Answer: The minimum [tex][Ag^{+}][/tex] concentrations required to precipitate out the anions is [tex]9 \times 10^{-9}[/tex] M.
Explanation:
We know that,
[tex]K_{sp}[/tex] for AgCl is [tex]1.8 \times 10^{-10}[/tex]
and, [tex]K_{sp}[/tex] for [tex]Ag_{2}CrO_{4}[/tex] is [tex]9 \times 10^{-12}[/tex]
Now, we will calculate the concentration of at which these ions precipitate out are as follows.
For AgCl :
[tex][Ag^{+}] = \frac{K_{sp}}{[Cl^{-}]}[/tex]
= [tex]\frac{1.8 \times 10^{-10}}{0.02}[/tex]
= [tex]9 \times 10^{-9}[/tex] M
For [tex]Ag_{2}CrO_{4}[/tex] :
[tex][Ag^{+}]^{2} = \frac{K_{sp}}{CrO^{2-}_{4}}[/tex]
= [tex]\frac{9 \times 10^{-12}}{0.01}[/tex]
= [tex]9 \times 10^{-10}[/tex]
[tex][Ag^{+}] = \sqrt{(9 \times 10^{-9})}[/tex]
= [tex]3 \times 10^{-5}[/tex] M
This shows that concentration of ions in AgCl is less than the concentration of AgCl will precipitate first.
Classify the substances as atomic elements, molecular elements, molecular compounds, or ionic compounds. a. Agb. Cdc. MgCl2d. F2f. HIg. NO2h. NaCli. Cl2
Answer:
Explanation:
Hello,
We'll be doing some classification of some chemical substances based on molecules, elemental state or ionic or electrovalent properties.
A) Ag = atomic element : silver (Ag) in its elemental state is an atomic element.
B) Cd = atomic element : Cadmium (Cd) is an element of the periodic table and belongs to transition metal.
C) MgCl = ionic compounds: this is a compound formed between magnesium (Mg) and chlorine (Cl) to give MgCl. This compound has ionic or electrovalent properties since electron transfer occurred between the cation (Mg) and anion (Cl).
D) F₂ = moleculer element : Fluorine F₂ is moleculer element since two elements of fluorine combine together to form a molecule.
E) HI = molecular compound : this is a compound formed from the reaction between hydrogen and iodine. It's a molecular compound because they are two different elements combining together to form a compound.
F) NO₂ = molecular compound
G) NaCl = ionic compound
H) Cl₂ = molecular element
Of Sr or Ba , the element with the higher first ionization energy is
Answer:
Sr
Explanation:
Sr has an ionization of 550 whereas Ba has an ionization of 503
the options are: ( it can’t be repeated )
1-synthetic polymer
2-natural polymer
3-gamma radiation
4-condensation polymerization
5-addition polymerization
Answer:
3- gamma radiation
Explanation:
Hello,
In the above question, 4 of the options are related to polymerization which are
1. Synthetic polymer
2. Natural polymer
3. Condensation polymerization
4. Addition polymerization.
The first two options are types of polymer that exists while the last two are polymerization techniques.
The odd option here which is "gamma radiation" is a particle which is emitted from radioactive substances during decay. It has no mass and no charge but it is highly penetrating and dangerous to human health.
However,
Synthetic polymers are also known as man made polymers and they exist around us because they're present in materials which we use everyday. An example is polyethylene, nylon-6,6 etc
Natural polymers are compounds which are polymeric in nature (compounds catenating to form a complex molecule). Natrual occurring polymers can be found in proteins and some lipids.
How does each of the following affect the solubility of an ionic compound: (a) Lattice energy Increasing solubility with increasing lattice energy. Lattice energy does not affect solubility. Decreasing solubility with increasing lattice energy. (b) Solvent (polar vs nonpolar) Ionic compounds are more soluble in a polar solvent. Solvent polarity does not affect solubility. Ionic compounds are more soluble in a nonpolar solvent. (c) Enthalpies of hydration of cation and anion Increasing solubility with increasing enthalpy of hydration. Enthalpy of hydration does not affect solubility. Decreasing solubility with increasing enthalpy of hydration.
Answer:
A) Decreasing solubility with increasing lattice energy.
B) Ionic compounds are more soluble in a polar solvent.
C) Increasing solubility with increasing enthalpy of hydration.
Explanation:
A) Lattice energy is the energy contained in the crystal lattice of a compound (mostly ionic). It is also the energy that would be released if the component ions were brought together from infinity to form the compound.
For a compound to dissolve, the solvation energy that the fluid would use to work on its ions must exceed the compound's lattice energy. Hence, the higher the lattice energy, the less soluble the compound would be.
B) The 'like dissolves like' law in dissolution is very true and applicable. The law explains that polar compounds will dissolve in polar solvents and not dissolve in non-polar solvents. Only non-polar compounds will dissolve in non-polar solvents.
Ionic compounds contain positive and negative ions, making them one of the most polar sets of compounds. So, they will easily dissolve in polar solvents.
C) Enthalpies of hydration of the cations and anions represent the total enthalpy of dissolution. This is the energy released when a compound undergoes hydration. A form of salvation of the ions, the enthalpy of hydration need to match or exceed the lattice energybof the compound For the compound to be soluble. Hence, the larger the enthalpies of hydration, the more likely the compound will be soluble.
Hope this Helps!!!
Electrophilic substitution on 3-phenylpropenenitrile occurs at the meta position. Draw resonance structures to show how the ring is electron-poor at the ortho and para positions.
Answer:
See figure 1
Explanation:
In this question, we have to remember that a poor electron carbon is a carbon in which we have a positive charge, a carbocation. Therefore we have to start with the production of the carbocation. First, a double bond from the benzene is moved to the carbon in the top to produce a new double bond generating a positive charge in a carbon with ortho position (electron-poor). Then we can move another double bond inside the ring to produce a positive charge in the para carbon. Finally, we can move the last double bond to produce again another positive charge in the second ortho carbon.
See figure 1.
I hope it helps!
An experiment calls for 10.0 mL of bromine (d = 3.12 g/mL). Since an accurate balance is available, it is decided to measure the bromine by mass. How many grams should be measured out? Multiple Choice 3.21 32.1 3.12 31.2 0.312
Answer:
31.2g
Explanation:
The following data were obtained from the question:
Volume of bromine = 10mL
Density of bromine = 3.12 g/mL
Mass of bromine =...?
The Density of the substance is related to it's mass and volume by the following equation:
Density = Mass /volume
With the above equation, we can calculate the mass of bromine as follow:
Density = Mass /volume
Volume of bromine = 10mL
Density of bromine = 3.12 g/mL
Mass of bromine =...?
Density = Mass /volume
3.12 = Mass /10
Cross multiply
Mass of bromine = 3.12 x 10
Mass of bromine = 31.2g
Therefore, the mass of bromine is 31.2g
The complete ionic equation for the reaction of aqueous sodium hydroxide with aqueous nitric acid is
Answer and Explanation:
Sodium hydroxide (NaOH) is a strong base and nitric acid (HNO₃) is a strong acid. That means that they dissociates in water by giving the ions:
NaOH ⇒ Na⁺(ac) + OH⁻(ac)
HNO₃ ⇒ H⁺(ac) + NO₃⁻(ac)
The reaction between an acid and a base is called neutralization. In this case, HNO₃ loses its proton and it is converted in NO₃⁻ (nitrate anion). NaOH loses its hydroxyl anion (OH⁻) by giving Na⁺ cations.
Na⁺ cations with NO₃⁻ anions form the salt NaNO₃ (sodium nitrate); whereas H⁺ and OH⁻ form water molecules. The complete equation is the following:
HNO₃(ac) + NaOH(ac) ⇒ NaNO₃(ac) + H₂O(l)
The ionic equation is:
H⁺(ac) + NO₃⁻(ac) + Na⁺(ac) + OH⁻(ac) ⇄ Na⁺(ac) + NO₃⁻(ac) + H₂O(ac)
If we cancel the repeated ions at both sides of the equation, it gives the following ionic reaction:
H⁺(ac) + OH⁻(ac) ⇄ H₂O(ac)
The volume of a sample of water is 2.5 mL the volume of the sample in liters is
Answer:
0.0025Litters
Explanation:
2.5ml= 2.5x10^-3l
2.5ml= 0.0025l
Answer:
AAAAAAAA
Explanation:
25.00 mL of a H2SO4 solution with an unknown concentration was titrated to a phenolphthalein endpoint with 28.11 mL of a 0.1311 M NaOH solution. What is the concentration of the H2SO4 solution
Answer:
Concentration of the H₂SO₄ solution is 0.0737 M
Explanation:
Equation of the neutralization reaction between the acid, H₂SO₄, and the base, NaOH, is given below:
H₂SO₄ + 2NaOH -----> Na₂SO₄ + 2H₂O
From the above equation, one mole of acid requires 2 moles of base for complete neutralization which occurs at phenolphthalein endpoint.
mole ratio of acid to base, nA/nB = 1:2
Concentration of the base, Cb = 0.1311 M
Volume of base, Vb, = 28.11 mL
Concentration of acid, Ca = ?
Volume of acid, Va + 25.0 mL
Using the formula, CaVa/CbVb = nA/nB
making Ca subject of the formula, Ca = Cb*Vb*nA/Va*nB
substituting the values into the equation
Ca = (0.1311 * 28.11 * 1) / 25.0 * 2 = 0.0737 M
Therefore, concentration of the H₂SO₄ solution is 0.0737 M
During lab, students mixed two solutions of soluble ions in a ceramic well to determine if a precipitate forms.
Write the dissolution reaction for the ionic solids below. (Use the lowest possible coefficients. Include states-of-matter under the given conditions in your answer.)
(a) Ca(NO3)2
(b) Na3PO4
The two solutions, when mixed, will have two cations and two anions.
(c) Based on your lab results, enter the cation and anion for which a precipitate will form. (Separate substances in a list with a comma.)
(d) Write the net precipitation reaction that occurs. (Use the lowest possible coefficients. Include states-of-matter under the given conditions in your answer.)
Answer:
(a) [tex]Ca(NO_3)_2(s)\rightarrow Ca^{2+}(aq)+2NO_3^-(aq)[/tex]
(b) [tex]Na_3PO_4(s)\rightarrow 3Na^++PO_4^{3-}[/tex]
(c) [tex]Ca^{2+} \ and \ PO_4^{3-}[/tex]
(d) [tex]3Ca^{2+}(aq)+2PO_4^{3-}(aq)\rightarrow Ca_3(PO_4)_2(s)[/tex]
Explanation:
Hello,
In this case, the balanced dissolution reactions are:
(a) [tex]Ca(NO_3)_2(s)\rightarrow Ca^{2+}(aq)+2NO_3^-(aq)[/tex]
(b) [tex]Na_3PO_4(s)\rightarrow 3Na^++PO_4^{3-}[/tex]
Moreover, when calcium nitrate and sodium phosphate react a double displacement reaction occurs, forming calcium phosphate, which is actually the precipitate due to its low solubility in water, and sodium nitrate:
[tex]2Na_3PO_4(aq)+3Ca(NO_3)_2(aq)\rightarrow 6NaNO_3(aq)+Ca_3(PO_4)_2(s)[/tex]
Thus, the precipitate is formed by:
(c) [tex]Ca^{2+} \ and \ PO_4^{3-}[/tex]
Finally, the net precipitation reaction shows the involved cation, anion and final product:
(d) [tex]3Ca^{2+}(aq)+2PO_4^{3-}(aq)\rightarrow Ca_3(PO_4)_2(s)[/tex]
Regards.
find the mass of h2 produced Binary compounds of alkali metals and hydrogen react with water to produce H2(g). The H2H2 from the reaction of a sample of NaH with an excess of water fills a volume of 0.505 L above the water. The temperature of the gas is 35 ∘C∘C and the total pressure is 755 mmHg
Answer: Mass of hydrogen produced is 0.0376 g.
Explanation:
The reaction equation will be as follows.
[tex]NaH(aq) + H_{2}O(l) \rightarrow H_{2}(g) + NaOH(aq)[/tex]
Now, formula for total pressure will be as follows.
[tex]P_{total} = P_{H_{2}} + P_{H_{2}O}[/tex]
Hence, [tex]P_{H_{2}} = P_{total} - P_{H_{2}O}[/tex]
= 755 mm Hg - 42.23 mm Hg
= 712.77 mm Hg
[tex]P_{H_{2}} = \frac{712.77 \times 1 atm}{760 mm Hg}[/tex]
= 0.937 atm
Now, we will calculate the moles of [tex]H_{2}[/tex] as follows.
[tex]P_{H_{2}}V = nRT[/tex]
[tex]0.937 atm \times 0.505 L = n \times 0.0821 \times 308.15 K[/tex]
n = [tex]\frac{0.473}{25.29}[/tex] mol
= 0.0187 mol
Therefore, mass of [tex]H_{2}[/tex] will be calculated as follows.
[tex]m_{H_{2}} = \frac{0.0187 mol \times 2.0158 g}{1 mol}[/tex]
= 0.0376 g
Thus, we can conclude that mass of hydrogen produced is 0.0376 g.
chemical equation for potassium sulfate and lead(II) acetate
Answer:
K₂SO₄ + Pb(C₂H₃O₂)₂ →PbSO₄ + 2KC₂H₃O₂
A chemical equation is a symbolic representation of a chemical reaction. The chemical equation for the reaction between potassium sulfate ([tex]K_2SO_4[/tex]) and lead(II) acetate ([tex]Pb(CH_3COO)_2[/tex]) can be written as follows:
[tex]K_2SO_4 + Pb(CH_3COO)_2 = PbSO_4 + 2CH_3COOK[/tex]
A basic chemical equation consists of two main parts: the reactant side (left side) and the product side (right side), separated by an arrow indicating the direction of the reaction. Reactants are substances that undergo a chemical change, while products are substances formed as a result of the reaction.
In this reaction, potassium sulfate reacts with lead(II) acetate to form lead(II) sulfate and potassium acetate. It is important to note that the equation is balanced with stoichiometric coefficients, ensuring that the number of atoms of each element is the same on both sides of the equation.
Therefore, the chemical equation for the reaction between potassium sulfate ([tex]K_2SO_4[/tex]) and lead(II) acetate ([tex]Pb(CH_3COO)_2[/tex]) can be written as follows:
[tex]K_2SO_4 + Pb(CH_3COO)_2 = PbSO_4 + 2CH_3COOK[/tex]
For more details regarding chemical equations, visit:
https://brainly.com/question/28792948
#SPJ6
The value of ΔG°′ΔG°′ for the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P) is +1.67 kJ/mol+1.67 kJ/mol . If the concentration of glucose-6-phosphate at equilibrium is 2.65 mM2.65 mM , what is the concentration of fructose-6-phosphate? Assume a temperature of 25.0°C25.0°C .
Answer:
The concentration of fructose-6-phosphate F6P ≅ 1.35 mM
Explanation:
Given that:
ΔG°′ is the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P) = +1.67 kJ/mol = 1670 J/mol
concentration of glucose-6-phosphate at equilibrium = 2.65 mM
Assuming temperature = 25.0°C
=( 25 + 273)K
= 298 K
We are to find the concentration of fructose-6-phosphate
Using the relation;
ΔG' = -RT In K_c
where;
R = 8.314 J/K/mol
1670 = - (8.314 × 298 ) In K_c
1670 = -2477.572 × In K_c
1670/ 2477.572 = In K_c
0.67 = In K_c
[tex]K_c = e^{-0.67}[/tex]
[tex]K_c =[/tex] 0.511
Now using the equilibrium constant [tex]K_c[/tex]
[tex]K_c = \dfrac{[F6P]}{[G6P]}[/tex]
[tex]0.511 = \dfrac{[F6P]}{[2.65]}[/tex]
F6P = 0.511 × 2.65
F6P = 1.35415
F6P ≅ 1.35 mM
A 25.00 mL solution of sulfuric acid (H2SO4) is titrated to phenolphthalein end point with 27.00 mL of 1.700 M KOH. Calculate the molarity of the acid solution? H2SO4(aq) + 2KOH(aq) o K2SO4(aq) + 2H2O(l)
Answer:
0.9180 M
Explanation:
Step 1: Write the balanced equation
H₂SO₄(aq) + 2 KOH(aq) ⇒ K₂SO₄(aq) + 2 H₂O(l)
Step 2: Calculate the reacting moles of KOH
27.00 mL of 1.700 M KOH react. The reacting moles of KOH are:
[tex]0.02700L \times \frac{1.700mol}{L} = 0.04590mol[/tex]
Step 3: Calculate the reacting moles of H₂SO₄
The molar ratio of H₂SO₄ to KOH is 1:2. The reacting moles of H₂SO₄ are 1/2 × 0.04590 mol = 0.02295 mol.
Step 4: Calculate the molarity of H₂SO₄
0.02295 moles of H₂SO₄ are in 25.00 mL of solution. The molarity of the acid solution is:
[tex]M = \frac{0.02295 mol}{0.02500} = 0.9180 M[/tex]
Which statement describes both homogeneous mixtures and heterogeneous mixtures?
Answer:
both are the types of mixture and both are impure substances that donot have fixed composition and the composition of constituents is not uniform
Answer:
Their components van be separated by physical processes
Explanation:
Out of the answers im given, it makes the most sense. I would double check before submitting though
A certain reaction with an activation energy of 155 kJ/mol was run at 495 K and again at 515 K . What is the ratio of f at the higher temperature to f at the lower temperature
Answer:
4.32 is the ratio of f at the higher temperature to f at the lower temperature
Explanation:
Using the sum of Arrhenius equation you can obtain:
ln (f₂/f₁) = Eₐ / R ₓ (1/T₁ - 1/T₂)
Where f represents the rate constant of the reaction at T₁ and T₂ temperatures. Eₐ is the energy activation (155kJ / mol = 155000J/mol) and R is gas constant (8.314J/molK)
Replacing:
ln (f₂/f₁) = 155000J/mol / 8.314J/molK ₓ (1/495K - 1/515)
Where 2 represents the state with the higher temperature and 1 the lower temperature.
ln (f₂/f₁) = 155000J/mol / 8.314J/molK ₓ (1/495K - 1/515)
ln (f₂/f₁) = 1.4626
f₂/f₁ = 4.32
4.32 is the ratio of f at the higher temperature to f at the lower temperature
The first three excited states of the nucleus Au-199 (gold) are at 0.075 Mev, 0.320 Mev and 0.475 MeV. If all transitions between theses states and the ground state occurred, what energy/wavelength gamma rays would be observed?
Answer and Explanation:
The computation of the energy or wavelength gamma rays observed is shown below:
Since the energy of gamma rays is higher than 0.10 MeV.
Now We have to calculate transitions in between the given levels of energy that correspond to this energy.
As per the given question, we have the following information
Ground state = E where E < 0.075 MeV
For Level 1 = 0.075 MeV
For Level 2 = 0.320 MeV
For Level 3 = 0.475 MeV
Now we have to take the below transitions:
1. [tex]3 \rightarrow 2[/tex]
Difference of energy is
= 0.475 - 0.320
= 0.155 MeV
This represents a gamma radiation
2. [tex]3 \rightarrow 1[/tex]
Difference of energy is
= 0.475 - 0.075
= 0.4 MeV
This represents a gamma radiation
3. [tex]3 \rightarrow ground[/tex]
Difference of energy is
= 0.475 - E > 0.155 MeV
This represents a gamma radiation
4. [tex]2 \rightarrow 1[/tex]
Difference of energy is
= 0.320 - 0.075
= 0.245 MeV
This represents a gamma radiation
5. [tex]2 \rightarrow ground[/tex]
Difference of energy is
= 0.320 - E > 0.245 MeV
This represents a gamma radiation
6. [tex]1 \rightarrow Ground[/tex]
Difference of energy is
= 0.075 - E < 0.10 MeV
This represents not a gamma radiation
We can see that there are 5 transitions that contain gamma rays
A piece of wood near a fire is at 23°C. It gains 1,160 joules of heat from the fire and reaches a temperature of 42°C. The specific heat capacity of
wood is 1.716 joules/gram degree Celsius. What is the mass of the piece of wood?
ОА. 16 g
OB. 29 g
ОC. 36 g
OD. 61 g
Answer:
35.578g or 36g if you round
Explanation:
Q=mc ∆∅ where ∅ is temperature difference
1160= m x 1.716 x (42-23)
m = 1160/ 1.716 x19
m=35.578g
m = 36g to nearest whole number
Answer: C. 36 g
Explanation: I got this right on Edmentum.
Q#1 Give a combination of four quantum numbers that could be assigned to an electron occupying a 5p orbital.
Express your answers using one significant figures. Enter your answers separated by commas.
The answer n, l, ml, ms = 5,1,-1,0,or1,-1/2or+1/2
mastring chemistry says
"Incorrect; Try Again; 6 attempts remaining; no points deducted
Your answer does not have the correct number of comma-separated terms."
the same for q#2
Do the same for an electron occupying a 6d orbital.
Express your answers using one significant figures. Enter your answers separated by commas.
the answer n, l, ml, ms =6,0,1,2,-2,-1,0,+1,+2,+1/2or-1/2
Answer:
For an electron in 5p orbital
5,1,-1,+1/2
For an electron in 6d orbital
6,2,-2,+1/2
Explanation:
The term quantum numbers refers to a set of values that can be used to determine the region in space where it is likely to find an electron. This region in space where there is a high probability of finding an electron is known as an atomic orbital. An atomic orbital is actually a wave function according to the Schrödinger wave equation.
There are four quantum numbers used in describing an atomic orbital: the principal quantum number (n), the orbital angular momentum quantum number also called azimuthal or subsidiary quantum number (l), the magnetic quantum number (ml), and the electron spin quantum number (ms).
For a 5p orbital;
n= 5, l= 1, ml= -1,0,1 ms= +1/2 or -1/2
For 6d orbital;
n= 6, l= 2, ml= -2,-1,0,1,2, ms= +1/2 or -1/2
Since we are requested to use a four quantum number description that can be assigned to an electron in these levels;
For an electron in 5p orbital
5,1,-1,+1/2
For an electron in 6d orbital
6,2,-2,+1/2
Ga3+ and Br1- is what formula?
[tex]\text{GaBr}_3[/tex]
Enter your answer in the provided box. Before arc welding was developed, a displacement reaction involving aluminum and iron(III) oxide was commonly used to produce molten iron (the thermite process). This reaction was used, for example, to connect sections of iron railroad track. Calculate the mass of molten iron produced when 2.88 kg of aluminum reacts with 24.4 mol of iron(III) oxide.
Answer:
2.7255 kg Fe
Explanation:
Based on the reaction of the thermite process:
2 Al(s) + Fe₂O₃(s) → Al₂O₃(s) + 2 Fe(l)
2.88kg of Al (Molar mass: 26.98g/mol) are:
2880g ₓ (1mol / 26.98g) = 106.7 moles Al
For a complete reaction of these moles of Al are necessaries:
106.7 moles Al ₓ ( 1 mol Fe₂O₃ / 2 moles Al) = 53.35 moles Fe₂O₃
As you have just 24.4 moles of Fe₂O₃, Fe₂O₃ is limiting reactant.
1 mole of Fe₂O₃ produce 2 moles of Fe.
Thus, moles of Fe produced are 24.4×2 = 48.8 moles of Fe.
As molar mass of Fe is 55.85g/mol, mass of Fe is:
48.8 moles Fe ×(55.85g / mol) = 2725.5g of Fe =
2.7255 kg FeEnter an abbreviated electron configuration for magnesium: Express your answer in complete form, in order of increasing energy. For example, [He]2s22p2 would be entered as [He]2s^22p^2.
Answer:
[Ne]3s²
Explanation:
Mg
1s2 2s2 2p6 3s2 or [Ne]3s²
Abbreviated electronic configuration of magnesium is [Ne]3 s² and in complete form it is 1 s² 2 s² 2 p⁶ 3 s².
What is electronic configuration?Electronic configuration is defined as the distribution of electrons which are present in an atom or molecule in atomic or molecular orbitals.It describes how each electron moves independently in an orbital.
Knowledge of electronic configuration is necessary for understanding the structure of periodic table.It helps in understanding the chemical properties of elements.
Elements undergo chemical reactions in order to achieve stability. Main group elements obey the octet rule in their electronic configuration while the transition elements follow the 18 electron rule. Noble elements have valence shell complete in ground state and hence are said to be stable.
Learn more about electronic configuration,here:
https://brainly.com/question/13497372
#SPJ5
Rank the following transitions in a hydrogen atom in order of increasing wavelength of electromagnetic radiation that could produce them. Answer this question without doing any calculations. Explain the order.
n=2 to n=4
n=6 to n=8
n=10 to n=12
n=14 to n=16
Answer:
n=2 to n=4 < n=6 to n=8 < n=10 to n=12 < n=14 to n=16
Explanation:
According to Neils Bohr, electrons in an atom are found in specified energy levels. Transitions are possible from one energy level to another when the electron receives sufficient energy usually in the form of a photon of electromagnetic radiation of appropriate frequency and wavelength. The energy of this photon corresponds to the energy difference between the two energy levels. Thus the higher the energy difference between energy levels, the greater the energy of the photon required to cause the transition and the shorter the wavelength of the photon.
High energy photons have a very short wavelength. It should be noted that as n increases, the energy of successive energy levels decreases and transitions between them now occurs at longer wavelengths. Hence, the highest energy and shortest wavelength of photons are required for transition involving lower values of n because such electrons are closer to the nucleus and are more tightly bound to it than electrons found at a greater distance from the nucleus.
Hence transition involving electrons at higher energy levels occur at a longer wavelength compared to transition involving electrons closer to the nucleus. This is the basis for the arrangement of wavelengths required to effect the various electronic transitions shown in the answer.
Hands moving on a battery-operated clock is an example of what kind of
energy conversion?
A. Kinetic energy being converted to chemical potential energy
B. Gravitational potential energy being converted to heat energy
C. Heat energy being converted to gravitational potential energy
O
D. Chemical potential energy being converted to kinetic energy
Answer: D. Chemical potential energy being converted to kinetic energy
Explanation: Batteries are chemical and that energy is converted into kinetic to make the hands on the clock move :) hope this helped!
A 13.0-L helium tank is pressurized to 26.0 atm. When connected to this tank, a balloon will inflate because the pressure inside the tank is greater than the atmospheric pressure pushing on the outside of the balloon. Assuming the balloon could expand indefinitely and never burst, the pressure would eventually equalize causing the balloon to stop inflating. What would the volume of the balloon be when this happens? Assume atmospheric pressure is 1.00 atm. Also assume ideal behavior and constant temperature. i got 338L for he whole thing but that is the volume of the entire sample of helium. But you need to consider that 13.0 liters of that is still in the 13.0-L tank. A helium tank is able to inflate balloons if the inside pressure is greater than the atmospheric pressure. can you explain how to do this
Answer:
The volume of the ballon is 325L.
Explanation:
Boyle's law express that the pressure of a gas is inversely proportional to its volume. That means if the pressure increases, the volume decreases. The formula is:
P₁V₁ = P₂V₂
Where P represents pressure and V volume of 1, initial state and 2, final state of the gas.
In the problem, the volume of the tank is 13.0L and the final pressure of the ballon is 1atm -The atmospheric pressure-. As 1atm of gas is in the ballon, the pressure of the tank is 26.0atm - 1.0atm = 25.0atm.
Replacing in Boyle's law expression:
25.0atm*13.0L = 1atmV₂
325L = V₂
The volume of the ballon is 325L.
Acetic acid and ethanol react to form ethyl acetate and water, like this:
HCH,CO2(aq) + C2H5OH(aq) right arrow C2H,CO2CH3(aq) + H2O
Imagine 246. mmol of C2HCO2CH3 Imagineofare removed from a flask containing a mixture of, andat equilibrium,
1. What is the rate of the reverse reaction before any C2HsCO2CH3 has been removed from the flask?
A. Zero.
B. Greater than zero, but less than the rate of the forward reaction.
C. Greater than zero, and equal to the rate of the forward reaction.
D. Greater than zero, and greater than the rate of the forward reaction.
2. What is the rate of the reverse reaction just after the CoHsCO CH has been removed from the flask?
A. Zero.
B. Greater than zero, but less than the rate of the forward reaction.
C. Greater than zero, and equal to the rate of the forward reaction.
D. Greater than zero, and greater than the rate of the forward reaction.
3. What is the rate of the reverse reaction when the system has again reached equilibrium?
A. Zero.
B. Greater than zero, but less than the rate of the forward reaction.
C. Greater than zero, and equal to the rate of the forward reaction.
D. Greater than zero, and greater than the rate of the forward reaction.
4. How much less C2H5CO2CH3 is in the flask when the system has again reached equilibrium?
A. Zero.
B. Greater than zero, but less than the rate of the forward reaction.
C. Greater than zero, and equal to the rate of the forward reaction.
D. Greater than zero, and greater than the rate of the forward reaction.
Answer:
1.) Option C is correct.
The rate of reverse reaction is greater than zero, but equal to the rate of the forward reaction.
2) Option B is correct.
The rate of reverse reaction is Greater than zero, but less than the rate of the forward reaction.
3) Option C is correct.
The rate of reverse reaction is Greater than zero, and equal to the rate of the forward reaction.
4) Option A is correct.
How much less C2H5CO2CH3 is in the flask when the system has again reached equilibrium? Zero.
Explanation:
HCH,CO2(aq) + C2H5OH(aq) ⇌ C2H,CO2CH3(aq) + H2O
1) Before the main product is removed from the reaction setup, the chemical reaction is at equilibrium.
Chemical equilibrium is a state of dynamic equilibrium such that the concentration of the reactants and the products do not always remain the same but the rate of forward reaction always matches the rate of backward reaction.
2) When 246. mmol of C2HCO2CH3 are removed from the reaction mixture....
And when one of the factors involved in chemical equilibrium changes, Le Chatellier's principle explains that the system then adjusts to remedy this change and takes time to go back to equilibrium again.
When one of the species involved in the chemical reaction at equilibrium, is removed from the reaction mixture, the rate of reaction begins to favour that side of the reaction until equilibrium is re-established.
So, when 246 mmol of one of the products is removed, the response is to cause the rate of forward reaction to be favoured to produce more of products as there are fewer, and the rate of reverse reaction at this moment becomes less than the rate of forward reaction.
3) The rate of the reverse reaction when the system has again reached equilibrium
Like I said in (2) above, the reaction remedies this change in concentration of one of the products until equilibrium is re-established and when chemical equilibrium is re-established the rate of forward reaction once again matches the rate of backward reaction.
4) How much less C2H5CO2CH3 is in the flask when the system has again reached equilibrium?
By the time equilibrium is re-established, the system goes back to how it all was and the concentration of C2H5CO2CH3 goes back to the same as it was at the start of the reaction.
Hope this Helps!!!
In the laboratory, a general chemistry student measured the pH of a 0.592 M aqueous solution of triethanolamine, C6H15O3N to be 10.781. Use the information she obtained to determine the Kb for this base.
Kb(experiment) =_______
Answer:
[tex]Kb=6.16x10^{-7}[/tex]
Explanation:
Hello,
In this case, given the pH of the base, we can compute the pOH as shown below:
[tex]pOH=14-pH=14-10.781=3.219[/tex]
Next, we compute the concentration of the hydroxyl ions when the triethanolamine is dissociated:
[tex]pOH=-log([OH^-])[/tex]
[tex][OH^-]=10^{-pOH}=10^{-3.219}=6.04x10^{-4}M[/tex]
Then, by writing the equilibrium expression for the dissociation of triethanolamine we have:
[tex]Kb=\frac{[OH^-][C6H14O2N^+]}{[C6H15O3N ]}[/tex]
That is suitable for the direct computation of Kb, knowing that based on the ICE procedure, [tex]x[/tex] equals the concentration of hydroxyl ions that was previously, computed, therefore, we have:
[tex]Kb=\frac{6.04x10^{-4}M*6.04x10^{-4}M}{0.592M-6.04x10^{-4}M}\\ \\Kb=6.16x10^{-7}[/tex]
Regards.
Naturally occurring sulfur consists of four isotopes: 32S (31.97207 u, 95.0%); 33S (32.97146 u, 0.76%); 34S (33.96786 u, 4.22%); and 36S (35.96709 u, 0.014%). Calculate the average atomic mass of sulfur in atomic mass units.
Answer:
32.062
Explanation:
The following data were obtained from the question:
Mass of isotope A (32S) = 31.97207 u
Abundance of isotope A (A%) = 95.0%
Mass of isotope B (33S) = 32.97146 u Abundance of isotope B (B%) = 0.76%
Mass of isotope C (34S) = 33.96786 u
Abundance of isotope C (C%) = 4.22%
Mass of isotope D (36S) = 35.96709 u Abundance of isotope D (D%) = 0.014%
Average atomic mass of S =..?
The average atomic mass of sulphur, S can be obtained as follow:
Average atomic mass = [(Mass of A x A%)/100] + [(Mass of B x B%)/100] + [(Mass of C x C%)/100] + [(Mass of D x D%)/100]
Average atomic mass of sulphur =
[(31.97207 x 95)/100] + [(32.97146 x 0.76)/100] + [(33.96786 x 4.22)/100] + [(35.96709 x 0.014)/100]
= 30.373 + 0.251 + 1.433 + 0.005
= 32.062
Therefore, the average atomic mass of sulphur is 32.062
Thermal decomposition of 5.00 metric tons of limestone to lime and carbon dioxide requires 9.00 × 106 kJ of heat. Convert this energy to (a) joules; (b) calories; (c) British thermal units. Give your answers in scientific notation.
Answer:
Take a look at the attachment below
Explanation:
Hope that helps!
Write the complete balanced equation for the neutralization reaction that occurs when aqueous hydroiodic acid, HI, and sodium hydrogen carbonate, NaHCO3, are combined. Include physical states.
Answer:
[tex]HI_(_a_q_)~+~NaHCO_3_(_a_q_)~->~NaI_(_a_q_)~+~H_2O_(_l_)~+~CO_2_(_g_)[/tex]
Explanation:
In this case, we will have a neutralization reaction. We have a base ([tex]HI[/tex]) and a base ([tex]NaHCO_3[/tex]). Additionally, we have a strong acid and a strong base, therefore both will be soluble on water, so we will have an aqueous state for these compounds. If we will have a neutralization reaction, we will have as a salt as a product. With this in mind the reaction would be:
[tex]HI_(_a_q_)~+~NaHCO_3_(_a_q_)~->~NaI_(_a_q_)~+~H_2O_(_l_)~+~CO_2_(_g_)[/tex]
All the sodium salts are soluble in water, therefore we will have an aqueous state. Water is a liquid and carbon dioxide is a gas.
I hope it helps!