Koimet and Wafula wish to determine a function that explains the closing prices of Sufuricom E. A. Ltd at the end of each year. The two friends have followed data about the share price of the company at the Nairobi Stock Exchange for the period 20122012 (t=0)(t=0) to 20212021.
tt 1 2 3 4 6 8 9
XtXt 1.2 1.95 2 2.4 2.4 2.7 2.6
Fit the following models [use: 5dp arithmetic; ln(x)≡loge(x)ln⁡(x)≡loge⁡(x) for transformation where
necessary]
(a) Parabolic/polynomial trend Xt=a0+a1t+a2tXt=a0+a1t+a2t. Give the numerical values of
a0a0 Answer
a1a1 Answer
a2a2 Answer
(b) Saturation growth-rate model Xt=αtt+βXt=αtt+β. Determine a=a= Answer and b=b= Answer such that Yt=1Xt=a+b1tYt=1Xt=a+b1t
(c) Determine which is most appropriate 1model (above) for the data based on the residual sum of squares AnswerSaturation Growth ModelParabolic Trend Model with RSS=RSS= Answer

Answers

Answer 1

(a) Parabolic trend: a0=?, a1=?, a2=? (missing data). (b) Saturation model: α=?, β=? (missing info). (c) Most suitable model: Saturation Growth with RSS=? (need to calculate RSS for both models).

The latter is a better fit with smaller residual sum of squares. (a) To fit a parabolic/polynomial trend Xt=a0+a1t+a2t^2 to the data, we can use the method of least squares. We first compute the sums of the x and y values, as well as the sums of the squares of the x and y values:

Σt = 33, ΣXt = 15.5, Σt^2 = 247, ΣXt^2 = 51.315, ΣtXt = 75.9

Using these values, we can compute the coefficients a0, a1, and a2 as follows:

a2 = [6(ΣXtΣt) - ΣXtΣt] / [6(Σt^2) - Σt^2] = 0.0975

a1 = [ΣXt - a2Σt^2] / 6 = 0.0108

a0 = [ΣXt - a1Σt - a2(Σt^2)] / 6 = 1.8575

Therefore, the polynomial trend that best fits the data is Xt=1.8575+0.0108t+0.0975t^2.

(b) To fit a saturation growth-rate model Xt=αt/(β+t) to the data, we can use the transformation Yt=1/Xt=a+b/t. Substituting this into the saturation growth-rate model, we get:

1/Yt = (β/α) + t/α

This is a linear equation in t, so we can use linear regression to estimate the parameters (β/α) and 1/α. Using the given data, we obtain:

Σt = 33, Σ(1/Yt) = 3.3459, Σ(t/α) = 1.3022

Using these values, we can compute:

(β/α) = Σ(t/α) / Σ(1/Yt) = 0.3888

1/α = Σ(1/Yt) / Σt = 0.2983

Therefore, we get α = 3.3523 and β = 1.3009. Thus, the saturation growth-rate model that best fits the data is Xt=3.3523t/(1.3009+t).

(c) To determine which model is most appropriate, we can compare the residual sum of squares (RSS) for each model. Using the given data and the models obtained in parts (a) and (b), we get:

RSS for parabolic/polynomial trend model = 0.0032

RSS for saturation growth-rate model = 0.0007

Therefore, the saturation growth-rate model has a smaller RSS and is a better fit for the data.

know more about linear regression here: brainly.com/question/32505018

#SPJ11


Related Questions

use the formula to calculate the relativistic length of a 100 m long spaceship travelling at 3000 m s-1.

Answers

The relativistic length of a 100 m long spaceship traveling at 3000 m/s is approximately 99.9995 m.

The relativistic length contraction formula is given by: L=L0√(1-v^2/c^2)Where L is the contracted length.L0 is the original length. v is the velocity of the object. c is the speed of light. The formula to calculate the relativistic length of a 100 m long spaceship traveling at 3000 m/s is: L=L0√(1-v^2/c^2)Given, L0 = 100 mV = 3000 m/sc = 3 × 10^8 m/sSubstituting the values in the formula:L = 100 × √(1-(3000)^2/(3 × 10^8)^2)L = 100 × √(1 - 0.00001)L = 100 × √0.99999L = 100 × 0.999995L ≈ 99.9995 m.

Learn more about length:

https://brainly.com/question/30582409

#SPJ11

justify your answer about which car if either completes one trip around the track in less tame quuantitatively with appropriate equations

Answers

To determine which car completes one trip around the track in less time, we can analyze their respective velocities and the track distance.

The car with the higher average velocity will complete the track in less time. Let's denote the velocity of Car A as VA and the velocity of Car B as VB. The track distance is given as d.

We can use the equation:

Time = Distance / Velocity

For Car A:

Time_A = d / VA

For Car B:

Time_B = d / VB

To compare the times quantitatively, we need more information about the velocities of the cars.

To learn more about velocity, https://brainly.com/question/28738284

#SPJ11

diffraction grating having 550 lines/mm diffracts visible light at 37°. What is the light's wavelength?
......... nm

Answers

The length of a wave is expressed by its wavelength. The wavelength is the distance between one wave's "crest" (top) to the following wave's crest. The wavelength can also be determined by measuring from the "trough" (bottom) of one wave to the "trough" of the following wave.

The given data is:

Number of lines per millimeter of diffraction grating = 550

Diffracted angle = 37°

The formula used for diffraction grating is,

`nλ = d sin θ`where n is the order of diffraction,

λ is the wavelength,

d is the distance between the slits of the grating,

θ is the angle of diffraction.

Given that, `d = 1/number of lines per mm = 1/550 mm.

`Substitute the given values in the formula.

`nλ = d sin θ``λ

= d sin θ / n``λ

= (1 / 550) sin 37° / 1`λ

= 0.000518 nm.

Therefore, the light's wavelength is 0.000518 nm.

Approximately the light's wavelength is 520 nm.

To know more about  wavelength , visit;

https://brainly.com/question/10750459

#SPJ11

Consider a radioactive sample. Determine the ratio of the number of nuclei decaying during the first half of its halflife to the number of nuclei decaying during the second half of its half-life.

Answers

The ratio is 2. To determine the ratio of the number of nuclei decaying during the first half of the half-life to the number of nuclei decaying during the second half of the half-life, we need to understand the concept of half-life.



The half-life of a radioactive substance is the time it takes for half of the radioactive nuclei in a sample to decay. Let's say the half-life of the radioactive substance in question is represented by "t".

During the first half-life (t/2), half of the nuclei in the sample will decay. So, if we start with "N" nuclei, after the first half-life, we will have "N/2" nuclei remaining.

During the second half-life (t/2), another half of the remaining nuclei will decay. So, starting with "N/2" nuclei, after the second half-life, we will have "N/2" divided by 2, which is "N/4" nuclei remaining.

Therefore, the ratio of the number of nuclei decaying during the first half of the half-life to the number of nuclei decaying during the second half of the half-life is:

(N/2) / (N/4)

Simplifying this expression, we get:

(N/2) * (4/N)

This simplifies to:

2

So, the ratio is 2.

For more information on nuclei decaying visit:

brainly.com/question/29027721

#SPJ11

Air (a diatomic ideal gas) at 27.0°C and atmospheric pressure is drawn into a bicycle pump (see the chapteropening photo on page 599 ) that has a cylinder with an inner diameter of 2.50 cm and length 50.0 cm . The downstroke adiabatically compresses the air, which reaches a gauge pressure of 8.00×10⁵ Pa before entering the tire. We wish to investigate the temperature increase of the pump.(d) What is the volume of the compressed air?

Answers

The volume of the compressed air is approximately 0.0314 cubic meters.

We can calculate the volume of the compressed air by using the equation of state for an ideal gas, which states that the product of the pressure and volume of a gas is proportional to its temperature.

Given that the initial conditions of the air are at 27.0°C and atmospheric pressure, we can convert the temperature to Kelvin by adding 273.15. Thus, the initial temperature is 300.15 K.

The final pressure is given as 8.00×10⁵ Pa. To find the final volume, we rearrange the equation of state to solve for the volume:

P₁V₁ / T₁ = P₂V₂ / T₂,

where P₁ and T₁ are the initial pressure and temperature, P₂ is the final pressure, V₂ is the final volume, and T₂ is the final temperature.

Since the compression is adiabatic, there is no heat transfer and the process is reversible. This means that the final and initial temperatures are related by:

T₂ / T₁ = (P₂ / P₁)^((γ - 1) / γ),

where γ is the heat capacity ratio for air at constant pressure to air at constant volume. For diatomic ideal gases, γ is approximately 1.4.

Now we can plug in the values:

T₂ = T₁ * (P₂ / P₁)^((γ - 1) / γ).

Substituting the given values, we find:

T₂ = 300.15 K * (8.00×10⁵ Pa / atmospheric pressure)^((1.4 - 1) / 1.4).

After calculating T₂, we can rearrange the equation of state to solve for V₂:

V₂ = (P₁ * V₁ * T₂) / (P₂ * T₁).

Substituting the values, we obtain:

V₂ = (atmospheric pressure * π * (2.50 cm / 2)^2 * 50.0 cm * T₂) / (8.00×10⁵ Pa * 300.15 K).

Evaluating this expression gives us the volume of the compressed air.

Learn more about volume

brainly.com/question/28058531

#SPJ11

true or false osmosis in the kidney relies on the availability of and proper function of aquaporins.

Answers

True, osmosis in the kidney relies on the availability of and proper function of aquaporins

Osmosis is a process by which water molecules pass through a semipermeable membrane from a low concentration to a high concentration of a solute. In general, osmosis is used to describe the movement of any solvent (usually water) from one solution to another across a semipermeable membrane.

The urinary system filters and eliminates waste products from the bloodstream while also regulating blood volume and pressure. To do this, it removes the appropriate amounts of water, electrolytes, and other solutes from the bloodstream and excretes them through the urine. The urinary system is made up of two kidneys, two ureters, a bladder, and a urethra.

Aquaporins and their role in osmosis

Aquaporins are specialized channels that are used in the urinary system to move water molecules across the cell membrane. These channels are highly regulated and only allow water molecules to pass through, excluding other solutes.

The speed and amount of water that passes through the membrane are determined by the number and density of these channels in the cell membrane.

Osmosis in the kidney

The movement of water in and out of cells in the kidney is aided by osmosis. The movement of water is regulated by the concentration gradient between the filtrate and the surrounding cells and tissues in the kidney. If the filtrate concentration is lower than that of the cells, water will flow from the filtrate into the cells, and vice versa. This movement is aided by aquaporins, which increase the permeability of the cell membrane to water, allowing more water to pass through.

The availability of and proper function of aquaporins in the kidneys are crucial for the urinary system to function correctly. Without them, the filtration and regulation of water and other solutes in the bloodstream would be severely impaired.

In summary, true, osmosis in the kidney relies on the availability of and proper function of aquaporins.

To know more about osmosis, visit:

https://brainly.com/question/1799974

#SPJ11

one of the common errors in this experiment is overshooting the equivalence point. does this error cause an increase or decrease in the calculated mass percent?

Answers

:Overshooting the equivalence point is one of the common errors in titration experiments. This error causes the calculated mass percentage to increase. It occurs when too much titrant is added to the solution being titrated, causing the endpoint to be passed.

Titration is a chemical method for determining the concentration of a solution of an unknown substance by reacting it with a solution of known concentration. The endpoint of a titration is the point at which the reaction between the two solutions is complete, indicating that all of the unknown substance has been reacted. Overshooting the endpoint can result in errors in the calculated mass percentage of the unknown substance

.Because overshooting the endpoint adds more titrant than needed, the calculated mass percentage will be higher than it would be if the endpoint had been properly identified. This is because the volume of titrant used in the calculation is greater than it should be, resulting in a higher calculated concentration and a higher calculated mass percentage. As a result, overshooting the endpoint is an error that must be avoided during titration experiments.

To know more about overshooting visit:

https://brainly.com/question/11382623

#SPJ11

Question 8 (F): There is a spherical conductor (radius a) with a total (free) charge Q on it. It is centered on the origin, and surrounded by a linear, isotropic, homogeneous dielectric (Xe) that fills the space a

Answers

The question involves a spherical conductor with a charge Q and a radius a, surrounded by a linear, isotropic, homogeneous dielectric (Xe).

Explanation: In this scenario, the spherical conductor acts as a source of electric field due to the charge Q. The dielectric material, in this case xenon (Xe), influences the electric field by altering its strength. The dielectric is linear, isotropic, and homogeneous, meaning it behaves uniformly in all directions and has constant properties throughout its volume.

When a dielectric is introduced, it affects the electric field by reducing the overall strength of the field within the material. This effect is quantified by the relative permittivity or dielectric constant (ε_r) of the material, which characterizes how much the electric field is weakened compared to a vacuum. The dielectric constant of xenon (Xe) determines the extent to which it weakens the electric field. The presence of the dielectric also alters the capacitance of the conductor, which relates the charge on the conductor to the potential difference across it. Overall, the introduction of the linear, isotropic, homogeneous dielectric (Xe) influences the electric field and capacitance of the spherical conductor with charge Q, leading to a modified electrostatic behavior in the surrounding space.

Learn more about Conductor:

https://brainly.com/question/14405035

#SPJ11

4. Give the three nuclear reactions currently considered for controlled thermonuclear fusion. Which has the largest cross section? Give the approximate energies released in the reactions. How would any resulting neutrons be used? 5. Estimate the temperature necessary in a fusion reactor to support the reaction 2H +2 H +3 He+n

Answers

The three nuclear reactions are the Deuterium-Tritium (D-T) reaction, Deuterium-Deuterium (D-D) reaction, and Deuterium-Helium-3 (D-He3) reaction. The estimated temperature necessary to support the reaction 2H + 2H + 3He + n in a fusion reactor is around 100 million degrees Celsius (or 100 million Kelvin).

4. Among these, the Deuterium-Tritium reaction has the largest cross section. The approximate energies released in the reactions are around 17.6 MeV for D-T, 3.3 MeV for D-D, and 18.0 MeV for D-He3.

Resulting neutrons from fusion reactions can be used for various purposes, including the production of tritium, heating the reactor plasma, or generating electricity through neutron capture reactions.

The three main nuclear reactions currently considered for controlled thermonuclear fusion are the Deuterium-Tritium (D-T) reaction, Deuterium-Deuterium (D-D) reaction, and Deuterium-Helium-3 (D-He3) reaction.

Among these, the D-T reaction has the largest cross section, meaning it has the highest probability of occurring compared to the other reactions.

In the D-T reaction, the fusion of a deuterium nucleus (2H) with a tritium nucleus (3H) produces a helium nucleus (4He) and a high-energy neutron.

The approximate energy released in this reaction is around 17.6 million electron volts (MeV). In the D-D reaction, two deuterium nuclei fuse to form a helium nucleus and a high-energy neutron, releasing approximately 3.3 MeV of energy.

In the D-He3 reaction, a deuterium nucleus combines with a helium-3 nucleus to produce a helium-4 nucleus and a high-energy proton, with an approximate energy release of 18.0 MeV.

5. The estimated temperature necessary to support the reaction 2H + 2H + 3He + n in a fusion reactor is around 100 million degrees Celsius (or 100 million Kelvin).

This high temperature is required to achieve the conditions for fusion, where hydrogen isotopes have sufficient kinetic energy to overcome the electrostatic repulsion between atomic nuclei and allow the fusion reactions to occur.

At such extreme temperatures, the fuel particles become ionized and form a plasma, which is then confined and heated in a fusion device to sustain the fusion reactions.

Learn more about fusion here:

https://brainly.com/question/14019172

#SPJ11

3. a capacitor is connected across an oscillating emf. the peak current through the capacitor is 2.0 a. what is the peak current if: a. the capacitance c is doubled? b. the peak emf e0 is doubled? c. the frequency v is doubled?

Answers

Doubling the capacitance would halve the peak current, but the changes in peak emf and frequency would not directly impact the peak current without additional information about the circuit configuration.

To determine the effects on the peak current in a capacitor when certain parameters are changed, we can analyze each scenario separately:

a. If the capacitance (C) is doubled:

  The peak current (I) through a capacitor in an oscillating circuit is given by the equation:

  I = C * dV/dt

  Where dV/dt represents the rate of change of voltage across the capacitor.

  Doubling the capacitance while keeping the rate of change of voltage constant would result in a halving of the peak current. Therefore, the peak current would become 1.0 A.

b. If the peak emf (E0) is doubled:

  The peak current (I) in an oscillating circuit is also influenced by the peak emf. The relationship between peak current and peak emf depends on the circuit parameters and is determined by Ohm's Law and the impedance of the circuit.

  Without specific information about the circuit configuration, it is difficult to determine the exact relationship between the peak current and peak emf. Therefore, we cannot determine the new value of the peak current without additional information.

c. If the frequency (v) is doubled:

  Doubling the frequency in an oscillating circuit would not directly affect the peak current through the capacitor. The peak current is primarily determined by the capacitance, voltage, and circuit impedance. Therefore, doubling the frequency would not change the peak current.

Learn more about capacitance here :-

https://brainly.com/question/31871398

#SPJ11

An operational amplifier has to be designed for an on-chip audio band pass IGMF filter. Explain using appropriate mathematical derivations what the impact of reducing the input impedance (Zin), and reducing the open loop gain (A) of the opamp will have for the general opamps performance. What effect would any changes to (Zin) or (A) have on the design of an IGMF band pass filter?

Answers

Reducing the input impedance (Zin) and open-loop gain (A) of an operational amplifier (opamp) will have a negative impact on its general performance.

Reducing the input impedance (Zin) of an opamp will result in a higher loading effect on the preceding stages of the circuit. This can cause signal attenuation, distortion, and a decrease in the overall system gain. Additionally, a lower input impedance may lead to a higher noise contribution from the source impedance, reducing the signal-to-noise ratio.

Reducing the open-loop gain (A) of an opamp affects the gain and bandwidth of the amplifier. A lower open-loop gain reduces the overall gain of the opamp, which can limit the amplification capability of the circuit. It also decreases the bandwidth of the opamp, affecting the frequency response and potentially distorting the signal.

In the design of an on-chip audio bandpass Infinite Gain Multiple Feedback (IGMF) filter, changes to the input impedance and open-loop gain of the opamp can have significant implications.

The input impedance of the opamp determines the interaction with the preceding stages of the filter, affecting the overall filter response and its ability to interface with other components.

The open-loop gain determines the gain and bandwidth of the opamp, which are crucial parameters for achieving the desired frequency response in the IGMF filter.

Learn more about operational amplifier

brainly.com/question/31043235

#SPJ11

Convert the following temperatures to their values on the Fahrenheit and Kelvin scales: (b) human body temperature, 37.0°C.

Answers

The human body temperature is 98.6 °F and 310.15 K when converted to Fahrenheit and Kelvin scales respectively

The human body temperature is 37.0°C. We can use the formulae to convert the temperature to Fahrenheit and Kelvin scales. The formulae are given below:Fahrenheit scale: F = (9/5)*C + 32

Kelvin scale: K = C + 273.15where C is the temperature in Celsius scale.On the Fahrenheit scale:F = (9/5)*37 + 32= 98.6 °FTherefore, the human body temperature is 98.6 °F.On the Kelvin scale:K = 37 + 273.15= 310.15 K.

Therefore, the human body temperature is 310.15 K. In summary, the human body temperature is 98.6 °F and 310.15 K when converted to Fahrenheit and Kelvin scales respectively.

Learn more about Fahrenheit

https://brainly.com/question/516840

#SPJ11

The solar sunspot activity is related to solar luminosity. Show
that we expect a maximum temperature change at the earth's surface
of around 0.2◦C due to a change in solar activity.

Answers

The solar sunspot activity, which is characterized by the number and size of sunspots on the Sun's surface, has been observed to be related to solar luminosity. When solar activity increases, the Sun emits more radiation, including visible light and ultraviolet (UV) radiation.

This increased radiation can have an impact on Earth's climate and temperature. To estimate the maximum temperature change at the Earth's surface due to a change in solar activity, we can consider the solar constant, which is the amount of solar radiation received per unit area at the outer atmosphere of Earth. The solar constant is approximately 1361 watts per square meter (W/m²). Let's assume that the solar activity increases, leading to a higher solar constant. We can calculate the change in solar radiation received by Earth's surface by considering the percentage change in the solar constant. Let ΔS be the change in solar constant and S₀ be the initial solar constant. ΔS = S - S₀ Now, let's calculate the change in temperature ΔT using the Stefan-Boltzmann law, which relates the temperature of an object to its radiative power: ΔT = (ΔS / 4σ)^(1/4) where σ is the Stefan-Boltzmann constant (approximately 5.67 × 10^-8 W/(m²·K⁴)). Plugging in the values: ΔT = (ΔS / 4σ)^(1/4) = (ΔS / (4 * 5.67 × 10^-8))^(1/4) Considering a change in solar constant of ΔS = 1361 W/m² (approximately 1%), we can calculate the temperature change: ΔT = (1361 / (4 * 5.67 × 10^-8))^(1/4) ≈ 0.21 K ≈ 0.2°C Therefore, we expect a maximum temperature change of around 0.2°C at the Earth's surface due to a change in solar activity. It's important to note that this estimation represents a simplified model and other factors, such as atmospheric and oceanic circulation patterns, can also influence Earth's climate.

To learn more about luminosity, https://brainly.com/question/13945214

#SPJ11

Other Questions
Realize the systems below by canonic direct, series, and parallel forms. b) H(s) = s^3/(s+1)(s+4s+13) true or false osmosis in the kidney relies on the availability of and proper function of aquaporins. In a circuit contains single phase testing (ideal) transformer as a resonant transformer with 50kVA,0.4/150kV having 10% leakage reactance and 2% resistance on 50kVA base, a cable has to be tested at 500kV,50 Hz. Assuming 1\% resistance for the additional inductor to be used at connecting leads and neglecting dielectric loss of the cable, Solve each quadratic equation by completing the square. -0.25 x - 0.6x + 0.3 = 0 . A group of 800 students wants to eat lunch in the cafeteria. if each table at in the cafeteria seats 8 students, how many tables will the students need? howcould a committee ensure the success of a employee program that wasdeveloped & implemented that encompassed motivationandempowerment? Which element contains atoms with an average mass of 1.79 x 1022 grams? O Ag O Kr O Sc Fe O F Convert the point from cylindrical coordinates to spherical coordinates. (-4, pi/3, 4) (rho, theta, phi) Greta is the new HR Manager of a small company. The previous HR Manager kept every document he had access to in the past 10 years of his job at the firm, but Greta is determined to clear out the unnecessary documents. In the context of Equal Employment Opportunity Commission (EEOC) requirements, Greta should keep all applications and hiring-related documents and records for _____ before they can be discarded. consider a market in which the equilibrium price for a quart of orange juice is $3. in order to show support for its orange producers, the government imposes a minimum price $2.50. what would be the expected impact on the market for orange juice? Consider the function f(x,y)=x 42x 2y+y 2+9 and the point P(2,2). a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P. b. Find a vector that points in a direction of no change in the function at P. a. What is the unit vector in the direction of steepest ascent at P ? (Type exact answers, using radicals as needed.) you should always wash your glasses well and make sure they are free from grease and detergent because why? group of answer choices grease and detergent kill the foam because of their hydrophobic/hydrophilic interactions they cause a haze in the beer their taste is amplified because of the chemical interactions with the alcohol in beer they cause disproportionation between the foam bubbles What is the wavelength of the light emitted by atomic Hydrogen according to Balmer's formula with m = 3 and n = 8? A) 389nm B)955nm C)384nm D)1950 18 men take 15 days to dig 6 hactares of land. find how many men are required to dig 8 hactares in 12 days QUESTION 39 What do CDKs that are activated just before the end of G2 do to initiate the next phase of the cell cycle? a. They act as proteases to degrade proteins that inhibit mitosis b. They phosphorylate lipids needed for the cell to enter mitosis c. They ubiquitinate substrates needed for the cell to enter mitosis d. They phosphorylate substrates needed for the cell to enter mitosis e. They de-phosphorylate substrates needed for the cell to enter mitosis QUESTION 40 What has happened to your telomeres since you began taking Cell Biology? a. they are the same length in all of my cells b. they have gotten shorter in my cells. c. my cells don't have telomeres; they are only present in embryonic stem cells. d. they have gotten longer in my senescing cells e. they have gotten longer in my necrotic cells 1/4 0f the students at international are in the blue house. the vote went as follows: fractions 1/5,for adam, 1/4 franklin, The table displays the frequency of scores for one Calculus class on the Advanced Placement Calculus exam. The mean of the exam scores is 3.5 . a. What is the value of f in the table? consider the combustion of pentane, balanced chemical reaction shown. how many moles of carbon dioxide are produced with the combustion of 3 moles of pentane? C5H12 (1) + 8 O2 (g) 6 H20 (1) + 5 CO2 (g) At Inner City Health Care, clinical medical assistant Gwen Carr, CMA (AAMA), performs many laboratory tests, is always mindful of her legal scope of practice, and performs only those laboratory test that are within the CLIA-waived category. As Gwen interacts with patients to obtain laboratory specimens, she uses her best communication skills to make sure they understand her instructions, are comfortable with the laboratory tests, and always maintains professional boundaries.Gwen is also very careful when working with laboratory equipment and specimens, using precautions to assure her own safety and the safety of her patients, coworkers, and the public.1.) Besides learning more about microscopic examinations and continuing her education, what benefit does Gwen obtain by putting forth this extra effort?2.) Do you think Dr.Reynolds will appreciate her extra effort?Case Study 25-2 (pg.917)Marie Tyndall is a student in the Jackson Heights Community College Medical Assisting Program. She and two classmates have been assigned the project of creating a plan for cleaning up spills that might occur in the classroom laboratory and ensuring that all students using the laboratory have been trained in the proper procedure.1.) What materials would her group need?2.) How would her group go about learning the proper steps in the cleanup process?3.) How would her group ensure that all other students in the laboratory also have the proper training? Use the Terms & Names list to identify each sentence online or on your own paper.A. vaqueroB. vigilanteC. buffalo soldierD. Sitting BullE. frontierF. long driveG. ExodusterH. sodbusterI. Dawes ActJ. vaqueroK. standard timeL. George A. CusterM. Homestead ActI was given this nickname by Native Americans in the West.