Answer:
I believe it is they will weigh the same
Explanation:
Center of gravity is the axis on which the mass rotates evenly if I remember correctly from AP Physics
The head side is heavier than the handle side. - this will be discovered.
What is center of gravity of a object?Theoretically, the body's center of gravity is where all of the weight is believed to be concentrated. Knowing the centre of gravity is crucial because it may be used to forecast how a moving object will behave when subjected to the effects of gravity. In designing immobile constructions like buildings and bridges, it is also helpful.
We know that center of gravity is close to some particular point refers the mass of the point is greater then others. It is given that: The center of gravity of an ax is on the centerline of the handle, close to the head.
So, we can conclude that the head side of the ax is heavier than the handle side of it.
Learn more about center of gravity here:
https://brainly.com/question/17409320
#SPJ5
Find acceleration. Will give brainliest!
Answer:
16200 km/s
270 km/min
4.5 km/h
Explanation:
Acceleration Formula: Average Acceleration = Δv/Δt (change in velocity over change in time)
Simply plug in our known variables and solve:
a = (45.0 - 0)/10
a = 45.0/10
a = 4.5 km/h
Answer:
[tex]\boxed{\mathrm{4.5 \: kmph/s \: or \: 1.25 \: m/s^2 }}[/tex]
Explanation:
[tex]\displaystyle \mathrm{acceleration = \frac{change \: in \: velocity}{time \: taken}}[/tex]
[tex]\displaystyle \mathrm{a = \frac{v - u}{t}}[/tex]
[tex]\displaystyle \mathrm{v=final \: velocity}\\\displaystyle \mathrm{u=initial \: velocity}[/tex]
[tex]\displaystyle \mathrm{a = \frac{45- 0}{10}}[/tex]
[tex]\displaystyle \mathrm{a = \frac{45}{10}}[/tex]
[tex]\displaystyle \mathrm{a = 4.5}[/tex]
[tex]\mathrm{4.5 \: kmph/s = 1.25 \: m/s^2 }[/tex]
Two Earth satellites, A and B, each of mass m = 980 kg , are launched into circular orbits around the Earth's center. Satellite A orbits at an altitude of 4100 km , and satellite B orbits at an altitude of 12100 km The radius of Earth RE is 6370 km.
(a) What is the ratio of the potential energy of satellite B to that of satellite A, in orbit?
(b) What is the ratio of the kinetic energy of satellite B to that of satellite A, in orbit?
(c) Which satellite has the greater total energy if each has a mass of 14.6 kg?
(d) By how much?
Answer:
Do u have a picture of the graph?
Explanation:
I can solve it with refraction
A student solving for the acceleration of an object has applied appropriate physics principles and obtained the expression a=a1+Fm where a1=3.00 meter/second2, F=12.0kilogram⋅meter/second2 and m=7.00kilogram. what is the value of a?
Complete Question
Now if you look at the equation for acceleration given in the question i.e
[tex]a = a_1 + F * m[/tex]
We see that evaluating it in terms of dimension it is incorrect instead the equation should be
[tex]a = a_1 + \frac{F}{m}[/tex]
So in the solution below we will be making use of [tex]a = a_1 + \frac{F}{m}[/tex]
Answer:
The values of a is [tex]a = 4.714 \ m/s^2[/tex]
Explanation:
From the question we are told that
The expression for the acceleration is [tex]a = a_1 + \frac{F}{m}[/tex]
The value of [tex]a_ 1 = 3.0 \ m/s^2[/tex]
The values of [tex]F = 12.0 \ kg \cdot m/s^2[/tex]
The values of m is [tex]m = 7.0 \ kg[/tex]
substituting values
[tex]a = 3 + \frac{12}{7}[/tex]
[tex]a = 4.714 \ m/s^2[/tex]
A child has a toy car on a horizontal platform. The car starts from rest and reaches a maximum speed in 4 s. If the mass of the car is
0.1 kg and engine has an effective pull of 0.4 N Find the acceleration of the car.
Answer:
a=4m/s²
Explanation:
F=ma
0.4=0.1a
Answer:
a=4m/s
Explanation:
F=ma
0.4=0.1a
[tex] \frac{0.4}{0.1} = \frac{0.1}{0.1} [/tex]
a =4m/ s
A rigid tank A of volume 0.6 m3 contains 5 kg air at 320K and the rigid tank B is 0.4 m3 with air at 600 kPa, 360 K. They are connected to a piston cylinder initially empty with closed valves. The pressure in the cylinder should be 800 kPa to float the piston. Now the valves are slowly opened and the entire process is adiabatic. The internal energy of the mixture at final state is:_____.
a. 229 k/kg.
b. 238 kJ/kg
c. 257 kg
d. cannot be determined.
Answer:
the internal energy of the mixture at final state = 238kJ/kg
Explanation:
Given
V= 0.6m³
m=5kg
R=0.287kJ/kg.K
T=320 K
from ideal gas equation
PV = nRT
where P is pressure, V is volume, n is number of mole, R is ideal gas constant , T is the temperature.
Recall, mole = mass/molar mass
attached is calculation of the question.
What is the length (in m) of a tube that has a fundamental frequency of 108 Hz and a first overtone of 216 Hz if the speed of sound is 340 m/s?
Answer:
Length of a tube = 1.574 m
Explanation:
Given:
Fundamental frequency (f1) = 108 Hz
First overtone (f2) = 216 Hz
Speed of sound (v) = 340 m/s
Find:
Length of a tube
Computation:
We know that,
f = v / λ
f = nv / 2L [n = number 1,2,3]
So,
f1 = 1(340) / 2L
f1 = 170 / L
L = 170 / 108 = 1.574 m
f2 = 2(340) / 2L
L = 340 / 216
L = 1.574 m
A certain lightning bolt moves 40.0 C of charge. How many units ???? of fundamental charge e is this?
q = 40 C
e = 1.6×10^-19 C
n = ?
n = q/e
n = 40/1.6×10^-19 C
= 2.6×10^20
A 1,470-N force pushes a 500-kg piano up along a ramp. What is the work done by the 1,470-N pushing force on the piano as it moves 10 m up the ramp
Answer:
W = 14700 J
Explanation:
This is an exercise on Newton's second law.
To solve it we must fix a coordinate system, the most common is an axis parallel to the ramp and the other perpendicular axis, we write Newton's second law
Y Axis . Perpendicular to the ramp
N - Wy = 0
X axis. Parallel to the ramp, we assume it is positive when the ramp is going up
F - Wx = m a
in this case F = 1470 N and it is parallel to the plane.
Work is defined by
W = F .d
boldface indicates vectors
W = F d cos θ
let's calculate
W = 1470 10 cos 0
W = 14700 J
The potential difference between two parallel conducting plates in vacuum is 165 V. An alpha particle with mass of 6.50×10-27 kg and charge of 3.20×10-19 C is released from rest near the positive plate. What is the kinetic energy of the alpha particle when it reaches the other plate? The distance between the plates is 40.0 cm.
Answer:
kinetic energy (K.E) = 5.28 ×10⁻¹⁷
Explanation:
Given:
Mass of α particle (m) = 6.50 × 10⁻²⁷ kg
Charge of α particle (q) = 3.20 × 10⁻¹⁹ C
Potential difference ΔV = 165 V
Find:
kinetic energy (K.E)
Computation:
kinetic energy (K.E) = (ΔV)(q)
kinetic energy (K.E) = (165)(3.20×10⁻¹⁹)
kinetic energy (K.E) = 528 (10⁻¹⁹)
kinetic energy (K.E) = 5.28 ×10⁻¹⁷
The voltage between the cathode and the screen of a television set is 30 kV. If we assume a speed of zero for an electron as it leaves the cathode, what is its speed (m/s) just before it hits the screen
Answer:
The speed is [tex]v =10.27 *10^{7} \ m/s[/tex]
Explanation:
From the question we are told that
The voltage is [tex]V = 30 kV = 30*10^{3} V[/tex]
The initial velocity of the electron is [tex]u = 0 \ m/s[/tex]
Generally according to the law of energy conservation
Electric potential Energy = Kinetic energy of the electron
So
[tex]PE = KE[/tex]
Where
[tex]KE = \frac{1}{2} * m* v^2[/tex]
Here m is the mass of the electron with a value of [tex]m = 9.11 *10^{-31} \ kg[/tex]
and
[tex]PE = e * V[/tex]
Here e is the charge on the electron with a value [tex]e = 1.60 *10^{-19} \ C[/tex]
=> [tex]e * V = \frac{1}{2} * m * v^2[/tex]
=> [tex]v = \sqrt{ \frac{2 * e * V}{m} }[/tex]
substituting values
[tex]v = \sqrt{ \frac{2 * (1.60*10^{-19}) * 30*10^{3}}{9.11 *10^{-31}} }[/tex]
[tex]v =10.27 *10^{7} \ m/s[/tex]
A negative charge of -0.550 μC exerts an upward 0.900-N force on an unknown charge that is located 0.300 m directly below the first charge.
Required:
a. What is the value of the unknown charge (magnitude and sign)?
b. What is the magnitude of the force that the unknown charge exerts on the -0.590 μC charge?
c. What is the direction of this force?
Answer:
a. q2 = 16.4μC, positive charge
b. F = 0.900N
c. downward
Explanation:
a. In order to calculate the charge of the unknown charge you use the following formula, for the electric force between two charges:
[tex]F_e=k\frac{q_1q_2}{r^2}[/tex] (1)
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
r: distance between the charges = 0.300m
q1: charge 1 = -0.550 μC = 0.550*10^-6C
q2: charge 2 = ?
Fe: electric force = 0.900N
The force exerted in the second charge points upward, then, the sign of the second charge is positive because this charge is getting closer to the first one.
You solve the equation (1) for the second charge ans replace the values of the other parameters:
[tex]q_2=\frac{r^2F_e}{kq_1}=\frac{(0.300m)^2(0.900N)}{(8.98*10^9Nm^2/C^2)(0.550*10^{-6}C)}\\\\q_2=1.64*10^{-5}C\\\\q_2=16.4*10^{-6}C=16.4*10\mu C[/tex]
The values of the second charge is 1.64 μC
b. By the third Newton Law, you have that the force exerted in the second charge is equal to the force exerted by the first charge on the second one.
The force exerted on the first charge is 0.900N
c. The charges are attracting between them, then, the force exerted on the first charge is pointing downward.
When a nerve cell fires, charge is transferred across the cell membrane to change the cell's potential from negative to positive. For a typical nerve cell, 9.2pC of charge flows in a time of 0.52ms .What is the average current through the cell membrane?
Answer:
The average current will be "17.69 nA".
Explanation:
The given values are:
Charge,
q = 9.2 pC
Time,
t = 0.52ms
The equivalent circuit of the cell surface is provided by:
⇒ [tex]i_{avg}=\frac{charge}{t}[/tex]
Or,
⇒ [tex]i_{avg}=\frac{q}{t}[/tex]
On substituting the given values, we get
⇒ [tex]=\frac{9.2\times 10^{-12}}{0.52\times 10^{-3}}[/tex]
⇒ [tex]=17.69^{-9}[/tex]
⇒ [tex]=17.69 \ nA[/tex]
Nerve impulses in a human body travel at a speed of about 100 m/s. Suppose a woman accidentally steps barefoot on a thumbtack. About how much time does it take the nerve impulse to travel from the foot to the brain (in s)
PLEASE HELP I’LL MARK YOU BRAINLIEST!!!!
Answer: Net electrostatic force on C is 24.2×[tex]10^{-2}[/tex] Newtons.
Explanation: Coulomb's Law is used to determine Electrostatic Force. Its formula is:
F = k.[tex]\frac{q_{0}.q_{1}}{r^{2}}[/tex]
where:
k is electrostatic constant (k = 8.987×[tex]10^{9}[/tex] Nm²/C²);
q is the charge of the object in Coulumb;
r is the distance between charges;
The net force is the sum of all the forces acting on C, so:
Force B on C:
They are both positive, so there is a relpusive force acting between them on the y-axis.
[tex]F_{BC} = 8,987.10^{9}.\frac{4.35.10^{-3}.9.67.10^{-4}}{(6.14.10^{2})^{2}}[/tex]
[tex]F_{BC} = 10.03.10^{-2}[/tex] N
Force D on C:
There is an atractive force between them on the x-axis.
[tex]F_{CD} = 8.987.10^{9}.\frac{9.67.10^{-4}.1.92.10^{-3}}{(1.42.10^{3})^{2}}[/tex]
[tex]F_{CD} = 13.64.10^{-4}[/tex] N
Force A on C:
First, find the distance between objects:
The distance is a diagonal line that divides the rectangle into a right triangle. Distance is square of the hypotenuse .
[tex]r^{2} = (6.14.10^2)^{2} + (1.42.10^{3})^{2}[/tex]
[tex]r^{2} = 37.72.10^{4}[/tex]
and hypotenuse: r = [tex]6.14.10^2[/tex]m
There is an atractive force between charges, but there are components of the force in x- and y-axis. So, because of that, force will be:
[tex]F_{CA} = F_{CA}[/tex].sinα + [tex]F_{CA}.[/tex]cosα
[tex]F_{CA} = 8.987.10^{9}.\frac{3.12.10^{-3}.9.67.10^{-4}}{37.72.10^{4}}[/tex]
[tex]F_{CA} = 7.2.10^{-2}[/tex]
The trigonometric relations is taken from the rectangle:
sinα = [tex]\frac{6.14.10^{2}}{6.14.10^{2}}[/tex]
cosα = [tex]\frac{1.42.10^{3}}{6.14.10^{2}}[/tex]
[tex]F_{CA}.[/tex]cosα = [tex]7.2.10^{-2}(\frac{1.42.10^{3}}{6.14.10^{2}})[/tex] = 0.17
[tex]F_{CA}.[/tex]sinα = [tex]7.2.10^{-2}.(\frac{6.14.10^{2}}{6.14.10^{2}} )[/tex] = 0.072
[tex]F_{CA} =[/tex] 0.17î + 0.072^j
Now, sum up all the terms in its respective axis:
X: [tex]13.64.10^{-4} + 0.17 =[/tex] 0.1714
Y: [tex]10.03.10^{-2} + 7.2.10^{-2}[/tex] = 0.1723
These forms another right triangle, whose hypotenuse is the net electrostatic force:
[tex]F_{net} = \sqrt{(0.1714)^{2} + (0.1723)^2}[/tex]
[tex]F_{net} = 24.3.10^{-2}[/tex] N
The net electrostatic force acting on C has magnitude [tex]F_{net} = 24.3.10^{-2}[/tex] N.
In a two-slit experiment, monochromatic coherent light of wavelength 500 nm passes through a pair of slits separated by 1.30 x 10-5 m. At what angle away from the centerline does the first bright fringe occur
Answer:
2.20°
Explanation:
For the central bright spot, we will use the constructive pattern for a double slit interference,
[tex]m\times w = d \times Sin\beta[/tex]
where w indicates the wavelength
and [tex]\beta[/tex] indicates the angle between the bright spot and center line.
now we will use the given values,
1 × 500 × 10^-9 = 1.3 × 10^-5 × Sin [tex]\beta[/tex]
Solving for [tex]\beta[/tex],
[tex]\beta[/tex] = 2.204° ~ 2.20°
Therefore the correct answer is 2.20°
If 62.9 cm of copper wire (diameter = 1.15 mm, resistivity = 1.69 × 10-8Ω·m) is formed into a circular loop and placed perpendicular to a uniform magnetic field that is increasing at the constant rate of 8.43 mT/s, at what rate is thermal energy generated in the loop?
Answer:
The answer is "[tex]\bold{7.30 \times 10^{-6}}[/tex]"
Explanation:
length of the copper wire:
L= 62.9 cm
r is the radius of the loop then:
[tex]r=\frac{L}{2 \pi}\\[/tex]
[tex]=\frac{62.9}{2\times 3.14}\\\\=\frac{62.9}{6.28}\\\\=10.01\\[/tex]
area of the loop Is:
[tex]A_L= \pi r^2[/tex]
[tex]=100.2001\times 3.14\\\\=314.628[/tex]
change in magnetic field is:
[tex]=\frac{dB}{dt} \\\\ = 0.01\ \frac{T}{s}[/tex]
then the induced emf is: [tex]e = A_L \times \frac{dB}{dt}[/tex]
[tex]=314.628 \times 0.01\\\\=3.14\times 10^{-5}V[/tex]
resistivity of the copper wire is: [tex]\rho =[/tex] 1.69 × 10-8Ω·m
diameter d = 1.15mm
radius (r) = 0.5mm
[tex]= 0.5 \times 10^{-3} \ m[/tex]
hence the resistance of the wire is:
[tex]R=\frac{\rho L}{\pi r^2}\\[/tex]
[tex]=\frac{1.69 \times 10^{-8}(62.9)}{3.14 \times (0.5 \times 10^{-3})^2}\\\\=\frac{1.69 \times 10^{-8}(62.9)}{3.14 \times 0.5 \times 0.5 \times 10^{-6}}\\\\=\frac{1.69 \times 10^{-8}(62.9)}{3.14 \times 0.25 \times 10^{-6}}\\\\=135.41 \times 10^{-2}\\=1.35\times 10^{-4}\\[/tex]
Power:
[tex]P=\frac{e^2}{R}[/tex]
[tex]=\frac{3.14\times 10^{-5}\times 3.14\times 10^{-5}}{1.35 \times 10^{-4}}\\\\=7.30 \times 10^{-6}[/tex]
The final answer is: [tex]\boxed{7.30 \times 10^{-6} \ W}[/tex]
toy rocket engine is securely fastened to a large puck that can glide with negligible friction over a horizontal surface, taken as the x-y plane. The 4.00 kg puck has a velocity of 3.00 i m/s at one instant. Eight seconds later, its velocity is (8.00 i 10.00 j) m/s. Assuming the rocket engine exerts a constant force, find (a) the components of the force and (b) its magnitude.
Answer:
Fx = 2.5 N
Fy = 5 N
|F| = 5.59 N
Explanation:
Given:-
- The mass of puck, m = 4.0 kg
- The initial velocity of puck, u = 3.00 i m/s
- The final velocity of puck, v = ( 8.00 i + 10.00 j ) m/s
- The time interval for the duration of force, Δt = 8 seconds
Find:-
the components of the force and (b) its magnitude.
Solution:-
- We will set up a coordinate system ( x - y ) plane. With unit vectors i and j along x and y axes respectively.
- To model the situation we will seek help from Newton's second law of motion. Defined by the rate of change of linear momentum of the system.
[tex]F_net = \frac{m*( v - u ) }{dt}[/tex]
Where,
Fnet: The net force that acts on the puck-rocket system
- Here we will assume that the mass of rocket is negligible compared to the mass of the puck. The only force ( F ) acting on the puck is due to the thrust produced of the rocket. The dry and air frictions are both neglected for the analysis.
- We will apply the newton's second law of motion in component forms. And determine the components of force F, as ( Fx ) and ( Fy ) as follows:
[tex]F_x = \frac{m* ( v_x - u_x)}{dt} \\\\F_x = \frac{4* ( 8 - 3)}{8} \\\\F_x = 2.5 N\\\\F_y = \frac{m* ( v_y - u_y)}{dt} \\\\F_y = \frac{4* ( 10 - 0)}{8} \\\\F_y = 5 N\\\\[/tex]
- We will apply the Pythagorean theorem and determine the magnitude of the thrust force produced by the rocket with which the puck accelerated:
[tex]| F | = \sqrt{( F_x)^2 + ( F_y)^2} \\\\| F | = \sqrt{( 2.5)^2 + ( 5)^2} \\\\| F | = \sqrt{31.25} \\\\| F | = 5.590[/tex]
Answer: the magnitude of the thrust force is F = 5.59 N
An object attached to a horizontal spring is oscillating back and forth along a frictionless surface. The maximum speed of the object is 1.38 m/s, and its maximum acceleration is 6.83 m/s2. How much time elapses betwen an instant when the object's speed is at a maximum and the next instant when its acceleration is at a maximum
Answer:
t = 0.31s
Explanation:
In order to calculate the time that the object takes to travel from the point with its maximum speed to the point with the maximum acceleration, you first use the following formulas, for the maximum speed and the maximum acceleration:
[tex]v_{max}=\omega A\\\\a_{max}=\omega^2A[/tex]
A: amplitude
v_max = 1.38m/s
a_max = 6.83m/s^2
w: angular frequency
From the previous equations you can obtain the angular frequency w.
You divide vmax and amax, and solve for w:
[tex]\frac{v_{max}}{a_{max}}=\frac{\omega A}{\omega^2 A}=\frac{1}{\omega}\\\\\omega=\frac{a_{max}}{v_{max}}=\frac{6.83m/s^2}{1.38m/s^2}=4.94\frac{rad}{s}[/tex]
Next, you take into account that the maximum speed is obtained when the object passes trough the equilibrium point, and the maximum acceleration for the maximum elongation, that is, the amplitude. In such a trajectory the time is T/4 being T the period.
You calculate the period by using the information about the angular frequency:
[tex]T=\frac{2\pi}{\omega}=\frac{2\pi}{4.94rad/s}=1.26s[/tex]
Then the required time is:
[tex]t=\frac{T}{4}=\frac{1.26s}{4}=0.31s[/tex]
Which of the following changes will increase the frequency of the lowest frequency standing sound wave on a stretching string?Choose all that apply.A. Replacing the string with a thicker stringB. Plucking the string harderC. Doubling the length of the string
Answer:
A, C
Explanation:
Since the frequency is inversely proportional to the length of a string, then I want to increase the frequency of the lowest
A. Replacing the string with a thicker string.
Thicker strings have more density. The more density the string has, the lower the sound.
Mathematically, we can see the proportionality (direct and inverse) by looking at those formulas for Frequency and Speed, when combined:
For:
[tex]f=\frac{v}{\lambda}[/tex]
[tex]f=\frac{v}{\lambda}*\sqrt{\frac{T}{D} }[/tex]
See above, how density (D) and [tex](\lambda)[/tex] wave length are inversely proportional.
C. Doubling the length of the string.
Because the length of the string is inversely proportional to the frequency.
The longer the string, the lower the frequency.
So, if we double string, we'll hear lower sounds in any string instrument
--
In short, for A, and C We can justify both since length and density are inversely proportional to the Frequency, we need longer or thicker string.
An empty parallel plate capacitor is connected between the terminals of a 9.0-V battery and charged up. The capacitor is then disconnected from the battery, and the spacing between the capacitor plates is doubled. As a result of this change, what is the new voltage between the plates of the capacitor
Answer:
The new voltage between the plates of the capacitor is 18 V
Explanation:
The charge on parallel plate capacitor is calculated as;
q = CV
Where;
V is the battery voltage
C is the capacitance of the capacitor, calculated as;
[tex]C = \frac{\epsilon _0A}{d} \\\\q =CV = (\frac{\epsilon _0A}{d})V = \frac{\epsilon _0A V}{d}[/tex]
[tex]q = \frac{\epsilon _0A V}{d}[/tex]
where;
ε₀ is permittivity of free space
A is the area of the capacitor
d is the space between the parallel plate capacitors
If only the space between the capacitors is doubled and every other parameter is kept constant, the new voltage will be calculated as;
[tex]q = \frac{\epsilon _0A V}{d} \\\\\frac{\epsilon _0A V}{d} = \frac{\epsilon _0A V}{d} \\\\\frac{V_1}{d_1} = \frac{V_2}{d_2} \\\\V_2 = \frac{V_1d_2}{d_1} \\\\(d_2 = 2d_1)\\\\V_2 = \frac{V_1*2d_1}{d_1} \\\\(V_1 = 9V)\\\\V_2 = \frac{9*2d_1}{d_1} \\\\V_2 = 9*2\\\\V_2 = 18 \ V[/tex]
Therefore, the new voltage between the plates of the capacitor is 18 V
A particle moves along a straight line with the acceleration a = (12t - 3t ^ 1/2) feet / s ^ 2, where t is in seconds. Determine your speed and position as a function of time. When t = 0, v = 0 and s = 15 feet.
Answer:
v = 6t² − 2t^³/₂
s = 2t³ − ⅘t^⁵/₂ + 15
Explanation:
a = 12t − 3t^½
Integrate to find velocity.
v = ∫ a dt
v = ∫ (12t − 3t^½) dt
v = 6t² − 2t^³/₂ + C
Use initial condition to find C.
0 = 6(0)² − 2(0)^³/₂ + C
C = 0
v = 6t² − 2t^³/₂
Integrate to find position.
s = ∫ v dt
s = ∫ (6t² − 2t^³/₂) dt
s = 2t³ − ⅘t^⁵/₂ + C
Use initial condition to find C.
15 = 2(0)³ − ⅘(0)^⁵/₂ + C
15 = C
s = 2t³ − ⅘t^⁵/₂ + 15
A 750 kg car is moving at 20.0 m/s at a height of 5.0 m above the bottom of a hill when it runs out of gas. From there, the car coasts. a. Ignoring frictional forces and air resistance, what is the car’s kinetic energy and velocity at the bottom of the hill
Answer:
Explanation:
Kinetic energy at the height = 1/2 m v²
= 1/2 x 750 x 20²
= 150000 J
Its potential energy = mgh
= 750 x 9.8 x 5
=36750 J
Total energy = 186750 J
Its total kinetic energy will be equal to 186750 J , according to conservation of mechanical energy
If v be its velocity at the bottom
1/2 m v² = 186750
v = √498
= 22.31 m /s
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region is 5.40 mlong and reduces the toboggan's speed by 1.20 m/s .
a) What average friction force did the rough region exert on the toboggan?
b) By what percent did the rough region reduce the toboggan's kinetic energy?
c) By what percent did the rough region reduce the toboggan's speed?
Answer:
a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.
Explanation:
a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:
[tex]K_{1} = K_{2} + W_{f}[/tex]
Where:
[tex]K_{1}[/tex], [tex]K_{2}[/tex] are the initial and final translational kinetic energies of the tobbogan, measured in joules.
[tex]W_{f}[/tex] - Dissipated work due to friction, measured in joules.
By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:
[tex]f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})[/tex]
Where:
[tex]f[/tex] - Friction force, measured in newtons.
[tex]\Delta s[/tex] - Distance travelled by the toboggan in the rough region, measured in meters.
[tex]m[/tex] - Mass of the toboggan, measured in kilograms.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Initial and final speed of the toboggan, measured in meters per second.
The friction force is cleared:
[tex]f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}[/tex]
If [tex]m = 375\,kg[/tex], [tex]v_{1} = 4.50\,\frac{m}{s}[/tex], [tex]v_{2} = 1.20\,\frac{m}{s}[/tex] and [tex]\Delta s = 5.40 \,m[/tex], then:
[tex]f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}[/tex]
[tex]f = 653.125\,N[/tex]
The average friction force exerted on the toboggan is 653.125 newtons.
b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:
[tex]\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%[/tex]
[tex]\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%[/tex]
[tex]\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%[/tex]
[tex]\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%[/tex]
[tex]\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%[/tex]
If [tex]v_{1} = 4.50\,\frac{m}{s}[/tex] and [tex]v_{2} = 1.20\,\frac{m}{s}[/tex], then:
[tex]\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%[/tex]
[tex]\%K_{loss} = 92.889\,\%[/tex]
The rough region reduced the kinetic energy of the toboggan in 92.889 %.
c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:
[tex]\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%[/tex]
[tex]\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%[/tex]
If [tex]v_{1} = 4.50\,\frac{m}{s}[/tex] and [tex]v_{2} = 1.20\,\frac{m}{s}[/tex], then:
[tex]\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%[/tex]
[tex]\%v_{loss} = 73.333\,\%[/tex]
The speed of the toboggan is reduced in 73.333 %.
The average frictional force exerted on the toboggan by the rough surface is 661.5 N.
The percentage of the toboggan kinetic energy reduction is 7.11%.
The percentage of the toboggan speed reduction is 26.67%.
The given parameters;
mass of the toboggan, m = 375 kginitial speed of the toboggan, u = 4.5 m/slength of the rough region, d = 5.4 mfinal speed of the toboggan, v = 1.2 m/sThe normal force on the toboggan is calculated as follows;
Fₙ = mg
Fₙ = 375 x 9.8 = 3675 N
The acceleration of the toboggan is calculated as follows;
[tex]v^2 = u^2 + 2as\\\\2as = v^2 - u^2\\\\a = \frac{v^2 - u^2 }{2s} \\\\a = \frac{(1.2)^2 - (4.5)^2 }{2(5.4)}\\\\a = -1.74 \ m/s^2[/tex]
The coefficient of friction is calculated as follows;
[tex]\mu_k = \frac{a}{g} \\\\\mu_k = \frac{1.74}{9.8} \\\\\mu_k = 0.18[/tex]
The average frictional force exerted on the toboggan by the rough surface;
[tex]F_k = \mu_k F_n\\\\F_k = 0.18 \times 3675\\\\F_k = 661.5 \ N[/tex]
The initial kinetic energy of the toboggan is calculated as follows;
[tex]K.E_i = \frac{1}{2} mu^2\\\\K.E_i = \frac{1}{2} \times 375\times 4.5^2\\\\K.E_i = 3,796.88 \ J[/tex]
The final kinetic energy of the toboggan is calculated as follows;
[tex]K.E_f = \frac{1}{2} mv^2\\\\K.E_f = \frac{1}{2} \times 375\times 1.2^2\\\\K.E_f = 270 \ J[/tex]
The percentage of the toboggan kinetic energy reduction is calculated as follows;
[tex]\frac{K.E_f}{K.E_i} \times 100\% = \frac{270}{3796.88} \times 100\% = 7.11 \%[/tex]
The percentage of the toboggan speed reduction is calculated as follows;
[tex]\frac{1.2}{4.5} \times 100\% = 26.67 \%[/tex]
Learn more here: https://brainly.com/question/14121363
a block of wood is pulled by a horizontal string across a rough surface at a constant velocity with a force of 20N. the coefficient of kinetic friction between the surfaces is 0.3 the force of the friction is
Answer:
6 N
Explanation:
From the laws of friction
F = ¶R = 0.3 × 20 = 6 N
The force of friction opposing the block's motion is 6 N.
The given parameters;
force applied on the block, F = 20 Ncoefficient of kinetic friction = 0.3The force of friction which opposes the motion of the block is obtained by applying Newton's second law of motion.
F = ma
Fₓ = μF
Substitute the given parameters to calculate the frictional force on the object.
Fₓ = 0.3 x 20
Fₓ = 6 N
Thus, the force of friction opposing the block's motion is 6 N.
Learn more here: https://brainly.com/question/18247518
A 100 kg lead block is submerged in 2 meters of salt water, the density of which is 1096 kg / m3. Estimate the value of the hydrostatic pressure.
Answer:
21,920 Pascals
Explanation:
P = ρgh
P = (1096 kg/m³) (10 m/s²) (2 m)
P = 21,920 Pa
Which of the following statements is accurate? A) Compressions and rarefactions occur throughout a transverse wave. B) The wavelength of both transverse and longitudinal waves is measured parallel to the direction of the travel of the wave. C) Sound waves passing through the air will do so as transverse waves, which vibrate vertically and still retain their horizontal positions. D) Amplitude of longitudinal waves is measured at right angles to the direction of the travel of the wave and represents the maximum distance the molecule has moved from its normal position.
Answer:
B) The wavelength of both transverse and longitudinal waves is measured parallel to the direction of the travel of the wave
Answer:
B) The wavelength of both transverse and longitudinal waves is measured parallel to the direction of the travel of the wave.
Explanation: hope this helps ;)
Copper wire of diameter 0.289 cm is used to connect a set of appliances at 120 V, which draw 1850 W of power total. The resistivity of copper is 1.68×10−8Ω⋅m.
A. What power is wasted in 26.0 m of this wire?
B. What is your answer if wire of diameter 0.417 cm is used?
Answer:
(a) The power wasted for 0.289 cm wire diameter is 15.93 W
(b) The power wasted for 0.417 cm wire diameter is 7.61 W
Explanation:
Given;
diameter of the wire, d = 0.289 cm = 0.00289 m
voltage of the wire, V = 120 V
Power drawn, P = 1850 W
The resistivity of the wire, ρ = 1.68 x 10⁻⁸ Ω⋅m
Area of the wire;
A = πd²/4
A = (π x 0.00289²) / 4
A = 6.561 x 10⁻⁶ m²
(a) At 26 m of this wire, the resistance of the is
R = ρL / A
R = (1.68 x 10⁻⁸ x 26) / 6.561 x 10⁻⁶
R = 0.067 Ω
Current in the wire is calculated as;
P = IV
I = P / V
I = 1850 / 120
I = 15.417 A
Power wasted = I²R
Power wasted = (15.417²)(0.067)
Power wasted = 15.93 W
(b) when a diameter of 0.417 cm is used instead;
d = 0.417 cm = 0.00417 m
A = πd²/4
A = (π x 0.00417²) / 4
A = 1.366 x 10⁻⁵ m²
Resistance of the wire at 26 m length of wire and 1.366 x 10⁻⁵ m² area;
R = ρL / A
R = (1.68 x 10⁻⁸ x 26) / 1.366 x 10⁻⁵
R = 0.032 Ω
Power wasted = I²R
Power wasted = (15.417²)(0.032)
Power wasted = 7.61 W
A solenoid with 500 turns, 0.10 m long, carrying a current of 4.0 A and with a radius of 10-2 m will have what strength magnetic field at its center
Answer:
B = 0.025T
Explanation:
In order to calculate the strength of the magnetic field at the center of the solenoid, you use the following formula:
[tex]B=\frac{\mu N i}{L}[/tex] (1)
μ: magnetic permeability of vacuum = 4π*10^-7 T/A
N: turns of the solenoid = 500
i: current = 4.0A
L: length of the solenoid = 0.10m
You replace the values of the parameters in the equation (1):
[tex]B=\frac{(4\pi*10^{-7}T/A)(500)(4.0A)}{0.10m}=0.025T[/tex]
The strength of the magnetic field at the center of the solenoid = 0.025T
Answer:
Magnetic field strength at the center is 2.51x10^-2T
Explanation:
Pls see attached file for step by step calculation
Forces that act in pairs are _____ in size and ________ in direction.
a crate b of mass 40kg is raised by the rope of crane from the hold of a ship. mark and name forces on the crate . find acceleration if tension is 480N
Find the acceleration, a .
Formula used:-Force = Mass × Acceleration
Solution:-We know that ,
Force = Mass × Acceleration
★ Substituting the values in the above formula,we get:
⇒ 480 = 40 × Acceleration
⇒ Acceleration, a = 480/40
⇒ Acceleration,a = 12 m/s
Thus,the acceleration of a body is 12 metres per seconds.