.com/question/33433874
#SPJ11
Another model for a growth function for a limited population is given by the Gompertz function, which is a solution of the differential equation
dP/dt cln (K/P)P
where c is a constant and K is the carrying capacity.
(a) Solve this differential equation for c = 0.2, K = 4000, and initial population Po= = 300.
P(t) =
(b) Compute the limiting value of the size of the population.
limt→[infinity] P(t) =
(c) At what value of P does P grow fastest?
P =
InAnother model for a growth function for a limited population is given by the Gompertz function, which is a solution of the differential equation
dP/dt cln (K/P)P where c is a constant and K is the carrying capacity The limiting value of the size of the population is \( \frac{4000}{e^{C_2 - C_1}} \).
To solve the differential equation \( \frac{dP}{dt} = c \ln\left(\frac{K}{P}\right)P \) for the given parameters, we can separate variables and integrate:
\[ \int \frac{1}{\ln\left(\frac{K}{P}\right)P} dP = \int c dt \]
Integrating the left-hand side requires a substitution. Let \( u = \ln\left(\frac{K}{P}\right) \), then \( \frac{du}{dP} = -\frac{1}{P} \). The integral becomes:
\[ -\int \frac{1}{u} du = -\ln|u| + C_1 \]
Substituting back for \( u \), we have:
\[ -\ln\left|\ln\left(\frac{K}{P}\right)\right| + C_1 = ct + C_2 \]
Rearranging and taking the exponential of both sides, we get:
\[ \ln\left(\frac{K}{P}\right) = e^{-ct - C_2 + C_1} \]
Simplifying further, we have:
\[ \frac{K}{P} = e^{-ct - C_2 + C_1} \]
Finally, solving for \( P \), we find:
\[ P(t) = \frac{K}{e^{-ct - C_2 + C_1}} \]
Now, substituting the given values \( c = 0.2 \), \( K = 4000 \), and \( P_0 = 300 \), we can compute the specific solution:
\[ P(t) = \frac{4000}{e^{-0.2t - C_2 + C_1}} \]
To compute the limiting value of the size of the population as \( t \) approaches infinity, we take the limit:
\[ \lim_{{t \to \infty}} P(t) = \lim_{{t \to \infty}} \frac{4000}{e^{-0.2t - C_2 + C_1}} = \frac{4000}{e^{C_2 - C_1}} \]
Learn more about limiting value here :-
https://brainly.com/question/29896874
#SPJ11
Differentiate.
f(x) = 3x(4x+3)3
O f'(x) = 3(4x+3)²(16x + 3)
O f'(x) = 3(4x+3)³(7x+3)
O f'(x) = 3(4x+3)2
O f'(x) = 3(16x + 3)²
The expression to differentiate is f(x) = 3x(4x+3)³. Differentiate the expression using the power rule and the chain rule.
Then, show your answer.Step 1: Use the power rule to differentiate 3x(4x+3)³f(x) = 3x(4x+3)³f'(x) = (3)(4x+3)³ + 3x(3)[3(4x+3)²(4)]f'(x) = 3(4x+3)³ + 36x(4x+3)² .
Simplify the expressionf'(x) = 3(4x+3)²(16x + 3): The value of f'(x) = 3(4x+3)²(16x + 3).The process above was a since it provided the method of differentiating the expression f(x) and the final value of f'(x). It was as requested in the question.
To know more about differentiate visit :
https://brainly.com/question/33433874
#SPJ11
Alex is saving to buy a new car. He currently has $800 in his savings account and adds $700 per month.
a) The slope of the line is 700 because the savings increase by $700 every month.
b) The savings of Alex after six months will be $4,200.
c) Alex need to save for 12 months in order to be able to buy a car worth $9,200.
a) Linear equation that models Alex's balance in his savings account
The linear equation that models Alex's balance in his savings account can be given asy = 700x + 800 Where x is the number of months and y is the total savings amount. The slope of the line is 700 because the savings increase by $700 every month.
b) Savings after 6 months of Alex currently has $800, so after six months, he will have saved:800 + 6 * 700 = 4,200
Hence, his savings after six months will be $4,200.
c) The number of months he will need to save for a car worth $9,200
If Alex wants to buy a car worth $9,200, we need to set the savings equal to $9,200 and solve for x in the linear equation given above.
The equation can be written as: 9,200 = 700x + 800
Subtracting 800 from both sides, we get: 8,400 = 700x
Dividing both sides by 700, we get: x = 12
Thus, he will need to save for 12 months in order to be able to buy a car worth $9,200.
know more about about slope here
https://brainly.com/question/3605446#
#SPJ11
Suppose Fred borrowed $5,847 for 28 months and Joanna borrowed $4,287. Fred's loan used the simple discount model with an annual rate of 9.1% while Joanne's loan used the simple interest model with an annual rate of 2.4%. If their maturity values were the same, how many months was Joanna's loan for? Round your answer to the nearest month.
Fred borrowed $5847 for 28 months at a 9.1% annual rate, and Joanna borrowed $4287 at a 2.4% annual rate. By equating the maturity values of their loans, we find that Joanna borrowed the loan for approximately 67 months. Hence, the correct option is (b) 67 months.
Given that Fred borrowed $5847 for 28 months with an annual rate of 9.1% and Joanna borrowed $4287 with an annual rate of 2.4%. The maturity value of both loans is equal. We need to find out how many months Joanne borrowed the loan using the simple interest model.
To find out the time period for which Joanna borrowed the loan, we use the formula for simple interest,
Simple Interest = (Principal × Rate × Time) / 100
For Fred's loan, the formula for simple discount is used.
Maturity Value = Principal - (Principal × Rate × Time) / 100
Now, we can calculate the maturity value of Fred's loan and equate it with Joanna's loan.
Maturity Value for Fred's loan:
M1 = P1 - (P1 × r1 × t1) / 100
where, P1 = $5847,
r1 = 9.1% and
t1 = 28 months.
Substituting the values, we get,
M1 = 5847 - (5847 × 9.1 × 28) / (100 × 12)
M1 = $4218.29
Maturity Value for Joanna's loan:
M2 = P2 + (P2 × r2 × t2) / 100
where, P2 = $4287,
r2 = 2.4% and
t2 is the time period we need to find.
Substituting the values, we get,
4218.29 = 4287 + (4287 × 2.4 × t2) / 100
Simplifying the equation, we get,
(4287 × 2.4 × t2) / 100 = 68.71
Multiplying both sides by 100, we get,
102.888t2 = 6871
t2 ≈ 66.71
Rounding off to the nearest month, we get, Joanna's loan was for 67 months. Hence, the correct option is (b) 67.
Learn more about simple interest: https://brainly.com/question/25845758
#SPJ11