Answer:
6967 years
Explanation:
The radioactive substance left after a periodical t year can be expressed by using the formula:
[tex]Q(t) = Q_oe^{-kt}[/tex]
here;
[tex]Q_o[/tex] = the radioactive initial value.
We need to understand that provided that the radioactive substance will get reduced to half of the provided initial amount after a periodic time, Then:
the half-life of the radioactive substance left is:
[tex]Q(h) = \dfrac{Q_o}{2}[/tex]
Given that:
the half-life = 1500 years
[tex]\dfrac{Q_o}{2}= Q_o e^{-k\times 1500} \\ \\ \dfrac{Q_o}{2}= Q_o e^{ -1500k}[/tex]
Divide both sides by [tex]Q_o[/tex]
[tex]\dfrac{1}{2} =e^{-1500k}[/tex]
Then, find the natural logarithm of both side;
[tex]\mathtt{In \dfrac{1}{2} = -1500 k}[/tex]
[tex]k = \dfrac{1}{-1500}\mathtt{In}\dfrac{1}{2}[/tex]
k = 0.000462
So, after a particular (t) time, a 250 kg radium sample was reduced to 10 kg;
Then:
[tex]10 = 250 e^{-0.000462t}[/tex]
[tex]0.04 = e^{-0.000462t}[/tex]
From both sides, finding the natural logarithm, we have:
In(0.04) = -0.000462t
[tex]t = \dfrac{In(0.04)}{-0.000462}[/tex]
t = 6967.26
Thus, it will take approximately 6967 years for a 250 kg radium sample to get reduced to 10 kg.
Water moves on, above or under the surface of the Earth true or false
above because its above
If in Part II, you mixed (carefully measured) 25.0 mL of 0.81 M NaOH with 65.0 mL of 0.33 M HCl, which of the two reagents is the limiting reagent for heat of reaction
Answer:
NaOH is the limiting reactant.
Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary to write out the chemical reaction between NaOH and HCl:
[tex]NaOH+HCl\rightarrow NaCl+H_2O[/tex]
Thus, since they react in a 1:1 mole ratio; we can now calculate the moles of each substance by using their volumes and molarities:
[tex]n_{NaOH}=0.0250L*0.81mol/L=0.02025molNaOH\\\\n_{HCl}=0.0650L*0.33mol/L=0.02145molHCl[/tex]
Now, since NaOH is in a fewer proportion, we infer just 0.02025 moles of HCl are consumed so that 0.0012 moles of this acid remain unreacted; in such a way, we infer that the NaOH is the limiting reactant for this reaction.
Regards!
Pure magnesium metal is often found as ribbons and can easily burn in the presence of oxygen. When 3.31 g of magnesium ribbon burns with 8.45 g of oxygen, a bright, white light and a white, powdery product are formed. Enter the balanced chemical equation for this reaction. Be sure to include all physical states.
Answer:
2Mg(s) + O2(g) ----->2MgO(s)
Explanation:
In writing a balanced chemical reaction equation, the rule of thumb is that the number of atoms of each element on the reactant side must be the same as the number of atoms of the same elements on the products side.
Hence for the reaction of magnesium and oxygen shown below;
2Mg(s) + O2(g) ----->2MgO(s)
We notice that there are two atoms each of magnesium and oxygen on both sides of the reaction equation hence the equation is balanced.
NEED HELP ASAP!!!.....Which is not true about the ionic compound sodium chloride (NaCl)? A.)it was formed when electrons were shared B.)it is electrically neutral C.)it has properties different from the atoms from which it is formed D.)it is a white crystalline solid
g (2pts) A 10x transfer buffer solution is 250mM Tris and 1.92M glycine. Buffers are always used at 1x concentration in the lab (unless specified otherwise in the protocol), so we will have to dilute the 10x buffer to 1x before use. What is the concentration of Tris and glycine in the 1x buffer
Answer:
The explanation according to the given question is summarized below.
Explanation:
Given:
Tris,
= 250 mM
Glycine,
= 1.92 M
According to the solution,
For the dilution pf 10X to 1X buffer, we get
= [tex]1 \ ml \ of \ 10X \ buffer +9 \ ml \ of \ distilled \ water[/tex]
= [tex]10[/tex]
i.e.,
⇒ [tex]10X \ to \ 1X=1:10 \ dilution[/tex]
Now,
⇒ [tex]10X (250 \ mM\ Tris \ HCl, 1.92M\ Glycine, and\ 1 \ percent (\frac{w}{v} ) SDS) ---->1X(25 \ mM \ Tris \ HCl,0.193 M\ Glycine, and \ 0.1 \ percent(\frac{w}{v} )SDS)[/tex]
If the specific heat capacity of copper is 387 J/kg/°C, then how much energy is needed to raise the temperature of 400 g of copper from 30°C to 55°C?
Answer:
Explanation:
mass = 400 grams * [1 kg/1000 grams] = 0.400 kg
c = 387 Joules / (oC * kg)
Δt = 55 - 30 = 25 oC
E = m*c * Δt
E = 0.4 * 387 * 25
E = 3870 Joules
Construct a Lewis structure for hydrogen peroxide, H2O2, in which each atom achieves a stable noble-gas electron configuration. Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons.
Answer:
See explanation and image attached
Explanation:
Hydrogen peroxide is made up of two atoms of hydrogen and two atoms of oxygen as shown in the image attached.
The two oxygen atoms are joined together by a single covalent bond and each of the oxygen atoms are bonded to one hydrogen atom each.
There are two lone pairs on each of the oxygen atoms.
The Lewis(dot) structure for hydrogen peroxide is shown in the image attached to this answer.
. Suppose an infrared photon with a wavelength of 853 nm were combined with another infrared photon with a wavelength of 865 nm, what would be the wavelength of the new 'combined' photon, in nm
Answer:
Explanation:
Given the data in the question;
wavelength λ₁ = 853 nm = 853 × 10⁻⁹ m
wavelength λ₂ = 865 nm = 865 × 10⁻⁹ m
we determine the energy of each photons using the following expression;
[tex]E_{photon[/tex] = hc / λ
where h is Planck's constant ( 6.626 × 10⁻³⁴ J.s )
c is speed of light ( 3 × 10⁸ m/s )
For Photon with wavelength λ₁ = 853 × 10⁻⁹ m
[tex]E_{photon1[/tex] = hc / λ
we substitute
= ( ( 6.626 × 10⁻³⁴ J.s )( 3 × 10⁸ m/s ) ) / (853 × 10⁻⁹ m)
= 1.9878 × 10⁻²⁵ / 853 × 10⁻⁹
= 2.33 × 10⁻¹⁹ J
For Photon with wavelength λ₂ = 865 × 10⁻⁹ m
[tex]E_{photon2[/tex] = ( ( 6.626 × 10⁻³⁴ J.s )( 3 × 10⁸ m/s ) ) / (865 × 10⁻⁹ m)
= 1.9878 × 10⁻²⁵ / 865 × 10⁻⁹
= 2.298 × 10⁻¹⁹ J
We know that; energy of the combined photon will be equal to the sum of energies of the two photons.
so
Energy of the combined photon = [tex]E_{photon1[/tex] + [tex]E_{photon2[/tex]
[tex]E_{combined[/tex] = 2.33 × 10⁻¹⁹ J + 2.298 × 10⁻¹⁹ J
[tex]E_{combined[/tex] = 4.628 × 10⁻¹⁹ J
so wavelength of the new combined photon will be;
[tex]E_{combined[/tex] = hc / λ[tex]_{combined[/tex]
[tex]E_{combined[/tex]λ[tex]_{combined[/tex] = hc
λ[tex]_{combined[/tex] = hc / [tex]E_{combined[/tex]
we substitute
λ[tex]_{combined[/tex] = ( ( 6.626 × 10⁻³⁴ J.s )( 3 × 10⁸ m/s ) ) / 4.628 × 10⁻¹⁹ J
= 1.9878 × 10⁻²⁵ / 4.628 × 10⁻¹⁹
= 4.2952 × 10⁻⁷ m
= ( 4.2952 × 10⁻⁷ × 10⁹ )nm
= 429.5 nm
Therefore, Wavelength of the new 'combined' photon is 429.5 nm
what is a compound ? Give five examples ?
[tex]\huge\mathsf{\red{\underline{\underline{Compound}}}}[/tex]
[tex]{\green{\dashrightarrow}}[/tex]A chemical compound is a chemical substance that is made of two or more atoms of different elements that share a chemical bond.
[tex]{\green{\dashrightarrow}}[/tex]A chemical formula represents the ratio of atoms per element that make up the chemical compound.
[tex]\large{\pink{\sf{5~ Examples~ of~ Compound~ are:-}}}[/tex]
Example 1 :-Water (H2O, consisting of 2 hydrogen atoms and one oxygen atom)Example 2 :- Carbon dioxide (CO2, consisting of one carbon atom and two oxygen atoms)Example 3 :- Sodium Chloride (NaCl, consisting of one sodium atom and one chloride atom)Example 4:-Methane (CH4, consisting of one carbon atom and four hydrogen atoms)Example 5 :- Pure glucose is a compound made from three elements - carbon, hydrogen, and oxygen. The ratio of hydrogen to carbon and oxygen in glucose is always 2:1:1.
Explain why the coefficients on the left side of the equation don’t necessarily equal the coefficients on the right side of the equation. Is this possible if mass is being conserved?
Answer:
Explanation:
Short answer: Yes.
The coefficients may not be conserved, but mass always has to be. Take this equation as an example
2 Mg3P2 ===> 6Mg + P4
There is a 2 on the left side and 6 and 1 on the right. I hope you mean that the coefficient 2 is not equal to 7.
But let's look a little closer. You have to look at the molecular structure of the left and right side.
2Mg3P2 has 6 Mgs and 4 Ps on the left side.
6Mg is on the right. They are free standing.
P4 has 1 molecule consisting of 4 Ps.
Everything balances.
This is a terrific question to be asking. You need to understand the internal balance numbers vs the molecular ones on the out side.
That sounds like a bit of gobbledygook and it takes a bit of study.
2 Mg3P2 means that Mg3P2 is written twice.
Mg3P2 ==> "3 Mg2+ + 2P3+ and there is another one written the same way.
Mg3P2 ==> "3 Mg2+ + 2P3+
ins1502 assignment 03
Answer:
I think you forgot to post the question or picture
Which of these is an ion with a charge of 1+?
Map
Formulate your hypothesis.
List down the materials.
• Write the methods.
Answer:
How to Formulate an Effective Research Hypothesis
State the problem that you are trying to solve. Make sure that the hypothesis clearly defines the topic and the focus of the experiment.
Try to write the hypothesis as an if-then statement. ...
Define the variables.
Explanation:
I need help with my chemistry but you can only choose one correct answer
Answer:
Explanation:
photosynthesis
the given chemical reaction is photosynthesis.
During photosynthesis carbon dioxide absorbed by plants reacts with water in presence of sunlight to give glucose and oxygen.
PLSS HELPP ME i dont knowww
Answer:
non polar. polar ionic substance
Arrange the following ions in order of increasing ionic radius:
potassium ion, chloride ion, phosphide ion, calcium ion
Enter the FORMULA for each ion in the boxes below.
Answer:
just look at what row the element is in. The lower the row, the bigger the radius
Explanation:
The area of a telescope lens is 6507 x 10^3 mm^2. What is the area in square feet, enter your answer in scientific notation. If it takes a technician 51.6 s to polish 1.68 x 10^2 mm^2 how long does it take her to polish the entire lens ?
Answer: the area of the telescope lens is \textit{0,08507 ft}
Explanation: Happy I could help!
light energy travels in
Light energy travels in the form of waves.
If the atomic number of an element is 14, the identity of the element must be
A. Nitrogen
B. Silicon
C. Carbon
D. Niobium
Answer:
silicon
Explanation:
because silicon has 14 electrons and protons
A 1.0 kg bottle of sodium carbonate (Na2CO3, 106.0 g/mol) is available to clean up 5.00 liters of spilled concentrated aqueous hydrochloric acid (9.75 M). Is this enough sodium carbonate to neutralize the acid according to the following reaction?
2 HCl (aq) + Na2CO3 (s) 2NaCl (aq) + CO2 (g) + H2O (l)
(1) No, there is approximately 40% too small amount of sodium carbonate needed.
(2) Yes, there is approximately 80% more than what is needed.
(3) No, there is approximately 60% too small amount of sodium carbonate needed.
(4) Yes, there is exactly enough sodium carbonate, but no excess.
(5) No, there is approximately 20% too small amount of sodium carbonate needed.
Answer:
The correct answer is option 4, that is, there is exactly enough sodium carbonate.
Explanation:
Based on the given question, the reaction will be,
2 HCl (aq) + Na2CO3 (s) ⇒ 2 NaCl (aq) + CO2 (g) + H2O (l)
Therefore, for neutralizing 2 moles of HCl, one mole of Na2CO3 is required.
No of moles present in 1 Kg or 1000 grams of Na2CO3 will be,
Moles = Weight/Molecular mass of Na2CO3
Moles = 1000 / 106 = 9.43
Thus, 9.43 moles of Na2CO3 is present.
No of moles present in 1 liter of 9.75 M HCl is 9.75.
No. of moles present in 5 Liters of HCl (9.75 M),
= 5 × 9.75 = 48.75
Thus, for 2 moles of HCl 1 mole of Na2CO3 is required. Now for 48.75 moles of HCl, the moles required of Na2CO3 is 9.75. Therefore, for complete neutralization, the moles of Na2CO3 required is 9.75, and the present moles is 9.43.
Hence, there is exactly enough sodium carbonate.
help please hurry lots of points
Which element has the smallest mass on the periodic table? *
O
H
Pb
He
Mg
Answer:
That should be Hydrogen.
So The second option Is legit!
2) A 0.77 mg sample of nitrogen gas reacts with chlorine gas to form 6.61 mg of a nitrogen
chloride compound. What is the empirical formula of the nitrogen chloride compound?
Answer:
NCl₃
Explanation:
From the question given above, the following data were obtained:
Mass of nitrogen (N) = 0.77 mg
Mass of chlorine (Cl) = 6.61 mg
Empirical formula =?
The empirical formula of the compound can be obtained as follow:
N = 0.77 mg
Cl = 6.61 mg
Divide by their molar mass
N = 0.77 / 14 = 0.055
Cl = 6.61 / 35.5 = 0.186
Divide by the smallest
N = 0.055 / 0.055 = 1
Cl = 0.186 /0.055 = 3
Therefore, the empirical formula of the compound is NCl₃
1. What happens when like charges are brought closer to each other?
A 50.00 g sample of a compound containing only carbon, hydrogen, and oxygen was partially analyzed. The sample contained 24.66 g carbon, and 3.43g of hydrogen. The molecular weight of the compound was determined to be 146.0 amu. Determine emperical the molecular formula of the compound
Answer:
1. Empirical formula => C₂H₃O
2. Molecular formula => C₆H₉O₃
Explanation:
From the question given above, the following data were obtained:
Mass of compound = 50 g
Mass of Carbon = 24.66 g
Mass of Hydrogen = 3.43 g
Molecular weight of compound = 146.0 amu
Empirical formula =?
Molecular formula =?
Next, we shall determine the mass of oxygen in the compound. This can be obtained as follow:
Mass of compound = 50 g
Mass of C = 24.66 g
Mass of H = 3.43 g
Mass of O =?
Mass of O = mass of compound – ( mass of C + mass of H)
= 50 – (24.66 + 3.43)
= 50 – 28.09
= 21.91 g
1. Determination of the empirical formula.
Mass of C = 24.66 g
Mass of H = 3.43 g
Mass of O = 21.91 g
Divide by their molar mass
C = 24.66 / 12 = 2.055
H = 3.43 / 1 = 3.43
O = 21.91 / 16 = 1.369
Divide by the smallest
C = 2.055 / 1.369 = 2
H = 3.43 / 1.369 = 3
O = 1.369 / 1.369 = 1
Therefore, the empirical formula of the compound is C₂H₃O
2. Determination of the molecular formula.
Molecular weight of compound = 146.0 amu
Empirical formula => C₂H₃O
Molecular formula =?
Molecular formula = [C₂H₃O]ₙ = molecular weight
Thus,
[C₂H₃O]ₙ = 146
[(12×2) + (3×1) + 16]n = 146
[24 + 3 + 16]n = 146
43n = 146
Divide both side by 43
n = 146 / 43
n = 3
Molecular formula = [C₂H₃O]ₙ
Molecular formula = [C₂H₃O]₃
Molecular formula = C₆H₉O₃
If ammonium phosphate reacts with sodium chloride in aqueous solution, what are the products?
Answer:
[tex](NH_4)_3PO_4(aq)+3NaCl(aq)\rightarrow 3NH_4Cl(aq)+Na_3PO_4(aq)[/tex]
Explanation:
Hello there!
In this case, according to the given information, we can set up the appropriate chemical equation when ammonium phosphate reacts with sodium chloride in aqueous solution:
[tex](NH_4)_3PO_4(aq)+NaCl(aq)\rightarrow NH_4Cl(aq)+Na_3PO_4(aq)[/tex]
Which stands for a double replacement reaction, whereby ammonium changes phosphate to chloride and sodium changes chloride to phosphate on the products side. In addition, we can balance the aforementioned equation as shown below:
[tex](NH_4)_3PO_4(aq)+3NaCl(aq)\rightarrow 3NH_4Cl(aq)+Na_3PO_4(aq)[/tex]
Regards!
A 0.200 M solution of a week acid, HA, is 9.4% ionized. The molar concentration of H+ is 0.0188 M. the Acid-dissociation constant, Ka, for HA is...?
We are given:
Initial concentration of HA: 0.200 Molar
The acid is 9.4% ionized
Dissociation constant (α) = (Percent Ionized) / 100 = 0.094
Molar concentration of H+ = 0.0188
Let's Chill! (making the ICE box):
Reaction: HA ⇄ H⁺ + A⁻
Initial: 0.200M - -
Equilibrium: 0.200(1-α) 0.200α 0.200α
while we're here, let's confirm the given equilibrium concentration of H⁺ ions
from the table here, we can see that the equilibrium concentration of H⁺ ions is 0.200α, we know that α = 0.094
[H⁺] = 0.200α = 0.200 * 0.094 = 0.0188 M
which means that we're on the right track
We're basically scientists at this point (finding the dissociation constant):
Acid dissociation is nothing but the equilibrium constant, but for the dissociation of Acids
From the reaction above, we can write the equation of the acid dissociation constant:
Ka = [H⁺][A⁻] / [HA]
now, let's take the values from the 'equilibrium' row of the ice box the plug those in this equation
Ka = (0.200α)(0.200α) / [0.200(1-α)]
Ka = (0.200α)²/[0.200(1-α)]
plugging the value of α
Ka = (0.200*0.094)² / [0.200(0.906)]
Ka = (0.0188)² / 0.1812
Ka = 1.95 * 10⁻³
Difference between brain and spinal cord
Pls help
C. Balance these fossil-fuel combustion reactions. (1 point)
The question is incomplete. The complete question is :
C. Balance these fossil-fuel combustion reactions. (1 point)
C8H18(g) + 12.5O2(g) → ____CO2(g) + 9H2O(g) + heat
CH4(g) + ____O2(g) → ____CO2(g) + ____H2O(g) + heat
C3H8(g) + ____O2(g) → ____CO2(g) + ____H2O(g) + heat
C6H6(g) + ____O2(g) → ____CO2(g) + ____H2O(g) + heat
Solution :
C8H18(g) + 12.5O2(g) → __8__CO2(g) + 9H2O(g) + heat
When 1 part of octane reacts with 12.5 parts of oxygen, it gives 8 parts of carbon dioxide and 9 parts of water along with liberation of energy.
CH4(g) + __2__O2(g) → __1__CO2(g) + __2__H2O(g) + heat
When 1 part of methane reacts with 2 parts of oxygen, it gives 1 part of carbon dioxide and 2 parts of water along with liberation of energy.
C3H8(g) + __5__O2(g) → __3__CO2(g) + __4__H2O(g) + heat
When 1 part of propane reacts with 5 parts of oxygen, it gives 3 part of carbon dioxide and 4 parts of water along with liberation of energy.
C6H6(g) + __1/2__O2(g) → __6__CO2(g) + __3__H2O(g) + heat
When 1 part of propane reacts with 1/2 parts of oxygen, it gives 6 part of carbon dioxide and 3 parts of water along with liberation of energy.
It took 10.40 mL of a NaOH solution to neutralize 0.307 g of KHP. What is the molarity of the NaOH solution
Answer:
0.144 M
Explanation:
First we convert 0.307 g of KHP (potassium hydrogen phthalate, KHC₈H₄O₄) into moles, using its molar mass:
0.307 g ÷ 204.22 g/mol = 0.0015 mol KHP1 mol of KHP reacts with 1 mol of NaOH, that means that in 10.40 mL of the NaOH solution there were 0.0015 moles of NaOH.
Now we calculate the molarity of the NaOH solution:
10.40 mL / 1000 = 0.0104 LMolarity = 0.0015 mol / 0.0104 L = 0.144 M