In a case whereby the survivors are forced to learn new behaviors in order to adapt to the situation and each other. This is an example of Emergent norm theory.
What is Emergent norm?According to the emerging norm theory, groups of people congregate when a crisis causes them to reassess their preconceived notions of acceptable behavior and come up with new ones.
When a crowd gathers, neither a leader nor any specific norm for crowd conduct exist. Emerging conventions emerged on their own, such as the employment of umbrellas as a symbol of protest and as a defense against police pepper spray. To organize protests, new communication tools including encrypted messaging applications were created.
Learn more about behaviors at:
https://brainly.com/question/1741474
#SPJ4
complete question;
An airplane has crashed on a deserted island off the coast of Fiji. The survivors are forced to learn new behaviors in order to adapt to the situation and each other. This is an example of which theory?
the area of the pool was 4x^(2)+3x-10. Given that the depth is 2x-3, what is the wolume of the pool?
The area of a rectangular swimming pool is given by the product of its length and width, while the volume of the pool is the product of the area and its depth.
He area of the pool is given as [tex]4x² + 3x - 10[/tex], while the depth is given as 2x - 3. To find the volume of the pool, we need to multiply the area by the depth. The expression for the area of the pool is: Area[tex]= 4x² + 3x - 10[/tex]Since the length and width of the pool are not given.
We can represent them as follows: Length × Width = 4x² + 3x - 10To find the length and width of the pool, we can factorize the expression for the area: Area
[tex]= 4x² + 3x - 10= (4x - 5)(x + 2)[/tex]
Hence, the length and width of the pool are 4x - 5 and x + 2, respectively.
To know more about area visit:
https://brainly.com/question/30307509
#SPJ11
Eight guests are invited for dinner. How many ways can they be seated at a dinner table if the table is straight with seats only on one side?
A) 1
B) 40,320
C) 5040
D) 362,880
The number of ways that the people can be seated is given as follows:
B) 40,320.
How to obtain the number of ways that the people can be seated?There are eight guests and eight seats, which is the same number as the number of guests, hence the arrangements formula is used.
The number of possible arrangements of n elements(order n elements) is obtained with the factorial of n, as follows:
[tex]A_n = n![/tex]
Hence the number of arrangements for 8 people is given as follows:
8! = 40,320.
More can be learned about the arrangements formula at https://brainly.com/question/20255195
#SPJ4
For the given function, find (a) the equation of the secant line through the points where x has the given values and (b) the equation of the tangent line when x has the first value. y=f(x)=x^2+x;x=−4,x=−1
The equation of the tangent line passing through the point (-4, 12) with slope -7: y = -7x - 16.
We are given the function: y = f(x) = x² + x and two values of x:
x₁ = -4 and x₂ = -1.
We are required to find:(a) the equation of the secant line through the points where x has the given values (b) the equation of the tangent line when x has the first value (i.e., x = -4).
a) Equation of secant line passing through points (-4, f(-4)) and (-1, f(-1))
Let's first find the values of y at these two points:
When x = -4,
y = f(-4) = (-4)² + (-4)
= 16 - 4
= 12
When x = -1,
y = f(-1) = (-1)² + (-1)
= 1 - 1
= 0
Therefore, the two points are (-4, 12) and (-1, 0).
Now, we can use the slope formula to find the slope of the secant line through these points:
m = (y₂ - y₁) / (x₂ - x₁)
= (0 - 12) / (-1 - (-4))
= -4
The slope of the secant line is -4.
Let's use the point-slope form of the line to write the equation of the secant line passing through these two points:
y - y₁ = m(x - x₁)
y - 12 = -4(x + 4)
y - 12 = -4x - 16
y = -4x - 4
b) Equation of the tangent line when x = -4
To find the equation of the tangent line when x = -4, we need to find the slope of the tangent line at x = -4 and a point on the tangent line.
Let's first find the slope of the tangent line at x = -4.
To do that, we need to find the derivative of the function:
y = f(x) = x² + x
(dy/dx) = 2x + 1
At x = -4, the slope of the tangent line is:
dy/dx|_(x=-4)
= 2(-4) + 1
= -7
The slope of the tangent line is -7.
To find a point on the tangent line, we need to use the point (-4, f(-4)) = (-4, 12) that we found earlier.
Let's use the point-slope form of the line to find the equation of the tangent line passing through the point (-4, 12) with slope -7:
y - y₁ = m(x - x₁)
y - 12 = -7(x + 4)
y - 12 = -7x - 28
y = -7x - 16
Know more about the tangent line
https://brainly.com/question/30162650
#SPJ11
a) perform a linear search by hand for the array [20,−20,10,0,15], loching for 0 , and showing each iteration one line at a time b) perform a binary search by hand fo the array [20,0,10,15,20], looking for 0 , and showing each iteration one line at a time c) perform a bubble surt by hand for the array [20,−20,10,0,15], shouing each iteration one line at a time d) perform a selection sort by hand for the array [20,−20,10,0,15], showing eah iteration one line at a time
In the linear search, the array [20, -20, 10, 0, 15] is iterated sequentially until the element 0 is found, The binary search for the array [20, 0, 10, 15, 20] finds the element 0 by dividing the search space in half at each iteration, The bubble sort iteratively swaps adjacent elements until the array [20, -20, 10, 0, 15] is sorted in ascending order and The selection sort swaps the smallest unsorted element with the first unsorted element, resulting in the sorted array [20, -20, 10, 0, 15].
The array is now sorted: [-20, 0, 10, 15, 20]
a) Linear Search for 0 in the array [20, -20, 10, 0, 15]:
Iteration 1: Compare 20 with 0. Not a match.
Iteration 2: Compare -20 with 0. Not a match.
Iteration 3: Compare 10 with 0. Not a match.
Iteration 4: Compare 0 with 0. Match found! Exit the search.
b) Binary Search for 0 in the sorted array [0, 10, 15, 20, 20]:
Iteration 1: Compare middle element 15 with 0. 0 is smaller, so search the left half.
Iteration 2: Compare middle element 10 with 0. 0 is smaller, so search the left half.
Iteration 3: Compare middle element 0 with 0. Match found! Exit the search.
c) Bubble Sort for the array [20, -20, 10, 0, 15]:
Iteration 1: Compare 20 and -20. Swap them: [-20, 20, 10, 0, 15]
Iteration 2: Compare 20 and 10. No swap needed: [-20, 10, 20, 0, 15]
Iteration 3: Compare 20 and 0. Swap them: [-20, 10, 0, 20, 15]
Iteration 4: Compare 20 and 15. No swap needed: [-20, 10, 0, 15, 20]
The array is now sorted: [-20, 10, 0, 15, 20]
d) Selection Sort for the array [20, -20, 10, 0, 15]:
Iteration 1: Find the minimum element, -20, and swap it with the first element: [-20, 20, 10, 0, 15]
Iteration 2: Find the minimum element, 0, and swap it with the second element: [-20, 0, 10, 20, 15]
Iteration 3: Find the minimum element, 10, and swap it with the third element: [-20, 0, 10, 20, 15]
Iteration 4: Find the minimum element, 15, and swap it with the fourth element: [-20, 0, 10, 15, 20]
To know more about Iteration refer to-
https://brainly.com/question/31197563
#SPJ11
Write the slope -intercept form of the equation of the line containing the point (5,-8) and parallel to 3x-7y=9
To write the slope-intercept form of the equation of the line containing the point (5, -8) and parallel to 3x - 7y = 9, we need to follow these steps.
Step 1: Find the slope of the given line.3x - 7y = 9 can be rewritten in slope-intercept form y = mx + b as follows:3x - 7y = 9 ⇒ -7y = -3x + 9 ⇒ y = 3/7 x - 9/7.The slope of the given line is 3/7.
Step 2: Determine the slope of the parallel line. A line parallel to a given line has the same slope.The slope of the parallel line is also 3/7.
Step 3: Write the equation of the line in slope-intercept form using the point-slope formula y - y1 = m(x - x1) where (x1, y1) is the given point on the line.
Plugging in the point (5, -8) and the slope 3/7, we get:y - (-8) = 3/7 (x - 5)⇒ y + 8 = 3/7 x - 15/7Multiplying both sides by 7, we get:7y + 56 = 3x - 15 Rearranging, we get:
3x - 7y = 71 Thus, the slope-intercept form of the equation of the line containing the point (5, -8) and parallel to 3x - 7y = 9 is y = 3/7 x - 15/7 or equivalently, 3x - 7y = 15.
To know more about containing visit:
https://brainly.com/question/29133605
#SPJ11