As defined by Hipparchus, if two stars have an apparent magnitude difference of 5, their flux ratio is

Answers

Answer 1

According to Hipparchus, if two stars have an apparent magnitude difference of 5, their flux ratio can be determined.

Apparent magnitude is a measure of the brightness of celestial objects, such as stars. Hipparchus, an ancient Greek astronomer, developed a magnitude scale to quantify the brightness of stars. In this scale, a difference of 5 magnitudes corresponds to a difference in brightness by a factor of 100.

The magnitude scale is logarithmic, meaning that a change in one magnitude represents a change in brightness by a factor of approximately 2.512 (the fifth root of 100). Therefore, if two stars have an apparent magnitude difference of 5, the ratio of their fluxes (or brightness) can be calculated as 2.512^5, which equals approximately 100. This means that the brighter star has 100 times the flux (or brightness) of the fainter star.

Learn more about flux ratio

https://brainly.com/question/10428664

#SPJ11


Related Questions

6. A quantum particle is described by the wave function y(x) = A cos (2πx/L) for -L/4 ≤ x ≤ L/4 and (x) everywhere else. Determine: (a) The normalization constant A, (b) The probability of findin

Answers

The normalization constant A can be determined by integrating the absolute value squared of the wave function over the entire domain and setting it equal to 1, which represents the normalization condition. In this case, the wave function is given by:

ψ(x) = A cos (2πx/L) for -L/4 ≤ x ≤ L/4, and ψ(x) = 0 everywhere else.

To find A, we integrate the absolute value squared of the wave function:

∫ |ψ(x)|^2 dx = ∫ |A cos (2πx/L)|^2 dx

Since the wave function is zero outside the range -L/4 ≤ x ≤ L/4, the integral can be written as:

∫ |ψ(x)|^2 dx = ∫ A^2 cos^2 (2πx/L) dx

The integral of cos^2 (2πx/L) over the range -L/4 ≤ x ≤ L/4 is L/8.

Thus, we have:

∫ |ψ(x)|^2 dx = A^2 * L/8 = 1

Solving for A, we find:

A = √(8/L)

The probability of finding the particle in a specific region can be calculated by integrating the absolute value squared of the wave function over that region. In this case, if we want to find the probability of finding the particle in the region -L/4 ≤ x ≤ L/4, we integrate |ψ(x)|^2 over that range:

P = ∫ |ψ(x)|^2 dx from -L/4 to L/4

Substituting the wave function ψ(x) = A cos (2πx/L), we have:

P = ∫ A^2 cos^2 (2πx/L) dx from -L/4 to L/4

Since cos^2 (2πx/L) has an average value of 1/2 over a full period, the integral simplifies to:

P = ∫ A^2/2 dx from -L/4 to L/4

= (A^2/2) * (L/2)

Substituting the value of A = √(8/L) obtained in part (a), we have:

P = (√(8/L)^2/2) * (L/2)

= 8/4

= 2

Therefore, the probability of finding the particle in the region -L/4 ≤ x ≤ L/4 is 2.

To learn more about wave function

brainly.com/question/32239960

#SPJ11

Identify the correct statement. For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent-divergent nozzle. O A gas can always expand isentropically from subsonic to supersonic speeds, independently of the geometry O For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent nozzle. O For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a divergent nozzle.

Answers

The correct statement is: "For a gas to expand isentropically from subsonic to supersonic speeds, it must flow through a convergent-divergent nozzle."

When a gas is flowing at subsonic speeds and needs to accelerate to supersonic speeds while maintaining an isentropic expansion (constant entropy), it requires a specially designed nozzle called a convergent-divergent nozzle. The convergent section of the nozzle helps accelerate the gas by increasing its velocity, while the divergent section allows for further expansion and efficient conversion of pressure energy to kinetic energy. This design is crucial for achieving supersonic flow without significant losses or shocks. Therefore, a convergent-divergent nozzle is necessary for an isentropic expansion from subsonic to supersonic speeds.

Learn more about supersonic speeds

https://brainly.com/question/32278206

#SPJ11

Show that the free-particle one-dimensional Schro¨dinger
equation for the wavefunc-
tion Ψ(x, t):
∂Ψ
i~
∂t = −
~
2
2m


,
∂x2
is invariant under Galilean transformations
x
′ = x −
3. Galilean invariance of the free Schrodinger equation. (15 points) Show that the free-particle one-dimensional Schrödinger equation for the wavefunc- tion V (x, t): at h2 32 V ih- at is invariant u

Answers

The Galilean transformations are a set of equations that describe the relationship between the space-time coordinates of two reference systems that move uniformly relative to one another with a constant velocity. The aim of this question is to demonstrate that the free-particle one-dimensional Schrodinger equation for the wave function ψ(x, t) is invariant under Galilean transformations.

The free-particle one-dimensional Schrodinger equation for the wave function ψ(x, t) is represented as:$$\frac{\partial \psi}{\partial t} = \frac{-\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2}$$Galilean transformation can be represented as:$$x' = x-vt$$where x is the position, t is the time, x' is the new position after the transformation, and v is the velocity of the reference system.

Applying the Galilean transformation in the Schrodinger equation we have:

[tex]$$\frac{\partial \psi}{\partial t}[/tex]

=[tex]\frac{\partial x}{\partial t} \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial t}$$$$[/tex]

=[tex]\frac{-\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2}$$[/tex]

Substituting $x'

= [tex]x-vt$ in the equation we get:$$\frac{\partial \psi}{\partial t}[/tex]

= [tex]\frac{\partial}{\partial t} \psi(x-vt, t)$$$$\frac{\partial \psi}{\partial x} = \frac{\partial}{\partial x} \psi(x-vt, t)$$$$\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial^2}{\partial x^2} \psi(x-vt, t)$$[/tex]

Substituting the above equations in the Schrodinger equation, we have:

[tex]$$\frac{\partial}{\partial t} \psi(x-vt, t) = \frac{-\hbar}{2m} \frac{\partial^2}{\partial x^2} \psi(x-vt, t)$$[/tex]

This shows that the free-particle one-dimensional Schrodinger equation is invariant under Galilean transformations. Therefore, we can conclude that the Schrodinger equation obeys the laws of Galilean invariance.

To know more about transformation visit:-

https://brainly.com/question/15200241

#SPJ11

with what minimum speed must you toss a 190 g ball straight up to just touch the 11- m -high roof of the gymnasium if you release the ball 1.1 m above the ground? solve this problem using energy.

Answers

To solve this problem using energy considerations, we can equate the potential energy of the ball at its maximum height (touching the roof) with the initial kinetic energy of the ball when it is released.

The potential energy of the ball at its maximum height is given by:

PE = mgh

Where m is the mass of the ball (190 g = 0.19 kg), g is the acceleration due to gravity (9.8 m/s^2), and h is the maximum height (11 m).

The initial kinetic energy of the ball when it is released is given by:

KE = (1/2)mv^2

Where v is the initial velocity we need to find.

Since energy is conserved, we can equate the potential energy and initial kinetic energy:

PE = KE

mgh = (1/2)mv^2

Canceling out the mass m, we can solve for v:

gh = (1/2)v^2

v^2 = 2gh

v = sqrt(2gh)

Plugging in the values:

v = sqrt(2 * 9.8 m/s^2 * 11 m)

v ≈ 14.1 m/s

Therefore, the minimum speed at which the ball must be tossed straight up to just touch the 11 m-high roof of the gymnasium is approximately 14.1 m/s.

Learn more about Kinetic Energy

brainly.com/question/15764612

#SPJ11

The end of the cylinder with outer diameter = 100 mm and inner diameter =30 mm and length = 150 mm will be machined using a CNC lathe machine with rotational speed =336 rotations per minute, feed rate = 0.25 mm/ rotation, and cutting depth = 2.0 mm. Machine mechanical efficiency =0.85 and specific energy for Aluminum = 0.7 N−m/m³. Determine: i. Cutting time to complete face cutting operation (sec). ii. Material Removal Rate (mm³/s). iii. Gross power used in the cutting process (Watts).

Answers

i. Cutting time: Approximately 53.57 seconds.

ii. Material Removal Rate: Approximately 880.65 mm³/s.

iii. Gross power used in the cutting process: Approximately 610.37 Watts.

To determine the cutting time, material removal rate, and gross power used in the cutting process, we need to calculate the following:

i. Cutting time (T):

The cutting time can be calculated by dividing the length of the cut (150 mm) by the feed rate (0.25 mm/rotation) and multiplying it by the number of rotations required to complete the operation. Given that the rotational speed is 336 rotations per minute, we can calculate the cutting time as follows:

T = (Length / Feed Rate) * (1 / Rotational Speed) * 60

T = (150 mm / 0.25 mm/rotation) * (1 / 336 rotations/minute) * 60

T ≈ 53.57 seconds

ii. Material Removal Rate (MRR):

The material removal rate is the volume of material removed per unit time. It can be calculated by multiplying the feed rate by the cutting depth and the cross-sectional area of the cut. The cross-sectional area of the cut can be calculated by subtracting the area of the inner circle from the area of the outer circle. Therefore, the material removal rate can be calculated as follows:

MRR = Feed Rate * Cutting Depth * (π/4) * (Outer Diameter^2 - Inner Diameter^2)

MRR = 0.25 mm/rotation * 2.0 mm * (π/4) * ((100 mm)^2 - (30 mm)^2)

MRR ≈ 880.65 mm³/s

iii. Gross Power (P):

The gross power used in the cutting process can be calculated by multiplying the material removal rate by the specific energy for aluminum and dividing it by the machine mechanical efficiency. Therefore, the gross power can be calculated as follows:

P = (MRR * Specific Energy) / Machine Efficiency

P = (880.65 mm³/s * 0.7 N−m/m³) / 0.85

P ≈ 610.37 Watts

So, the results are:

i. Cutting time: Approximately 53.57 seconds.

ii. Material Removal Rate: Approximately 880.65 mm³/s.

iii. Gross power used in the cutting process: Approximately 610.37 Watts.

To learn more about Material Removal Rate click here

https://brainly.com/question/15578722

#SPJ11

Other Questions
Provide the key fragment structures of the mass spectrometrydata. The possible molecular formula is:C5H9O2BrRelative Intensity 100 80 40 20- o fim 20 40 60 80 Titr 100 120 m/z 140 160 180 200 15.0 28.0 37.0 38.0 39.0 42.0 43.0 49.0 50.0 51.0 52.0 61.0 62.0 63.0 73.0 74.0 75.0 76.0 77.0 89.0 90.0 91.0 91.5 1 Recombination mapping has been fundamental in studying the arrangement of loci along chromosomes. Which of the following statements about recombination mapping is NOT correct?A.Genome-wide association mapping can be combined with recombination mapping for better understanding of genetic bases of phenotypesB.It cannot be used for breeding of animalsC.Generation time is an important factor for its feasibilityD.It cannot be used for asexual organismsE.Measuring phenotypes is an important component Question 3 Which of the following statements is true of the male reproductive system? A The interstitial (Leydig) assist in sperm formation B The testes are temperature sensitive for optimal sperm pro Design a excel file of an hydropower turgo turbine in Sizing and Material selection.Excel file must calculate the velocity of the nozel, diameter of the nozel jet, nozzle angle, the runner size of the turgo turbine, turbine blade size, hub size, fastner, angular velocity,efficiency,generator selection,frequnecy,flowrate, head and etc.(Note: File must be in execl file with clearly formulars typed with all descriptions in the sheet) Question 4 4 pts A 12-year-old girl visits her pediatrician with a 5-day history of fever, sore throat with pus-filled abscesses, and rash. Initial symptoms included sore throat, chills, and a low-grade fever (100.5F [38.1C]). The sore throat progressively worsened, with rapid development of a red, sunburn-like rash that felt like sandpaper spreading from the axilla to the torso. Development of this rash coincided with abrupt onset of fever (up to 103.5F [39.7C]), headache, and strawberry-like tongue. Bacteria were cultured from a throat swab on blood agar and a gram stain was performed. Beta-hemolysis was present on the blood agar plate and gram staining revealed the presence of gram positive cocci in chains. What disease does this patient have? Name the bacterium (genus and species) that caused her condition. Explain your reasoning. List the toxin associated with the development of the rash. 83% Question 2 True or False: Both Staphylococcus aureus and Streptococcus pyogenes cause impetigo. True False 2 pts Which of the following is a risk factor in Endocarditis Infecciosa (IEC?a. dental manipulationsb. prosthetic heart valvesc. infectious diseasesd. congenital heart diseasee. intravenous drug addicts 1a) Explain the importance of feedback inhibition in metabolic processes such as glycolysis, pyruvate oxidation, citric acid cycle, Calvin cycle, etc. (Please use one process in your explanation to clarify your rationale.) 5 pts 1a.) 1b) What would occur in the cell if the enzyme that regulates the process you explained in 1a were to malfuction? In your explanation, be sure to mention the name of the enzyme and if there are any detrimental physiological effects, for example the development of a certain disorder or disease. 5 pts 39. Is there a relationship between hysteresis and the individual and integrated hypothesis? Explain. An executive committee consists of 13 members: 6 men and 7 women. 5 members are selected at random to attend a meeting in Hawail. The names are drawn from a hat. What is the probability that all 5 selected are men? The probability that all selected are men is (Simplify your answer. Type an integer or a simplified fraction) deposited uniformly on the Silicon(Si) substrate, which is 500um thick, at a temperature of 50C. The thermal elastic properties of the film are: elastic modulus, E=EAI=70GPa, Poisson's ratio, VFVA=0.33, and coefficient of thermal expansion, a FaA=23*10-6C. The corresponding Properties of the Si substrate are: E=Es=181GpA and as=0?i=3*10-6C. The film-substrate is stress free at the deposition temperature. Determine a) the thermal mismatch strain difference in thermal strain), of the film with respect to the substrate(ezubstrate e fim) at room temperature, that is, at 20C, b)the stress in the film due to temperature change, (the thickness of the thin film is much less than the thickness of the substrate) and c)the radius of curvature of the substrate (use Stoney formula) 4) Disc brakes are used on vehicles of various types (cars, trucks, motorcycles). The discs are mounted on wheel hubs and rotate with the wheels. When the brakes are applied, pads are pushed against the faces of the disc causing frictional heating. The energy is transferred to the disc and wheel hub through heat conduction raising its temperature. It is then heat transfer through conduction and radiation to the surroundings which prevents the disc (and pads) from overheating. If the combined rate of heat transfer is too low, the temperature of the disc and working pads will exceed working limits and brake fade or failure can occur. A car weighing 1200 kg has four disc brakes. The car travels at 100 km/h and is braked to rest in a period of 10 seconds. The dissipation of the kinetic energy can be assumed constant during the braking period. Approximately 80% of the heat transfer from the disc occurs by convection and radiation. If the surface area of each disc is 0.4 m and the combined convective and radiative heat transfer coefficient is 80 W/m K with ambient air conditions at 30C. Estimate the maximum disc temperature. Consider the transshipment costs per unit shipped below for this problem. Consider this distribution plan below. What is the total cost (dollars) associated with this distribution plan? (round to a whole number) Layout (cont.) Assume a faciity is setting us an assembly line and the tasks and times are listed above. Assume the desired cycle time is 15 minutes/unit. What is the theoretical minimum number of workstations required? (Round up to a whole number) Reaction of antigen with IgE antibodies attached to mast cells causes a. Complement fixation. b. Agglutination. c. Lysis of the cells. d. Release of chemical mediators. e. None of these Question 11For the 3-class lever systems the following data are given:L2=0.8L1 = 420 cm; = 4 deg; 0 = 12 deg; Fload = 1.2Determine the cylinder force required to overcome the load force (in Newton) I have found a research study online with regards to PCM or Phase changing Material, and I can't understand and visualize what PCM is or this composite PCM. Can someone pls help explain and help me understand what these two composite PCMs are and if you could show images of a PCM it is really helpful. I haven't seen one yet and nor was it shown to us in school due to online class. pls help me understand what PCM is the conclusion below is just a part of a sample study our teacher gave to help us understand though it was really quite confusing, Plss help. ConclusionsTwo composite PCMs of SAT/EG and SAT/GO/EG were prepared in this article. Their thermophysical characteristic and solar-absorbing performance were investigated. Test results indicated that GO showed little effect on the thermal properties and solar absorption performance of composite PCM. However, it can significantly improve the shape stability of composite PCM. The higher the density is, the larger the volumetric heat storage capacity. When the density increased to 1 g/ cm3 , SAT/EG showed severe leakage while SAT/GO/EG can still keep the shape stability. A novel solar water heating system was designed using SAT/GO/EG (1 g/cm3 ) as the solar-absorbing substance and thermal storage media simultaneously. Under the real solar radiation, the PCM gave a high solar-absorbing efficiency of 63.7%. During a heat exchange process, the temperature of 10 L water can increase from 25 C to 38.2 C within 25 min. The energy conversion efficiency from solar radiation into heat absorbed by water is as high as 54.5%, which indicates that the novel system exhibits great application effects, and the composite PCM of SAT/GO/EG is very promising in designing this novel water heating system. Critically discuss three hypotheses or theories that can be usedto explain the shape of yield curves and their practicalimplications. (10 marks) 2. State whether decreasing the amount of oxygen (02) in inhaled air increased, reduced or did not change arterial carbon dioxide partial pressure from ordinary. 3. State whether decreasing the amount of O, in inhaled air increased, decreased or did not change plasma pH from normal. Which of the following statements is TRUE about transcriptioninitiationcomplexes required by eukaryotic RNA Polymerase Il?O a. TFIlD recognizes and binds multiple promoter elementsO b. Mediator ha A ten-year bond with a $2,000 face value pays a $60 coupon every six months. If the current market rate is 8%, find the fair market value of this bond. The fair-market value of the bond is $ 10.11 At f=100MHz, show that silver (=6.1107 S/m,r=1,r=1) is a good conductor, while rubber (=1015 S/m,r=1,r=3.1) is a good insulator.