Answer:
It's more likely that the trailer is heavily loaded
Explanation:
Due to the fact that the frequency is proportional to the square root of the force constant and inversely proportional to the square root of the mass, it is very likely that the truck would be heavily loaded because the force constant would be the same whether the truck is empty or heavily loaded.
Which of the following scenarios would be optimal for obtaining a date from radioactive decay using these isotopes: 87Rb, 147Sm, 235U, 238U, 40K, or 14C? There may be more than one answer that is appropriate. Explain your reasoning for why the remaining scenario(s) would be inappropriate/impossible to use that particular isotope. Answers should include a discussion on usable ages for each system and whether the necessary isotopes would be found in the material to be dated.
a. A meteorite that formed early in the formation of the solar system.
b. A rock formed through a mountain building event around 420 million years ago.
c. Volcanic ash from an eruption 60 million years ago.
d. An earthquake scarp that formed along the San Andreas Fault 50 years ago.
e. An Incan archaeological dig site in the highlands of Peru.
f. A tree from a forest in England that is suspected to be the oldest in the British Isles.
Answer:
a) 238U, 40K and 87Rb, b) 235U and to a lesser extent 40K , c) he 235U,
d) possibility is 14C , e)this period would be ideal for 14C , f) 14C should be used since it is the one with the least average life time, even though the measurements must be very careful
Explanation:
One of the applications of radioactive decay is the dating of different systems.
To do this, the quantity of radioactive material in a meter is determined and with the average life time, the time of the sample is found.
Let's write the half-life times of the given materials
87Rb T ½ = 4.75 1010 years
147Sm T ½ = 1.06 1011 years
235U = 7,038 108 years
238U = 4.47 109 years
40K = 1,248 109 years
14C = 5,568 103 years
we already have the half-life of the different elements given
a) meteors. As these decomposed in the formation of the solar system, their life time is around 3 109 to 5 109 years, so it is necessary to look for elements that have a life time of this order, among the candidates we have 238U, 40K and 87Rb if these elements were at the moment of the formation of these meteors, there must still be rations in them, instead elements 14C already completely adequate
b) rock. The formation period is 4.20-108 years, therefore one of the most promising elements is 235U and to a lesser extent 40K since it is more abundant in rocks. The other elements with higher life times have not decayed and therefore will not give a true value and the 14C is completely decayed
c) volcanic ash. Formation time 6107 years, the only element that has the possibility of having a count is the 235U, the others have a life time so long that they have not decayed and the 14C is complete, unbent
d) scarp of an earthquake formation time 5 101 years, The only one that has any possibility is 14C even when it has declined very little, all the others, you have time to long that has not decayed
e) INCA excavation. The time of this civilization is about 10000 to 500 years (104 to 5 102 years), we see that this period would be ideal for 14C since it has some period of cementation, the others have not decayed
f) Tree in Blepharitis. 14C should be used since it is the one with the least average life time, even though the measurements must be very careful because of a period of disintegration. We have such a long time that they have not decayed
You have negotiated with the Omicronians for a base on the planet Omicron Persei 7. The architects working with you to plan the base need to know the acceleration of a freely falling object at the surface of the planet in order to adequately design the structures. The Omicronians have told you that the value is gOP7=7.29 flurggrom2, but your architects use the units metersecond2, and from your previous experience you know that both the Omicronians and your architects are terrible at unit conversion. Thus, it's up to you to do the unit conversion. Fortunately, you know the unit equality relationships: 5.24flurg=1meter and 1grom=0.493second. What is the value of gOP7 in the units your architects will use, in meter-second2?
Answer:
5.724 meters / second^2
Explanation:
We are given two pieces of information, 5.24 flurg = 1 meter, 1 grom = 0.493 second. If that is so, we can say that there are two possible conversion units, 5.25 flurg / meter, and 0.493 second / grom.
_____
We want to convert 7.29 flurg / grom^2 ( I believe? ) to the units meters / second^2. But, let's break this down into bits. It would be convenient to first convert 7.29 flurg / grom^2 to the units meters / grom^2, by dividing the conversion factors as to cancel out the appropriate things, which we will go into detail on a bit later ( using the first conversion factor ). Respectively we can convert meters / grom^2 to meters / grom * s, canceling out the flurg ( through the second conversion factor ). And now we would need to get rid of the grom, dividing similarly.
_____
( 1 ) ( flurg / grom^2 ) / ( flurg / meters ) - first conversion unit
= flurg / grom^2 * meters /flurg
= ( meters * flurg ) / ( grom^2 * flurg )
= meters /grom^2,
7.29 flurg / grom^2 / 5.24 flurg / meter = ( About ) 1.39 meter / grom^2
( 2 ) ( meter / grom^2 ) / ( second / grom ) - second conversion unit
= meter / grom^2 * grom / second
= ( meter * grom ) / ( grom^2 * second )
= meter / ( grom * second ),
( 1.39 meter / grom^2 ) / 0.493 second / grom = ( About ) 2.82195 meter / grom * second
( 3 ) ( 2.82195 meter / ( grom * second ) ) / 0.493 second / grom = 5.724 meter / second^2
( And thus, the value of gOP7 in the units the architects will use should be about 5.724 meters / second^2 )
The value of gOP7 in the units your architects will use is 5.724 [tex]m/s^2[/tex]
Given that 5.24 flurg = 1 meter,
1 grom = 0.493 second.
First, we will convert the length units:
[tex]7.29 flurg / grom^2 / 5.24 flurg / meter = 1.39 meter / grom^2[/tex]
Now we convert the time units:
[tex]1.39 meter / grom^2 / 0.493 second / grom = 2.82195 meter / grom * second[/tex]
[tex]2.82195 meter / ( grom * second ) ) / 0.493 second / grom = 5.724 meter / second^2[/tex]
The value of gOP7 in the units the architects will use is [tex]5.724m/s^2[/tex]
Learn more :
https://brainly.com/question/17192728
Which characteristic gives the most information about what kind of element an atom is ?
Answer:
The atomic number
Explanation:
A student applies a constant horizontal 20 N force to a 12 kg box that is initially at rest. The student moves the box a distance of 3.0 m. What is the speed of the box at the end of the motion
Answer:
u = 10.02m/s
Explanation:
a = f/m
a = 20/12 = 1.67m/s²
U =2aS
u = 2 x 1.67 x 3
U = 10.02m/s
What is the one single most important reason that human impact on the planet has been so great?
Answer:
Increasing population
Explanation:
As we can see that the death rate is decreasing while at the same time the birth rate is increasing due to which it increased the population that directly impact the planet so great
Day by day the population of the villages, cities, states, the country is increasing which would create a direct human impact on the planet
Therefore the increasing population is the one and single most important reason
A girl weighing 600 N steps on a bathroom scale that contains a stiff spring. In equilibrium, the spring is compressed 1.0 cm under her weight. Find the spring constant and the total work done on it during the compression.
Answer:
The spring constant is 60,000 N
The total work done on it during the compression is 3 J
Explanation:
Given;
weight of the girl, W = 600 N
compression of the spring, x = 1 cm = 0.01 m
To determine the spring constant, we apply hook's law;
F = kx
where;
F is applied force or weight on the spring
k is the spring constant
x is the compression of the spring
k = F / x
k = 600 / 0.01
k = 60,000 N
The total work done on the spring = elastic potential energy of the spring, U;
U = ¹/₂kx²
U = ¹/₂(60000)(0.01)²
U = 3 J
Thus, the total work done on it during the compression is 3 J
What is the length of the shadow cast on the vertical screen by your 10.0 cm hand if it is held at an angle of θ=30.0∘ above horizontal? Express your answer in centimeters to three significant figures. View Available Hint(s)
Answer:
The length is [tex]D = 5 \ cm[/tex]
Explanation:
From the question we are told that
The length of the hand is [tex]l = 10.0 \ cm[/tex]
The angle at the hand is held is [tex]\theta = 30 ^o[/tex]
Generally resolving the length the length of the hand to it vertical component we obtain that the length of the shadow on the vertical wall is mathematically evaluated as
[tex]D = l * sin(\theta )[/tex]
substituting values
[tex]D = 10 * sin (30)[/tex]
[tex]D = 5 \ cm[/tex]
Wind erosion can be reduced by _____.
distributed uniformly over the surface of a metal sphere with a radius 24.0 cm. If the potential is zero at a point at infinity, find the value of the pote my jobntA total electric charge of 3.50 nC is distributed uniformly over the surface of a metal sphere with a radius 24.0 cm. If the potential is zero at a point at infinity, find the value of the potential at the following distances from the center of the sphere: (a) 48.0 cm (b) 2ial at the following distances from the center of the sphere: (a) 48.0 cm (b) 24.0 cm (c) 12.0 cm
Answer:
(a) V = 65.625 Volts
(b) V = 131.25 Volts
(c) V = 131.25 Volts
Explanation:
Recall that:
1) in a metal sphere the charges distribute uniformly around the surface, and the electric field inside the sphere is zero, and the potential is constant equal to:
[tex]V=k\frac{Q}{R}[/tex]
2) the electric potential outside of a charged metal sphere is the same as that of a charge of the same value located at the sphere's center:
[tex]V=k\frac{Q}{r}[/tex]
where k is the Coulomb constant ( [tex]9\,\,10^9\,\,\frac{N\,m^2}{C^2}[/tex] ), Q is the total charge of the sphere, R is the sphere's radius (0.24 m), and r is the distance at which the potential is calculated measured from the sphere's center.
Then, at a distance of:
(a) 48 cm = 0.48 m, the electric potential is:
[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.48} =65.625\,\,V[/tex]
(b) 24 cm = 0.24 m, - notice we are exactly at the sphere's surface - the electric potential is:
[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]
(c) 12 cm (notice we are inside the sphere, and therefore the potential is constant and the same as we calculated for the sphere's surface:
[tex]V=k\frac{Q}{R}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]
Answer:
c) a difference in electric potential
Explanation:
my insta: priscillamarquezz
You have a 160-Ω resistor and a 0.430-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 30.0 V and an angular frequency of 220 rad/s .
Part A: What is the impedance of the circuit? ( Answer: Z = ? Ω )
Part B: What is the current amplitude? ( Answer: I = ? A )
Part C: What is the voltage amplitude across the resistor? ( Answer: VR = ? V )
Part D: What is the voltage amplitudes across the inductor? ( Answer: VL = ? V )
Part E: What is the phase angle ϕ of the source voltage with respect to the current? ( Answer: ϕ = ? degrees )
Part F: Does the source voltage lag or lead the current? ( Answer: the voltage lags the current OR the voltage leads the current )
Answer:
A. Z = 185.87Ω
B. I = 0.16A
C. V = 1mV
D. VL = 68.8V
E. Ф = 30.59°
Explanation:
A. The impedance of a RL circuit is given by the following formula:
[tex]Z=\sqrt{R^2+\omega^2L^2}[/tex] (1)
R: resistance of the circuit = 160-Ω
w: angular frequency = 220 rad/s
L: inductance of the circuit = 0.430H
You replace in the equation (1):
[tex]Z=\sqrt{(160\Omega)^2+(220rad/s)^2(0.430H)^2}=185.87\Omega[/tex]
The impedance of the circuit is 185.87Ω
B. The current amplitude is:
[tex]I=\frac{V}{Z}[/tex] (2)
V: voltage amplitude = 30.0V
[tex]I=\frac{30.0V}{185.87\Omega}=0.16A[/tex]
The current amplitude is 0.16A
C. The current I is the same for each component of the circuit. Then, the voltage in the resistor is:
[tex]V=\frac{I}{R}=\frac{0.16A}{160\Omega}=1*10^{-3}V=1mV[/tex] (3)
D. The voltage across the inductor is:
[tex]V_L=L\frac{dI}{dt}=L\frac{d(Icos(\omega t))}{dt}=-LIsin(\omega t)\\\\V_L=-(0.430H)(160\Omega)sin(220 t)=68.8sin(220t)\\\\V_L_{max}=68.8V[/tex]
E. The phase difference is given by:
[tex]\phi=tan^{-1}(\frac{\omega L}{R})=tan^{-1}(\frac{(220rad/s)(0.430H)}{160\Omega})\\\\\phi=30.59\°[/tex]
A cyclotron operates with a given magnetic field and at a given frequency. If R denotes the radius of the final orbit, then the final particle energy is proportional to which of the following?
A. 1/RB. RC. R^2D. R^3E. R^4
Answer:
C. R^2
Explanation:
A cyclotron is a particle accelerator which employs the use of electric and magnetic fields for its functioning. It consists of two D shaped region called dees and the magnetic field present in the dee is responsible for making sure the charges follow the half-circle and then to a gap in between the dees.
R is denoted as the radius of the final orbit then the final particle energy is proportional to the radius of the two dees. This however translates to the energy being proportional to R^2.
A 0.20-kg block rests on a frictionless level surface and is attached to a horizontally aligned spring with a spring constant of 40 N/m. The block is initially displaced 4.0 cm from the equilibrium point and then released to set up a simple harmonic motion. A frictional force of 0.3 N exists between the block and surface. What is the speed of the block when it passes through the equilibrium point after being released from the 4.0-cm displacement point
Answer:
Approximately [tex]0.45\; \rm m \cdot s^{-1}[/tex].
Explanation:
The mechanical energy of an object is the sum of its potential energy and kinetic energy. Consider this question from the energy point of view:
Mechanical energy of the block [tex]0.04\; \rm m[/tex] away from the equilibrium position:
Elastic potential energy: [tex]\displaystyle \frac{1}{2} \, k\, x^2 = \frac{1}{2}\times \left(0.04\; \rm m\right)^2 \times 40\; \rm N \cdot m^{-1} = 0.032\; \rm J[/tex].Kinetic energy: [tex]0\; \rm J[/tex].While the block moves back to the equilibrium position, it keeps losing (mechanical) energy due to friction:
[tex]\begin{aligned}& \text{Work done by friction} = (-0.3\; \rm N) \times (0.04 \; \rm m) = -0.012\; \rm J\end{aligned}[/tex].
The opposite ([tex]0.012\; \rm N[/tex]) of that value would be the amount of energy lost to friction. Since there's no other form of energy loss, the mechanical energy of the block at the equilibrium position would be [tex]0.032\; \rm N - 0.012\; \rm N = 0.020\; \rm N[/tex].
The elastic potential energy of the block at the equilibrium position is zero. As a result, all that [tex]0.020\; \rm N[/tex] of mechanical energy would all be in the form of the kinetic energy of that block.
Elastic potential energy: [tex]0\; \rm J[/tex].Kinetic energy: [tex]0.020\; \rm J[/tex].Given that the mass of this block is [tex]0.020\; \rm kg[/tex], calculate its speed:
[tex]\begin{aligned}v &= \sqrt{\frac{2\, \mathrm{KE}}{m}} \\ &= \sqrt{\frac{2 \times 0.020\; \rm J}{0.20\; \rm kg}} \approx 0.45\; \rm m\cdot s^{-1}\end{aligned}[/tex].
Accelerating charges radiate electromagnetic waves. Calculate the wavelength of radiation produced by a proton in a cyclotron with a magnetic field of 0.547 T.
Answer:
Wavelength is 0.359 m
Explanation:
Given that,
Magnetic field, B = 0.547 T
We need to find the wavelength of radiation produced by a proton in a cyclotron with a magnetic field of 0.547 T.
The frequency of revolution of proton in the cyclotron is given by :
[tex]f=\dfrac{qB}{2\pi m}[/tex]
m is mass of proton
q is charge on proton
So,
[tex]f=\dfrac{1.6\times 10^{-19}\times 0.547}{2\pi \times 1.67\times 10^{-27}}\\\\f=8.34\times 10^6\ Hz[/tex]
We know that,
Speed of light, [tex]c=f\lambda[/tex]
[tex]\lambda[/tex] = wavelength
[tex]\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{834\times 10^6}\\\\\lambda=0.359\ m[/tex]
So, the wavelength of the radiation produced by a proton is 0.359 m.
A student slides her 80.0-kg desk across the level floor of her dormitory room a distance 4.40 m at constant speed. If the coefficient of kinetic friction between the desk and the floor is 0.400, how much work did she do
Answer:
F = umg where u is coefficient of dynamic friction
Explanation:
F = 0.4 x 80 x 9.81 = 313.92 N
A horizontal spring with spring constant 290 N/m is compressed by 10 cm and then used to launch a 300 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23. What is the box's launch speed?
Answer:
Explanation:
check it out and rate me
a ring with a clockwise current is situated with its center directly above another ring. The current in the top ring is decreasing. What is the directiong of the induced current in the bottom ring
Answer:
clockwise
Explanation:
when current flows through a ring in a clockwise direction, it produces the equivalent magnetic effect of a southern pole of a magnet on the coil.
Since the current is decreasing, there is a flux change on the lower ring; generating an induced current on the lower ring. According to Lenz law of electromagnetic induction, "the induced current will act in such a way as to oppose the motion or the action producing it". In this case, the induced current will have to be the same polarity to the polarity of the current change producing it so as to repel the two rings far enough to stop the electromagnetic induction. The induced current will then be in the clockwise direction on the lower ring.
The direction of the induced current in the bottom ring is in the clockwise direction.
The given problem is based on the concept and fundamentals of the induced current and the direction of flow of the induced current.
When current flows through a ring in a clockwise direction, it produces the equivalent magnetic effect of a southern pole of a magnet on the coil. Since the current is decreasing, there is a flux change on the lower ring; generating an induced current on the lower ring. According to Lenz law of electromagnetic induction, "the induced current will act in such a way as to oppose the motion or the action producing it". In this case, the induced current will have to be the same polarity to the polarity of the current change producing it so as to repel the two rings far enough to stop the electromagnetic induction. The induced current will then be in the clockwise direction on the lower ring.Thus, we can conclude that the direction of the induced current in the bottom ring is in the clockwise direction.
Learn more about the concept of induced current here:
https://brainly.com/question/3712635
A parallel-plate capacitor has a plate separation of 1.5 mm and is charged to 450 V. 1) If an electron leaves the negative plate, starting from rest, how fast is it going when it hits the positive plate
Answer:
Explanation:
this is the answer to your question
The electron is going with a velocity of 1.25 × 10⁷ m/s when it hits the positive plate.
What is law of the conservation of mechanical energy?According to the law of the conservation of mechanical energy, the total mechanical energy is always conserved by an electron. We can say that the sum of potential energy (U) and kinetic energy (K) is always constant.
K + U = E
Given, the distance between the two parallel plates = 1.5 mm
The potential difference between the plates, V = 450V
The charge on an electron, q = [tex]-1.6\times 10^{-19} C[/tex]
The mass of an electron, m = 9.1× 10⁻³¹ Kg
The change in the potential energy of the charge moving through the potential difference of 450V.
ΔU = qΔV = (-1.6× 10⁻¹⁹)(450) = -7.2 × 10⁻¹⁷J
From the law of the conservation of mechanical energy, we can write:
K + U = E
ΔK + ΔU = 0
ΔK = -ΔU
1/2mv² = -ΔU
v² = -2ΔU/m
[tex]v^2 =\frac{-2\times (-7.2\times 10{-17})}{9.1\times 10^{-31}}[/tex]
[tex]v=\sqrt{1.58\times 10^{14}}[/tex]
v = 1.25 × 10⁷ m/s
Therefore, the electron is going with the speed of 1.25 × 10⁷ m/s when it hits the positive plate.
Learn more about the law of the conservation of mechanical energy, here:
https://brainly.com/question/20438334
#SPJ5
A copper transmission cable 180 km long and 11.0 cm in diameter carries a current of 135 A.
Required:
a. What is the potential drop across the cable?
b. How much electrical energy is dissipated as thermal energy every hour?
Answer:
a) 43.98 V
b) E = 21.37 MJ
Explanation:
Parameters given:
Length of cable = 180 km = 180000 m
Diameter of cable = 11 cm = 0.11 m
Radius = 0.11 / 2 = 0.055 m
Current, I = 135 A
a) To find the potential drop, we have to find the voltage across the wire:
V = IR
=> V = IρL / A
where R = resistance
L = length of cable
A = cross-sectional area
ρ = resistivity of the copper wire = 1.72 * 10^(-8) Ωm
Therefore:
V = (135 * 1.72 * 10^(-8) * 180000) / (π * 0.055^2)
V = 43.98 V
The potential drop across the cable is 43.98 V
b) Electrical energy is given as:
E = IVt
where t = time taken = 1 hour = 3600 s
Therefore, the energy dissipated per hour is:
E = 135 * 43.98 * 3600
E = 21.37 MJ (mega joules, 10^6)
a beam of 1mev electrons strike a thick target. for a beam current of 100 microampere, find the power dissipated in the target
Answer:
power dissipated in the target is 100 W
Explanation:
given data
electrons = 1 mev = [tex]10^{6}[/tex] eV
1 eV = 1.6 × [tex]10^{-19}[/tex] J
current = 100 microampere = 100 × [tex]10^{-6}[/tex] A
solution
when energy of beam strike with 1 MeV so energy of electron is
E = e × v ...................1
e is charge of electron and v is voltage
so put here value and we get voltage
v = 1 ÷ 1.6 × [tex]10^{-19}[/tex]
v = [tex]10^{6}[/tex] volt
so power dissipated in target
P = voltage × current ..............2
put here value
P = [tex]10^{6}[/tex] × 100 × [tex]10^{-6}[/tex]
P = 100 W
so power dissipated in the target is 100 W
A 54.0 kg ice skater is moving at 3.98 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole. She then moves in a circle of radius 0.802 m around the pole.
(a) Determine the force exerted by the horizontal rope on her arms.N
(b) What is the ratio of this force to her weight?(force from part a / her weight)
Answer:
(a) force is 1066.56N
Explanation:
(a) MV²/R
A square copper plate, with sides of 50 cm, has no net charge and is placed in a region where there is a uniform 80 kN / C electric field directed perpendicular to the plate. Find a) the charge density of each side of the plate and b) the total load on each side.
Answer:
a) ±7.08×10⁻⁷ C/m²
b) 1.77×10⁻⁷ C
Explanation:
For a conductor,
σ = ±Eε₀,
where σ is the charge density,
E is the electric field,
and ε₀ is the permittivity of space.
a)
σ = ±Eε₀
σ = ±(8×10⁴ N/C) (8.85×10⁻¹² F/m)
σ = ±7.08×10⁻⁷ C/m²
b)
σ = q/A
7.08×10⁻⁷ C/m² = q / (0.5 m)²
q = 1.77×10⁻⁷ C
In a bi-prism experiment the eye-piece was placed at a distance 1.5m from the source. The distance between the virtual sources was found to be equal to 7.5 x 10-4 m. Find the wavelength of the source of light if the eye-piece has to be moved transversely through a distance of 1.88 cm for 10 fringes.
Answer:
λ = 1.4 × 10^(-7) m
Explanation:
We are given;
distance of eye piece from the source;D = 1.5 m
distance between the virtual sources;d = 7.5 × 10^(-4) m
To find the wavelength, we will use the formula for fringe width;
X = λD/d
Where X is fringe width, λ is wavelength, while d and D remain as before.
Now, fringe width = eye-piece distance moved transversely/number of fringes
Eye piece distance moved transversely = 1.88 cm = 1.88 × 10^(-2) m
Thus,
Fringe width = (1.88 × 10^(-2))/10 = 1.88 × 10^(-3) m
Thus;
1.88 × 10^(-3) = λ(1.5)/(7.5 × 10^(-4))
λ = [1.88 × 10^(-3) × (7.5 × 10^(-4))]/1.5
λ = 1.4 × 10^(-7) m
Two blocks of masses m1 and m2 are placed in contact with each other on a smooth, horizontal surface. Block m1 is on the left of block m2 . A constant horizontal force F to the right is applied to m1 . What is the horizontal force acting on m2?
Answer:
The horizontal force acting on m2 is F + 9.8m1
Explanation:
Given;
Block m1 on left of block m2
Make a sketch of this problem;
F →→→→→→→→→→→-------m1--------m2
Apply Newton's second law of motion;
F = ma
where;
m is the total mass of the body
a is the acceleration of the body
The horizontal force acting on block m2 is the force applied to block m1 and force due to weight of block m1
F₂ = F + W1
F₂ = F + m1g
F₂ = F + 9.8m1
Therefore, the horizontal force acting on m2 is F + 9.8m1
The force acting on the block of mass m₂ is [tex]\frac{m_2F}{m_1+m_2}[/tex]
Force acting on the block:Given that there are two blocks of mass m₁ and m₂.
m₁ is on the left of block m₂. They are in contact with each other.
A force F is applied on m₁ to the right.
According to Newton's laws of motion:
The equation of motion of the blocks can be written as:
F = (m₁ + m₂)a
here, a is the acceleration.
so, acceleration:
a = F / (m₁ + m₂)
Now, the force acting on the block of mass m₂ is:
f = m₂a
[tex]f = \frac{m_2F}{m_1+m_2}[/tex]
Learn more about laws of motion:
https://brainly.com/question/26083484?referrer=searchResults
. A mass m is traveling at an initial speed of 25.0 m/s. It is brought to rest in a distance of 62.5 m by a net force of 15.0 N. The mass is
Answer:
m = 3 kg
The mass m is 3 kg
Explanation:
From the equations of motion;
s = 0.5(u+v)t
Making t thr subject of formula;
t = 2s/(u+v)
t = time taken
s = distance travelled during deceleration = 62.5 m
u = initial speed = 25 m/s
v = final velocity = 0
Substituting the given values;
t = (2×62.5)/(25+0)
t = 5
Since, t = 5 the acceleration during this period is;
acceleration a = ∆v/t = (v-u)/t
a = (25)/5
a = 5 m/s^2
Force F = mass × acceleration
F = ma
Making m the subject of formula;
m = F/a
net force F = 15.0N
Substituting the values
m = 15/5
m = 3 kg
The mass m is 3 kg
1.3kg of gold at 300K comes in thermal contact with 2.4kg copper at 400K. The specific heats of Au and Cu are 126 J/kg-K and 386 J/kg-K respectively. What equilibrium temperature do they reach
Answer:
The final temperature of the metals will be 384.97 K
Explanation:
For the gold;
mass = 1.3 kg
temperature = 300 K
specific heat = 126 J/kg-K
For the copper;
mass = 2.4 kg
temperature = 400 K
specific heat = 386 J/kg-K
Firstly, we will have to calculate for the thermal energy possessed by each of the metal.
The heat possessed by a body = mcT
Where,
m is the mass of the body
c is the specific heat of the body, and
T is the temperature of the body at that instance
so we calculate for the thermal energy of the gold and the copper below
For gold;
heat energy = mcT = 1.3 x 126 x 300 = 49140 J
For copper;
heat energy = mcT = 2.4 x 386 x 400 = 370560 J
When the two metal come in thermal contact, this heat is evenly distributed between them.
The total heat energy = 49140 J + 370560 J = 419700 J
At thermal equilibrium, the two metals will be at the same temperature, to get this temperature, we equate the total thermal energy to the heat energy that will be possessed by the metals at equilibrium.
419700 = (1.3 x 126 x T) + (2.4 x 386 x T) = 163.8T + 926.4T
419700 = 1090.2T
T = 419700/1090.2 = 384.97 K
The final temperature of the metals will be 384.97 K
When you stretch a spring 13 cm past its natural length, it exerts a force of 21
N. What is the spring constant of this spring?
A. 1.6 N/cm
B. 273 N/cm
C. 0.8 N/cm
D. 13 N/cm
Answer:
A. 1.6 N/cm
Explanation:
spring constant = 21/13 = 1.6 N/cm
If a water wave completes one cycle in 2 seconds, what is
the period of the wave?
0.5 seconds
O4 seconds
2 seconds
0.2 seconds
Done
The period of a wave is the time it takes the wave to complete one cycle (at a fixed location).
So if a wave completes one cycle in 2 seconds, then that is its period.
If the set W is a vector space, find a set S of vectors that spans it. Otherwise, state that W is not a vector space. W is the set of all vectors of the form [a - 4b 5 4a + b -a - b], where a and bare arbitrary real numbers.
a. [1 5 4 -1], [-4 0 1 -1]
b. [1 0 4 -1], [-4 5 1 -1]
c. [1 0 4 -1], [-4 0 1 -1], [0 5 0 0]
d. Not a vector space
Answer:
Choice d. The set of vectors: [tex]\displaystyle \left\{\begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix},\; a,\, b\in \mathbb{R} \right\}[/tex] isn't a vector space over [tex]\mathbb{R}[/tex].
Explanation:
Let a set of vectors [tex]V[/tex] to be a vector field over some field [tex]\mathbb{F}[/tex] (for this question, that "field" is the set of all real number.) The following must be true:
The set of vectors [tex]V[/tex] includes the identity element [tex]\mathbf{0}[/tex]. In other words, there exists a vector [tex]\mathbf{0} \in V[/tex] such that for all [tex]\mathbf{v} \in V[/tex], [tex]\mathbf{v} + \mathbf{0} = \mathbf{v}[/tex].[tex]V[/tex] should be closed under vector addition. In other words, for all [tex]\mathbf{u},\, \mathbf{v} \in V[/tex], [tex]\mathbf{u} + \mathbf{v} \in V[/tex].[tex]V[/tex] should also be closed under scalar multiplication. In other words, for all [tex]\mathbf{v} \in V[/tex] and all "scalar" [tex]m \in \mathbb{F}[/tex] (in this question, the "field" is the set of all real numbers, so [tex]m[/tex] can be any real number,) [tex]a\,\mathbf{v} \in V[/tex].Note that in the general form of a vector in [tex]V[/tex], the second component is a always non-zero. Because of that non-zero component,
Assume by contradiction that [tex]V[/tex] is indeed a vector field. Therefore, it should contain a zero vector. Let [tex]\mathbf{0}[/tex] denote that zero vector. For all [tex]\mathbf{v} \in V[/tex], [tex]\mathbf{v} + \mathbf{0} = \mathbf{v}[/tex].
Using the definition of set [tex]V[/tex]: [tex]\displaystyle \left\{\begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix},\; a,\, b\in \mathbb{R} \right\}[/tex], there exist real numbers [tex]a[/tex] and [tex]b[/tex], such that:
[tex]\displaystyle \mathbf{v} = \begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix}[/tex].
Hence, [tex]\mathbf{v} + \mathbf{0} = \mathbf{v}[/tex] is equivalent to:
[tex]\displaystyle \begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix} + \mathbf{0} = \begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix}[/tex].
Apply the third property that [tex]V[/tex] is closed under scalar multiplication. [tex]-1[/tex] is indeed a real number. Therefore, if [tex]\mathbf{v}[/tex] is in
Therefore:
[tex]\displaystyle -\begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix} \in V[/tex].
Apply the second property and add [tex]\displaystyle - \mathbf{v} = -\begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix}[/tex] to both sides of [tex]\mathbf{v} + \mathbf{0} = \mathbf{v}[/tex]. The left-hand side becomes:
[tex]\mathbf{v} - \mathbf{v} + \mathbf{0} = \mathbf{0}[/tex].
The right-hand side becomes:
[tex]\displaystyle \begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix} -\begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix} = \begin{bmatrix}a - 4\, b - (a - 4\, b) \\ 5 - 5 \\ 4\, a+ b-(4\, a+ b)\\ -a -b - (-a -b)\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0 \\0\end{bmatrix}[/tex].
Therefore:
[tex]\displaystyle \mathbf{0} = \begin{bmatrix}0 \\ 0 \\ 0 \\0\end{bmatrix}[/tex].
However, [tex]\mathbf{0} = \displaystyle \begin{bmatrix}0 \\ 0 \\ 0 \\0\end{bmatrix}[/tex] isn't a member of the set [tex]\displaystyle V = \left\{\begin{bmatrix}a - 4\, b \\ 5 \\ 4\, a+ b\\ -a -b\end{bmatrix},\; a,\, b\in \mathbb{R} \right\}[/tex]. That's a contradiction, because [tex]\mathbf{0}[/tex] was supposed to be part of [tex]V[/tex].
Hence, [tex]V[/tex] isn't a vector space by contradiction.
A wire has an electric field of 6.2 V/m and carries a current density of 2.4 x 108 A/m2. What is its resistivity
Answer:
The resistivity is [tex]\rho = 2.5 *10^{-8} \ \Omega \cdot m[/tex]
Explanation:
From the question we are told that
The magnitude of the electric field is [tex]E = 6.2 V/m[/tex]
The current density is [tex]J = 2.4 *10^{8} \ A/m^2[/tex]
Generally the resistivity is mathematically represented as
[tex]\rho = \frac{E}{J}[/tex]
substituting values
[tex]\rho = \frac{6.2}{2.4 *10^{8}}[/tex]
[tex]\rho = 2.5 *10^{-8} \ \Omega \cdot m[/tex]
When separated by distance d, identically charged point-like objects A and B exert a force of magnitude F on each other. If you reduce the charge of A to one-fourth its original value, and the charge of B to one-fourth, and reduce the distance between the objects by half, what will be the new force that they exert on each other in terms of force F
Answer:
F ’= F 0.25
Explanation:
This problem refers to the electric force, which is described by Coulomb's law
F = k q₁ q₂ / r²
where k is the Coulomb constant, q the charges and r the separation between them.
The initial conditions are
F = k q_A q_B / d²
they indicate that the loads are reduced to ¼ q and the distance is reduced to ½ d
F ’= k (q / 4 q / 4) / (0.5 d)²
F ’= k q / 16 / 0.25 d²
F ’= k q² / d² 0.0625 / 0.25
F ’= F 0.25
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. If the charges are reduced to one-fourth of their original values and the distance is halved, the new force will be one-fourth of the original force.
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. This can be explained through Coulomb's law.
What is Coulomb's law?Coulomb's law is a law stating that like charges repel and opposite charges attract, with a force proportional to the product of the charges and inversely proportional to the square of the distance between them.
[tex]F = k \frac{q_Aq_B}{d^{2} } = k \frac{q^{2} }{d^{2} } [/tex]
where,
[tex]q_A [/tex] and [tex]q_B[/tex] are the charges of A and B (and equal to q).k is the Coulomb's constant.If you reduce the charge of A to one-fourth its original value, and the charge of B to one-fourth, and reduce the distance between the objects by half, the new force will be:
[tex]F_2 = k \frac{(0.25q_A)(0.25q_B)}{(0.5d)^{2} } = 0.25k\frac{q^{2} }{d^{2} } = 0.25 F[/tex]
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. If the charges are reduced to one-fourth of their original values and the distance is halved, the new force will be one-fourth of the original force.
Learn more about Coulomb's law here: https://brainly.com/question/506926