Answer:
[tex]2abCosC = 1[/tex]
Step-by-step explanation:
The cosine rule is
=> [tex]a^2= b^2+c^2-2abCosC[/tex]
For 2abCosC, it becomes
=> [tex]2abCosC = b^2+c^2-a^2[/tex]
=> [tex]2abCosC = (2)^2+(1)^2-(2)^2[/tex]
=> [tex]2abCosC = 1[/tex]
help! im stuck!! plz I would be very grateful
Answer:
The right answer is the first option, 14,32.
Step-by-step explanation:
FH is a hypotenuse.
[tex]FG^2+GH^2=FH^2\\ FG^2 = FH^2-GH^2\\ FG^2 = 23^2-18^2\\ FG^2= 529-324\\ FG^2=205\\ FG=\sqrt{205}[/tex]
[tex]\sqrt{205} = 14,317...=14,32[/tex]
if anyone could help me out ASAP pls!
Answer:
[tex]\frac{15}{12}[/tex]
Step-by-step explanation:
Use Pythagorean Theorem to find the missing side.
a² + b² = r²
9² + 12² = r²
81 + 144 = r²
225 = r²
r = 15
Use the formula for csc θ.
csc θ = [tex]\frac{r}{y}[/tex] = [tex]\frac{15}{12}[/tex]
csc θ = 15/12
Hope this helps.
Find the cost to asphalt a circular racetrack if asphalt costs $90 per 100 f2. (Use 3.14 for it. Round to the nearest dollar.) r = 80 ft R = 145 ft
Small circle in a large circle
r= 80 ft
R=145 ft
Y
R
(Use 3.1 4 for a.)
Answer:
$41,330
Step-by-step explanation:
To find the cost to asphalt a circular path, first, calculate the area of the circular path:
Area of circular path = area of big circle (A1) - Area of small circle (A2)
Area of circle = πr²
Radius of big circle (R) = 145 ft
Area of big circle (A1) = 3.14*145²
= 3.14*21,025
A1 = 66,018.5 ft²
Radius of small circle (r) = 80ft
Area of small circle (A2) = 3.14*80²
= 3.14*6,400
A2 = 20,096 ft²
=>Area of path = 66,018.5 - 20,096 = 45,922.5 ft²
If 100ft = $90
45,922.5 ft = x
Cross multiply and find x (cost to asphalt the circular path)
100*x = 45,922.5*90
100x = 4,133,025
Divide both sides by 100
x = 4,133,025/100
x = $41,330.25
To the nearest dollar, $41,330 is needed to asphalt the circular path
if 1/u=1/f-1/v is the formula Express f as the subject of the formula
Answer:
[tex]f = \frac{1}{\frac{1}{u}+ \frac{1}{v} }\\[/tex]
Step-by-step explanation:
[tex]1/u=1/f-1/v\\\frac{1}{f} = \frac{1}{u} +\frac{1}{v}\\Divide- both- sides- by; 1\\\frac{1}{f} \div \frac{1}{1} = ( \frac{1}{u} +\frac{1}{v}) \div \frac{1}{1}\\\\f = \frac{1}{\frac{1}{u}+ \frac{1}{v} }[/tex]
Q(x)= 2x+2 R(x)=x^2-1 find (r•q)(5) and (q•r)(5)
Answer:
Q(x) = 4
R(x) = 0
Step-by-step explanation:
Q(x) = 2x + 2 ----- (1)
R(x) = x² - 1 -------- (2)
i) For (R * Q)(5) and [(Q * R)], we have as follow:
[(x² - 1)(2x + 2)] (5)
= (2x³ + 2x² - 2x - 2)(5)
= x³ + x² - x - 1
When x = -1
x³ + x² - x - 1 = 0
∴ (x³ + x² - x - 1) ÷ (x + 1) = x² - 1
If x + 1 = 0
x = -1
and x² - 1 = 0
x = 1
From (1), when x= 1: Q(x) = 4
From (2), when x= 1 or -1: R(x) = 0
Find the 55th term of the following arithmetic sequence.
7, 10, 13, 16, ...
The 55th term of the 7, 10, 13, 16, ... arithmetic sequence is a(55) = 169.
This is an arithmetic sequence since there is a common difference between each term. In this case , adding 3 to the previous term in the sequence gives the next term.
a(n) = a(1) + d( n- 1)
d = 3
This is the formula of an arithmetic sequence.
an = a(1) + d( n- 1)
Substitute in the values of
a(1) = 7 and
d = 3
a(n) = 7 + 3 ( n- 1)
Simplify each term.
a(n) = 7 + 3n- 3
Subtract 3 from 7.
a(n) = 3n + 4
The nth term = 3n + 4. The formula for the nth term of an arithmetic progression is a(n) = dn + a(1) - d. Therefore in your sequence, the difference d = 3, and the first term a(1) = 7.
Substitute in the value of n to find the nth term.
a(55) = 3 (55) + 4
Multiply 3 by 55 .
a(55) = 165 + 4
Add 165 and 4.
a(55) = 169
Thus , The 55th term in the arithmetic progression of 7, 10, 13, 16,... is a(55) = 169.
To learn more about Aritmetic sequence
https://brainly.com/question/6561461
#SPJ1
Find all relative extrema of the function. Use the Second-Derivative Test when applicable. (If an answer does not exist, enter DNE.) f(x) = x4 − 8x3 + 7
Answer:
D
Step-by-step explanation:
Will give brainliest answer
Answer:
A= 28.27433388units^2
Step-by-step explanation:
Radius is 3 as it is half of 6. The radius is half the diameter.
A=πr^2
A=π(3)^2
A= 28.27433388units^2
Answer:
A≈113.1
Step-by-step explanation:
pi(r)^2
pi(3)^2
9pi
A≈113.1
Use Newton's method to estimate the requested solution of the equation. Start with given value of X0 and then give x2 as the estimated solution.
x3 + 5x +2 = 0; x0 = -1; Find the one real solution.
Answer:
-0.3913Step-by-step explanation:
Given the initial value of X0 = -1, we can determine the solution of the equation x³ + 5x +2 = 0 using the Newton's method. According to newton's approximation formula;
[tex]y = f(x_0) + f'(x_0)(x-x_0)[/tex]
[tex]x_n = x_n_-_1 - \frac{f(x_n_-_1 )}{f'(x_n_-_1 )}[/tex]
If [tex]x_0 = 1\\[/tex]
We will iterate using the formula;
[tex]x_1 = x_0 - \frac{f(x_0 )}{f'(x_0 )}[/tex]
Given f(x) = x³ + 5x +2
f(x0) = f(-1) = (-1)³ + 5(-1) +2
f(-1) = -1 -5 +2
f(-1) = -4
f'(x) = 3x²+5
f'(-1) = 3(-1)²+5
f'(-1) = 8
[tex]x_1 = -1+4/8\\x_1 = -1+0.5\\x_1 = -0.5\\\\x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}\\x_2 = -0.5 - \frac{f(-0.5)}{f'(-0.5)}[/tex]
f(-0.5) = (-0.5)³ + 5(-0.5) +2
f(-0.5) = -0.125-2.5+2
f(-0.5) = -0.625
f'(-0.5) = 3(-0.5)²+5
f'(-0.5) = 3(0.25)+5
f'(-0.5) = 0.75+5
f'(-0.5) = 5.75
[tex]x_2 = -0.5 - \frac{(-0.625)}{5.75}\\x_2 = -0.5 + \frac{(0.625)}{5.75}\\x_2 = -0.5 + 0.1086957\\x_2 = -0.3913[/tex]
The estimated solution is -0.3913 (to 4dp)
Can somebody please help me with this question?
Answer:
x^2 -16
Step-by-step explanation:
The area of a triangle is
A = 1/2 bh
A = 1/2 ( 2x+8) ( x-4)
Distribute
A = ( x+4)(x-4)
FOIL
x^2 -4x+4x-16
Combine like terms
x^2 -16
━━━━━━━☆☆━━━━━━━
▹ Answer
x² - 16
▹ Step-by-Step Explanation
A = 1/2 bh
A = (2x + 8) * (x - 4)
A = (x + 4) * (x - 4)
A = x² - 4x + 4x - 16
A = x² - 16
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
An inverse variation includes the point (-8,-19). Which point would also belong in this inverse variation? A. (-19,-8) B. (-8,19) C. (-19,8) D. (8,-19)
Answer:
(A) (-19,-8)
Step-by-step explanation:
Given that the graph is an inverse variation.
The equation of variation is:
[tex]x=\dfrac{k}{y}[/tex]
Since point (-8, -19) is on the graph
[tex]-8=\dfrac{k}{-19}\\k=152[/tex]
Therefore, the equation connecting x and y is:
[tex]x=\dfrac{152}{y}[/tex]
[tex]\text{When y=-8},x=\dfrac{152}{-8}=-19\\\\\text{When y=19},x=\dfrac{152}{19}=8\\\\\text{When y=8},x=\dfrac{152}{8}=19\\\\\text{When y=-19},x=\dfrac{152}{-19}=-8[/tex]
Therefore, the point that is also on the graph is:
(A) (-19,-8)
What should I do to get both numeric terms are on the right side of the equation. 3/2t - 4/3t - 16 = - 6
Answer:
i think you have to take_16 to the right side.
Sixteen students are randomly selected from each grade level at a high school and asked about their eating habits. This sampling technique is called:
Answer:
stratified random sampling technique
The sampling technique described, where sixteen students are randomly selected from each grade level, is called "stratified random sampling."
We have,
Stratification involves dividing the population (in this case, the high school students) into distinct subgroups or strata based on certain characteristics
By selecting a random sample from each stratum (each grade level), the sampling technique aims to ensure that each subgroup is represented in the sample in proportion to its size within the population.
This approach allows for a more representative sample and provides insights into the eating habits of students across different grade levels.
Thus,
The sampling technique described, where sixteen students are randomly selected from each grade level, is called "stratified random sampling."
Learn more about stratified random samplings here:
https://brainly.com/question/15604044
#SPJ4
Find the volume of the solid generated by revolving the region enclosed by the triangle with vertices (1 comma 0 ), (3 comma 2 ), and (1 comma 2 )about the y-axis. Use the washer method to set up the integral that gives the volume of the solid.
Answer: Volume = [tex]\frac{20\pi }{3}[/tex]
Step-by-step explanation: The washer method is a method to determine volume of a solid formed by revolving a region created by any 2 functions about an axis. The general formula for the method will be
V = [tex]\pi \int\limits^a_b {(R(x))^{2} - (r(x))^{2}} \, dx[/tex]
For this case, the region generated by the conditions proposed above is shown in the attachment.
Because it is revolting around the y-axis, the formula will be:
[tex]V=\pi \int\limits^a_b {(R(y))^{2} - (r(y))^{2}} \, dy[/tex]
Since it is given points, first find the function for points (3,2) and (1,0):
m = [tex]\frac{2-0}{3-1}[/tex] = 1
[tex]y-y_{0} = m(x-x_{0})[/tex]
y - 0 = 1(x-1)
y = x - 1
As it is rotating around y:
x = y + 1
This is R(y).
r(y) = 1, the lower limit of the region.
The volume will be calculated as:
[tex]V = \pi \int\limits^2_0 {[(y+1)^{2} - 1^{2}]} \, dy[/tex]
[tex]V = \pi \int\limits^2_0 {y^{2}+2y+1 - 1} \, dy[/tex]
[tex]V=\pi \int\limits^2_0 {y^{2}+2y} \, dy[/tex]
[tex]V=\pi(\frac{y^{3}}{3}+y^{2} )[/tex]
[tex]V=\pi (\frac{2^{3}}{3}+2^{2} - 0)[/tex]
[tex]V=\frac{20\pi }{3}[/tex]
The volume of the region bounded by the points is [tex]\frac{20\pi }{3}[/tex].
help one more for my friend lollllll well maybe 2 more
Answer:
8 : 1
Step-by-step explanation:
The graph shows a point at the location corresponding to 8 cups of raspberry juice and 1 cup of lemon-lime soda. So the ratio is ...
raspberry juice : lemon-lime soda = 8 : 1
Answer:
D
Step-by-step explanation:
raspberry : lemon lime soda::8:1
Is -72.27 a integer yes or no
Answer: No.
Step-by-step explanation:
Integers are whole numbers. No fractions or decimals
Any integer is basically a positive or negative whole number. Zero is included as well. The fact that we have a decimal portion of 0.27 is what makes this value not be an integer.
x=-4
Tell whether it’s graph is a horizontal or a vertical line
Answer:
Vertical Line
Step-by-step explanation:
A vertical line is x = [a number]
A horizontal line is y = [a number]
Answer:
vertical line
Step-by-step explanation:
A vertical line is of the form
x =
All the x values are the same and the y value changes
x = -4 is a vertical line
please help me, i will give you brainliest
Answer:
4
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
JN* NK = LN * NM
3x = 2*6
3x = 12
Divide by 3
3x/3 =12/3
x =4
A sphere and a cylinder have the same radius and height. The volume of the cylinder is 30 meters cubed A sphere with height h and radius r. A cylinder with height h and radius r. What is the volume of the sphere? 10 meters cubed 20 meters cubed 30 meters cubed 40 meters cubed
Answer:
30 m^3
Step-by-step explanation:
Answer:
B. 20m3
Step-by-step explanation:
i dont know if its correct, hope it is tho
Suppose 47G% of the doctors in a hospital are surgeons. If a sample of 460460 doctors is selected, what is the probability that the sample proportion of surgeons will differ from the population proportion by greater than 5%5%
Answer:
3.16% probability that the sample proportion of surgeons will differ from the population proportion by greater than 5%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In this question:
[tex]p = 0.47, n = 460, \mu = 0.47, s = \sqrt{\frac{0.47*0.53}{460}} = 0.0233[/tex]
What is the probability that the sample proportion of surgeons will differ from the population proportion by greater than 5%
Sample proportion lower than 0.47 - 0.05 = 0.42 or higher than 0.47 + 0.05 = 0.52.
Since they are equidistant from the mean of 0.47 they are equal. So we find one of them, and multiply by two.
Lower than 0.42:
pvalue of Z when X = 0.42. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.42 - 0.47}{0.0233}[/tex]
[tex]Z = -2.15[/tex]
[tex]Z = -2.15[/tex] has a pvalue of 0.0158
2*0.0158 = 0.0316
3.16% probability that the sample proportion of surgeons will differ from the population proportion by greater than 5%
3. Given the polynomial p(x) = x^4 - 2x^3 -7x^2 + 18x – 18 a. Without long division, find the remainder if P is divided by x+1. b. If one zero of P is 1-i, find the remaining zeros of P. c. Write P in factored form.
Answer:
(a) remainder is -40
(b) The remaining zeroes are (x+3) and (x-3)
Step-by-step explanation:
p(x) = x^4 - 2x^3 -7x^2 + 18x – 18
(a) Remainder of P(x) / (x+1) can be found using the remainder theorem, namely
let x + 1 = 0 => x = -1
remainder
= P(-1)
= (-1)^4 - 2(-1)^3 -7(-1)^2 + 18(-1) – 18
= 1 +2 -7-18-18
= -40
remainder is -40
(b)
If one zero is 1-i, then the conjugate 1+i is another zero.
in other words,
(x-1+i) and (x-1-i) are both factors.
whose product = (x^2-2x+2)
Divide p(x) by (x^2-2x+2) gives
p(x) by (x^2-2x+2)
= (x^4 - 2x^3 -7x^2 + 18x – 18) / (x^2-2x+2)
= x^2 -9
= (x+3) * (x-3)
The remaining zeroes are (x+3) and (x-3)
What is the y-intercept of the line given by the equation below? y = 4x – 6 A. (4, 0) B. (–6, 0) C. (0, –6) D. (0, 4)
Hey there! :)
Answer:
C. (0, -6).
Step-by-step explanation:
In slope-intercept form ( y = mx + b), the 'b' value represents the y-intercept.
In this instance:
y = 4x - 6
The 'b' value is equal to -6. This means that the y-intercept is at (0, -6).
-------------------------------------------------------------------------------------------
The y-intercept can also be solved for by substituting in 0 for x:
y = 4(0) - 6
y = 0 - 6
y = -6.
Answer:
C. (0, –6)
Step-by-step explanation:
y = 4x - 6
The equation is:
y = mx + b
where b is the y-intercept.
In this case, - 6 is the vertical intercept.
Do not confuse from (-6, 0) because that represents an x-intercept.
From Andy's house to Billy's hometown you can travel by 3 roads. And to get from Billy's hometown to Willie's house you can travel by 5 roads. How many possible ways are there to travel from Andy's house to Willie's house?
Answer:
15
Step-by-step explanation:
You can go from Andy to Billy by 3 roads.
For each of those 3 roads, you can go from Billy to Willie by 5 roads.
3 * 5 = 15
Answer: 15
if 2 1/5 of a number is 5. what is the number
Answer:
2
Step-by-step explanation:
5÷2 1/5 = 2
Answer:
2 3/11
Step-by-step explanation:
To find the original number, we need to divide 5 by 2 1/5.
5/ 2 1/5
Convert 2 1/5 to an improper fraction:
11/5
5/ 11/5
When dividing fractions, we can multiply the first number by the reciprocal of the second one to get the answer.
5*5/11
25/11
2 3/11
what happens to the value of the expression n+15n as n decreases? answer
Answer:
The value will decrease.
Step-by-step explanation:
This expression gives the solutions to which quadratic equation?
Answer:
Hey there! Your answer would be: [tex]3x^2+4=x[/tex]
The quadratic formula is (-b±√(b²-4ac))/(2a), and helps us find roots to a quadratic equation.
All quadratic equations can be written in the [tex]ax^2+bx+c[/tex] form, and a, b, and c, are numbers we need for the quadratic equation.
Our given quadratic equation is 1±√(-1)²-4(3)(4)/2(3)
We can see that b is -1, as -b is positive 1.
That gives us [tex]ax^2+-1x+c[/tex], which can be simplified to [tex]ax^2-x+c[/tex].
We can see that a is 3, because 2a=6, so a has to be 3.
That gives us [tex]3x^2-x+c[/tex]
Finally, we see that 4 is equal to b, clearly shown in the numerator of this fraction.
Which gives us a final answer of [tex]3x^2-x+4[/tex], or [tex]3x^2+4=x[/tex]
Identify a pair of vertical angles in the figure
A. Angle ADE and Angle ADB
B. Angle EDC and angle DBA
C. angle ADE and angle EDC
D. Angle ADE and angle BDC
Answer:
A pair of vertical angles are ADE and BDC. Vertical angles are located across from each other.
Answer:
D. Angle ADE and angle BDC
Step-by-step explanation:
Vertically opposite angles are equal.
Angle ADE and angle BDC are a pair of vertical angles.
solve y=mx+b for m. thank you!!!!
Answer:
m = (y - b)/x
Step-by-step explanation:
y = mx + b
Subtrcat b on both sides.
y - b = mx + b - b
y - b = mx
Divide both sides by x.
(y - b)/x = mx/x
(y - b)/x = m
Answer:
m = (y - b)/x
Hope This Helped
Step-by-step explanation:
y=mx+b
Subtract b from both sides
(y-b)=mx
Divide x by both sides
(y-b)/x=m
Flip
m=(y-b)/x
Hope This Helped!
An object is dropped from a height of 1024 feet off the ground. The height h of the object after t seconds can be found using the equation h = 1024 − 16 t 2
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
An object is dropped from a height of 1024 feet off the ground. The height h of the object after t seconds can be found using the equation h = 1024 − 16t^2. how much time the object will take to reach the ground?
Answer:
[tex]t = 8 \: seconds[/tex]
It will take 8 seconds for the object to reach the ground.
Step-by-step explanation:
The given equation is
[tex]h = 1024 - 16t^2[/tex]
Where h is the height in feet of the object after t seconds.
We are asked to find the time that the object will take to reach the ground.
What will be the height of the object when it hits the ground?
h = 0 ft
Yes right!
So, let us substitute h = 0 in the above equation to find the time.
[tex]h = 1024 - 16t^2 \\\\0 = 1024 - 16t^2 \\\\16t^2 = 1024 \\\\t^2 = \frac{1024}{16} \\\\t^2 = 64 \\\\t = \sqrt{64} \\\\t = \pm 8[/tex]
Since we know that time cannot be negative
[tex]t = 8 \: seconds[/tex]
Therefore, it will take 8 seconds for the object to reach the ground.
Ms. Stone decided to purchase 2 reusable bottles instead. When she got to the counter, she realized she had $10.15, only ⅝ of the money she needed for the purchase. How much does 1 bottle cost?
Answer:
The price of one reusable bottle is $8.12
Step-by-steetp explanation:
Ms stone wanted to purchase two reusable bottles but discovered she had only ⅝of the Mone and that ⅝ is equal to $ 10.15.
So the cost of what she wants to purchase will be called x.
Mathematically
⅝ * x = 10.15
X = (10.15*8)/5
X = 81.2/5
X= 16.24
The price of the two bottles is $16.24
So the price if one bottle will be calculated as follows.
2 bottles=$ 16.24
One bottle= $16.24/2
One bottle= $8.12
The price of one reusable bottle is $8.12