Consider the function f(x,y)=x 4
−2x 2
y+y 2
+9 and the point P(−2,2). a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P. b. Find a vector that points in a direction of no change in the function at P. a. What is the unit vector in the direction of steepest ascent at P ? (Type exact answers, using radicals as needed.)

Answers

Answer 1

The unit vector in the direction of the steepest descent at point P is -(√(8/9) i + (1/3) j). A vector that points in the direction of no change in the function at P is 4 k + 32 j.

The unit vector in the direction of the steepest ascent at point P is √(8/9) i + (1/3) j. The unit vector in the direction of the steepest descent at point P is -(√(8/9) i + (1/3) j).

The gradient of a function provides the direction of maximum increase and the direction of maximum decrease at a given point. It is defined as the vector of partial derivatives of the function. In this case, the function f(x,y) is given as:

f(x,y) = x⁴ - 2x²y + y² + 9.

The partial derivatives of the function are calculated as follows:

fₓ = 4x³ - 4xy

fᵧ = -2x² + 2y

The gradient vector at point P(-2,2) is given as follows:

∇f(-2,2) = fₓ(-2,2) i + fᵧ(-2,2) j

= -32 i + 4 j= -4(8 i - j)

The unit vector in the direction of the gradient vector gives the direction of the steepest ascent at point P. This unit vector is calculated by dividing the gradient vector by its magnitude as follows:

u = ∇f(-2,2)/|∇f(-2,2)|

= (-8 i + j)/√(64 + 1)

= √(8/9) i + (1/3) j.

The negative of the unit vector in the direction of the gradient vector gives the direction of the steepest descent at point P. This unit vector is calculated by dividing the negative of the gradient vector by its magnitude as follows:

u' = -∇f(-2,2)/|-∇f(-2,2)|

= -(-8 i + j)/√(64 + 1)

= -(√(8/9) i + (1/3) j).

A vector that points in the direction of no change in the function at P is perpendicular to the gradient vector. This vector is given by the cross product of the gradient vector with the vector k as follows:

w = ∇f(-2,2) × k= (-32 i + 4 j) × k, where k is a unit vector perpendicular to the plane of the gradient vector. Since the gradient vector is in the xy-plane, we can take

k = k₃ = kₓ × kᵧ = i × j = k.

The determinant of the following matrix gives the cross-product:

w = |-i j k -32 4 0 i j k|

= (4 k) - (0 k) i + (32 k) j

= 4 k + 32 j.

Therefore, the unit vector in the direction of the steepest descent at point P is -(√(8/9) i + (1/3) j). A vector that points in the direction of no change in the function at P is 4 k + 32 j.

To know more about the cross-product, visit:

brainly.com/question/29097076

#SPJ11


Related Questions

what do you regard as the four most significant contributions of the mesopotamians to mathematics? justify your answer.

Answers

The four most significant contributions of the Mesopotamians to mathematics are:

1. Base-60 numeral system: The Mesopotamians devised the base-60 numeral system, which became the foundation for modern time-keeping (60 seconds in a minute, 60 minutes in an hour) and geometry. They used a mix of cuneiform, lines, dots, and spaces to represent different numerals.

2. Babylonian Method of Quadratic Equations: The Babylonian Method of Quadratic Equations is one of the most significant contributions of the Mesopotamians to mathematics. It involves solving quadratic equations by using geometrical methods. The Babylonians were able to solve a wide range of quadratic equations using this method.

3. Development of Trigonometry: The Mesopotamians also made significant contributions to trigonometry. They were the first to develop the concept of the circle and to use it for the measurement of angles. They also developed the concept of the radius and the chord of a circle.

4. Use of Mathematics in Astronomy: The Mesopotamians also made extensive use of mathematics in astronomy. They developed a calendar based on lunar cycles, and were able to predict eclipses and other astronomical events with remarkable accuracy. They also created star charts and used geometry to measure the distances between celestial bodies.These are the four most significant contributions of the Mesopotamians to mathematics. They are important because they laid the foundation for many of the mathematical concepts that we use today.

Learn more about Mesopotamians:

brainly.com/question/1110113

#SPJ11




a. Find the measure of each interior angle of the regular hendecagon that appears on the face of a Susan B. Anthony one-dollar coin.

Answers

The regular hendecagon is an 11 sided polygon. A regular polygon is a polygon that has all its sides and angles equal. Anthony one-dollar coin has 11 interior angles each with a measure of approximately 147.27 degrees.

Anthony one-dollar coin. The sum of the interior angles of an n-sided polygon is given by:
[tex](n-2) × 180°[/tex]
The formula for the measure of each interior angle of a regular polygon is given by:
measure of each interior angle =
[tex][(n - 2) × 180°] / n[/tex]

In this case, n = 11 since we are dealing with a regular hendecagon. Substituting n = 11 into the formula above, we get: measure of each interior angle
=[tex][(11 - 2) × 180°] / 11= (9 × 180°) / 11= 1620° / 11[/tex]

The measure of each interior angle of the regular hendecagon that appears on the face of a Susan B. Anthony one-dollar coin is[tex]1620°/11 ≈ 147.27°[/tex]. This implies that the Susan B.

To know more about polygon visit:-

https://brainly.com/question/17756657

#SPJ11

The measure of each interior angle of a regular hendecagon, which is an 11-sided polygon, can be found by using the formula:


Interior angle = (n-2) * 180 / n,

where n represents the number of sides of the polygon.

In this case, the regular hendecagon appears on the face of a Susan B. Anthony one-dollar coin. The Susan B. Anthony one-dollar coin is a regular hendecagon because it has 11 equal sides and 11 equal angles.

Applying the formula, we have:

Interior angle = (11-2) * 180 / 11 = 9 * 180 / 11.

Simplifying this expression gives us the measure of each interior angle of the regular hendecagon on the coin.

The measure of each interior angle of the regular hendecagon on the face of a Susan B. Anthony one-dollar coin is approximately 147.27 degrees.

To find the measure of each interior angle of a regular hendecagon, we use the formula: (n-2) * 180 / n, where n represents the number of sides of the polygon. For the Susan B. Anthony one-dollar coin, the regular hendecagon has 11 sides, so the formula becomes: (11-2) * 180 / 11. Simplifying this expression gives us the measure of each interior angle of the regular hendecagon on the coin. Therefore, the measure of each interior angle of the regular hendecagon on the face of a Susan B. Anthony one-dollar coin is approximately 147.27 degrees. This means that each angle within the hendecagon on the coin is approximately 147.27 degrees. This information is helpful for understanding the geometry and symmetry of the Susan B. Anthony one-dollar coin.

To learn more about hendecagon

visit the link below

https://brainly.com/question/31430414

#SPJ11

Calculate the eigenvalues of this matrix: [Note-you'll probably want to use a graphing calculator to estimate the roots of the polynomial which defines the eigenvalues. You can use the web version at xFunctions. If you select the "integral curves utility" from the main menu, will also be able to plot the integral curves of the associated diffential equations. ] A=[ 22
120

12
4

] smaller eigenvalue = associated eigenvector =( larger eigenvalue =

Answers

The matrix A = [[22, 12], [120, 4]] does not have any real eigenvalues.

To calculate the eigenvalues of the matrix A = [[22, 12], [120, 4]], we need to find the values of λ that satisfy the equation (A - λI)v = 0, where λ is an eigenvalue, I is the identity matrix, and v is the corresponding eigenvector.

First, we form the matrix A - λI:

A - λI = [[22 - λ, 12], [120, 4 - λ]].

Next, we find the determinant of A - λI and set it equal to zero:

det(A - λI) = (22 - λ)(4 - λ) - 12 * 120 = λ^2 - 26λ + 428 = 0.

Now, we solve this quadratic equation for λ using a graphing calculator or other methods. The roots of the equation represent the eigenvalues of the matrix.

Using the quadratic formula, we have:

λ = (-(-26) ± sqrt((-26)^2 - 4 * 1 * 428)) / (2 * 1) = (26 ± sqrt(676 - 1712)) / 2 = (26 ± sqrt(-1036)) / 2.

Since the square root of a negative number is not a real number, we conclude that the matrix A has no real eigenvalues.

In summary, the matrix A = [[22, 12], [120, 4]] does not have any real eigenvalues.

Learn more about eigenvalues here:

brainly.com/question/29861415

#SPJ11

Find the general solution to the following differential equations:
16y''-8y'+y=0
y"+y'-2y=0
y"+y'-2y = x^2

Answers

The general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

Given differential equations are:

16y''-8y'+y=0

y"+y'-2y=0

y"+y'-2y = x²

To find the general solution to the given differential equations, we will solve these equations one by one.

(i) 16y'' - 8y' + y = 0

The characteristic equation is:

16m² - 8m + 1 = 0

Solving this quadratic equation, we get m = 1/4, 1/4

Hence, the general solution of the given differential equation is:

y = c₁e^(x/4) + c₂xe^(x/4)..................................................(1)

(ii) y" + y' - 2y = 0

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2

Hence, the general solution of the given differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(2)

(iii) y" + y' - 2y = x²

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2.

The complementary function (CF) of this differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(3)

Now, we will find the particular integral (PI). Let's assume that the PI of the differential equation is of the form:

y = Ax² + Bx + C

Substituting the value of y in the given differential equation, we get:

2A - 4A + 2Ax² + 4Ax - 2Ax² = x²

Equating the coefficients of x², x, and the constant terms on both sides, we get:

2A - 2A = 1,

4A - 4A = 0, and

2A = 0

Solving these equations, we get

A = 1/2,

B = 0, and

C = 0

Hence, the particular integral of the given differential equation is:

y = (1/2)x²..................................................(4)

The general solution of the given differential equation is the sum of CF and PI.

Hence, the general solution is:

y = c₁e^x + c₂e^(-2x) + (1/2)x²..................................................(5)

Conclusion: Therefore, the general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

To know more about differential visit

https://brainly.com/question/13958985

#SPJ11

The particular solution is: y = -1/2 x². The general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

The general solution of the given differential equations are:

Given differential equation: 16y'' - 8y' + y = 0

The auxiliary equation is: 16m² - 8m + 1 = 0

On solving the above quadratic equation, we get:

m = 1/4, 1/4

∴ General solution of the given differential equation is:

y = c1 e^(x/4) + c2 x e^(x/4)

Given differential equation: y" + y' - 2y = 0

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:

m = -2, 1

∴ General solution of the given differential equation is:

y = c1 e^(-2x) + c2 e^(x)

Given differential equation: y" + y' - 2y = x²

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:m = -2, 1

∴ The complementary solution is:y = c1 e^(-2x) + c2 e^(x)

Now we have to find the particular solution, let us assume the particular solution of the given differential equation:

y = ax² + bx + c

We will use the method of undetermined coefficients.

Substituting y in the differential equation:y" + y' - 2y = x²a(2) + 2a + b - 2ax² - 2bx - 2c = x²

Comparing the coefficients of x² on both sides, we get:-2a = 1

∴ a = -1/2

Comparing the coefficients of x on both sides, we get:-2b = 0 ∴ b = 0

Comparing the constant terms on both sides, we get:2c = 0 ∴ c = 0

Thus, the particular solution is: y = -1/2 x²

Now, the general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

To know more about differential equations, visit:

https://brainly.com/question/32645495

#SPJ11

Other Questions
Even though _____________ was never as commercially successful as Paul Whiteman or Benny Goodman, his contributions as bandleader, arranger and talent scout were critical to the popularity of jazz in the 1930s and 1940s. the evolution of public health, and what the focus has been over time, can best be described by which flowchart? potential hazard of immune serum globulin, antitoxins, and antivenins would be ___a.) all of these are correntb.) allergic reactionc.) causing the actual disease in an immunocompromised individuald.) mercury poisoning During the early years of the silicon valley, what were some unique qualities of the environments in the start up computer companies? howdoes the peripheral nerve regeneration occur after an injury? a. Find the measure of each interior angle of the regular hendecagon that appears on the face of a Susan B. Anthony one-dollar coin. use the formula to calculate the relativistic length of a 100 m long spaceship travelling at 3000 m s-1. Draw stars to represent the relative amounts of proteins on side A and side B of Figure 5.Label Figure 5 with the following terms: "hypertonic", "more solutes", "less water", "hypotonic", "fewer solutes", "more water", semipermeable membrane."Do you think any water molecules move in the opposite direction of the arrow?Upload your sketch below. financial statement frauds and potential of between information providers and users leads to a natural skepticism on the part of users. (enter only one word per blank.) Calculate the eigenvalues of this matrix: [Note-you'll probably want to use a graphing calculator to estimate the roots of the polynomial which defines the eigenvalues. You can use the web version at xFunctions. If you select the "integral curves utility" from the main menu, will also be able to plot the integral curves of the associated diffential equations. ] A=[ 22120124] smaller eigenvalue = associated eigenvector =( larger eigenvalue = State the beginning reactants and the end products glycolysis, alcoholic fermentation, the citric acid cycle, and the electron transport chain. Describe where these processes take place in the cell and the conditions under which they operate (aerobic or anaerobic), glycolysis: alcoholic fermentation: citric acid cycle: electron transport chain what do you regard as the four most significant contributions of the mesopotamians to mathematics? justify your answer. Consider a radioactive sample. Determine the ratio of the number of nuclei decaying during the first half of its halflife to the number of nuclei decaying during the second half of its half-life. An operational amplifier has to be designed for an on-chip audio band pass IGMF filter. Explain using appropriate mathematical derivations what the impact of reducing the input impedance (Zin), and reducing the open loop gain (A) of the opamp will have for the general opamps performance. What effect would any changes to (Zin) or (A) have on the design of an IGMF band pass filter? predict the total packing cost for 25,000 orders, weighing 40,000 pounds, with 4,000 fragile items. round regression intercept to whole dollar and coefficients to two decimal places (nearest cent). enter the final answer rounded to the nearest dollar. Develop a minimum-multiplier realization of a length-7 Type 3 Linear Phase FIR Filter. read the case study for chapter 9 which can be found on page 172 of the textbook (shaw and carter, 2019). after reading the case study answer the following question: 1. what mistakes were made in the care of this patient? 2. identify how a patient-centered care perspective would have changed the experience of both nigel and joan? credit-risk modelling: theoretical foundations, diagnostic tools, practical examples, and numerical recipes in python Pinto LC, Falcetta MR, Rados DV, Leitao CB, Gross JL. Glucagon-like peptide-1 receptor agonists and pancreatic cancer: a meta-analysis with trial sequential analysis. Scientific reports. 2019:9:1-6. which xxx would replace the missing statements in the following code to prepend a node in a doubly-linked list?