Answer:
The last column of the table gives this relationship:
w/m = g
Rewrite the equation to solve for W: W = m × g.
For one washer, the table shows a mass of 0.6 kilograms, a force of 5.9 newtons, and an acceleration due to gravity of 9.8 N/kg. The equation works correctly for these values and for the other values in the table:
W = m × g = 0.6 kg × 9.8 N/kg 5.9 N.
Explanation:
This is the answer on Edmentum. :)
A string is wound tightly around a wheel. When the end of the string is pulled through a distance of 10 cm, the wheel rotates through 5 revolutions. What is the radius of the wheel
Answer:
0.318cm
Explanation:
The computation of the radius of the wheel is shown below:
As we know that
One revolution of the wheel = 2πr
Here r denotes the radius of the wheel
Now
5 revolutions of the wheel would be
= 2πr × 5
= 10πr
So,
10πr = 10cm
Thus r = 1 ÷ π
= 0.318cm
The radius of the wheel will be r=0.318 cm
What will be the radius of the wheel?The radius is defined as the distance between the center of circle and the outer layer of the circle.
It is given in the question that
Revolutions of the wheel = 5
The length of the string =10 cm
Now the radius will be calculated as
One revolution of the wheel
= [tex]2\pi r[/tex]
Now 5 revolutions of the wheel would be
= [tex]2\pi r\times 5=10\pi\ r[/tex]
Since the string has the length of 10 cm then
[tex]10\pi\ r=10[/tex]
[tex]r=\dfrac{10}{10\pi}[/tex]
[tex]r=0.318\ cm[/tex]
Thus the radius of the wheel will be r=0.318 cm
To know more about radius of circle follow
https://brainly.com/question/977264
1 A roller coaster starts from rest at A, rolls down the track to B, describes a circular loop of 12-m diameter, and travels up and down past point E. Determine the range of values of h for which the roller coaster will not leave the track at D or E. Assume no energy loss due to friction.
Answer:
15m
Explanation:
Given that a roller coaster starts from rest at A, rolls down the track to B, describes a circular loop of 12-m diameter, and travels up and down past point E. Determine the range of values of h for which the roller coaster will not leave the track at D or E. Assume no energy loss due to friction
Solution
At point A
The maximum potential energy = maximum K.E
At point A, the total energy = maximum P.E.
Down the track to point B, the P.E will be converted to maximum K.E.
Hence,
Mgh = 1/2mv^2
Also, the total energy at the roller coaster will be P.E + K.E
I.e mg2r + 1/2mv^2
Where 2r = height of the loop = diameter of the loop.
Since the energy is always conserved, hence
Mgh = mg2r + 1/2mv^2
Let also consider the centripetal acceleration to keep the object in the circle.
F = mV^2 / r = mg
Mass will cancel out
U^2 = rg
Substitute that in the last equation
Mgh = mg2r + 1/2mgr
mgh = mg ( 2r + 1/2r )
Mg will cancel out
h = 2.5r
Where r = 12/2 = 6
h = 2.5 × 6
h = 15m
Therefore, the values of h for which the roller coaster will not leave the track at D or E is 15m.
uniform solid sphere has a mass of 1.765 kg and a radius of 0.854 m.a. Find the torque required to bring the sphere from rest to an angular velocity of 317 rad/s, clockwise, in 15.5 s.b. What magnitude force applied tangentially at the equator would provide the needed torque
Answer:
a) the torque required is 10.53 N-m
b) The magnitude force applied tangentially is 12.33 N
Explanation:
Given the data in the question;
mass m = 1.765 kg
radius r = 0.854 m
first we calculate the moment of inertia;
[tex]I[/tex] = [tex]\frac{2}{5}[/tex]mr²
we substitute
[tex]I[/tex] = [tex]\frac{2}{5}[/tex] × 1.765 × (0.854)²
[tex]I[/tex] = 0.514897 kg.m²
a)
Find the torque required to bring the sphere from rest to an angular velocity of 317 rad/s, clockwise, in 15.5 s
ω[tex]_{initial[/tex] = 0
ω[tex]_{final[/tex] = 317 rad/s
t = 15.5 s
we know that; ω[tex]_{final[/tex] = ω[tex]_{initial[/tex] + ∝t
so we substitute
317 = 0 + ∝(15.5)
∝ = 317 / 15.5
∝ = 20.4514 rad/s²
so
ζ = [tex]I[/tex] × ∝
we substitute
ζ = 0.514897 × 20.4514
ζ = 10.53 N-m
Therefore, the torque required is 10.53 N-m
b)
What magnitude force applied tangentially at the equator would provide the needed torque.
ζ = F × r
we substitute
10.53 = F × 0.854
F = 10.53 / 0.854
F = 12.33 N
Therefore, magnitude force applied tangentially is 12.33 N
How much energy would be required to move the earth into a circular orbit with a radius 2.0 kmkm larger than its current radius
Answer:
[tex]3.52\times 10^{25}\ \text{J}[/tex]
Explanation:
G = Gravitational constant = [tex]6.674\times 10^{-11}\ \text{Nm}^2/\text{kg}^2[/tex]
M = Mass of Sun = [tex]1.989\times 10^{30}\ \text{kg}[/tex]
m = Mass of Earth = [tex]5.972\times 10^{24}\ \text{kg}[/tex]
[tex]r_i[/tex] = Initial radius of orbit = [tex]1.5\times 10^{11}\ \text{m}[/tex]
[tex]r_f[/tex] = Final radius of orbit = [tex]((1.5\times 10^{11})+2\times 10^3)\ \text{m}[/tex]
Energy required is given by
[tex]E=\dfrac{1}{2}\Delta U\\\Rightarrow E=\dfrac{GMm}{2}(\dfrac{1}{r_i}-\dfrac{1}{r_f})\\\Rightarrow E=\dfrac{6.674\times 10^{-11}\times 1.989\times 10^{30}\times 5.972\times 10^{24}}{2}(\dfrac{1}{1.5\times 10^{11}}-\dfrac{1}{(1.5\times 10^{11})+2\times 10^3})\\\Rightarrow E=3.52\times 10^{25}\ \text{J}[/tex]
The energy required would be [tex]3.52\times 10^{25}\ \text{J}[/tex].
Mars orbits the Sun in 1.87 Earth years. How far is Mars from the Sun?
Answer:
151.12 million miles i actually just did this question on a test
Explanation:
Mars orbits—or completes one revolution—around the Sun every 686.98 Earth days, or once every 1.88 Earth years.
What is meant by one revolution?
The term "revolution" describes how an item moves in its orbit around another object. For instance, the 24-hour day is created as the Earth rotates on its own axis.
The 365-day year is made possible by the Sun's rotation of the Earth. A planet spins around a satellite.
While orbiting the Sun, Mars travels at an average speed of 53,979 miles per hour, which equates to 86,871 km per hour.
Thus, Mars orbits—or completes one revolution—around the Sun every 686.98 Earth days, or once every 1.88 Earth years.
To learn more about One revolution, refer to the below link:
https://brainly.com/question/26289977
# SPJ2
A small town has decided to forego the use of electrical power and send energy through town via mechanical waves on ropes. They use rope with a mass per length of 1.50 kg/m under 6000 N tension. If they are limited to a wave amplitude of 0.500 m, what must be the frequency of waves necessary to transmit power at the average rate of 2.00 kW
Answer:
the required frequency of waves is 2.066 Hz
Explanation:
Given the data in the question;
μ = 1.50 kg/m
T = 6000 N
Amplitude A = 0.500 m
P = 2.00 kW = 2000 W
we know that, the average power transmit through the rope can be expressed as;
p = [tex]\frac{1}{2}[/tex]vμω²A²
p = [tex]\frac{1}{2}[/tex]√(T/μ)μω²A²
so we solve for ω
ω² = 2P / √(T/μ)μA²
we substitute
ω² = 2(2000) / √(6000/1.5)(1.5)(0.500)²
ω² = 4000 / 23.71708
ω² = 168.65
(2πf)² = ω²
so
(2πf)² = 168.65
4π²f² = 168.65
f² = 168.65 / 4π²
f² = 4.27195
f = √4.27195
f = 2.066 Hz
Therefore, the required frequency of waves is 2.066 Hz
According to Newton's first law, an object at rest will _____.
never move
stay at rest forever
start moving
stay at rest unless moved by force
While a boulder is on top of a hill, it has kinetic energy.
True
False
We can not hear Infrasound. Why is that?
Answer :
Last choice
Answer:
its frequency is too low
An electron entering the lower left side of a parallel plate capacitor and exiting at the upper right side. The initial speed of the electron is 5.69 x 106 m/s. The capacitor is 2.00 cm long, and its plates are separated by 0.150 cm. Assume that the electric field between the plates is uniform everywhere and find its magnitude.
Answer:
magnitude is 1382.59 N/C
Explanation:
Given the data in the question;
The time taken is;
t = x / v
we substitute;
t = ( 2 × 10⁻²) / ( 5.69 × 10⁶ )
t = 3.5149 × 10⁻⁹ s
next, the acceleration is;
a = 2y/t² = [2( 0.150 × 10⁻²)] / [ ( 3.5149 × 10⁻⁹ )² ]
a = 2.42826 × 10¹⁴ m/s²
now, the electric field is;
E = ma / q
we know that;
mass of electron m = 9.11 × 10⁻³¹ kg,
charge of electron q = 1.60 × 10⁻¹⁹ coulomb
we substitute
E = ( 9.11 × 10⁻³¹ )(2.42826 × 10¹⁴) / 1.60 × 10⁻¹⁹
E = 2.21214 × 10⁻¹⁶ / 1.60 × 10⁻¹⁹
E = 1.3826 × 10²¹
E = 1382.59 N/C
Therefore, magnitude is 1382.59 N/C
when you eat fruit and vegetables chemical bonds of the release stored energy this is
An object, accelerating from rest at a constant rate, travels over 28 m in 11 s. What is its final velocity?
1.81 m/s
3.20 m/s
5.09 m/s
0.00 m/s
none of the above
Answer:
answer is 3
Explanation:
by using s= [(v+ u)/2] x t
28= (v+ 0)/2 x 11
v= 5.09 ms^-1
5 litres of alcohol have a mass of 4kg. calculate the density of alcohol in g/cm.
Answer: 0.8 g/cm
Explanation:
p= m/V
= 4 kg/ 5 liter
= 0.8
Answer:
.8
Explanation:
give them brainliest
If the Moon did not rotate at the same rate that it revolved, which of the following would be true?
Answer:
There will be no tides
Explanation:
Select four of the following that would increase the magnetic field of an electromagnet
Answer:
The correct answers are: A, C, D, E
Explanation:
The magnetic field is a solenoid is given by
B = μ₀ [tex]\frac{N}{L}[/tex] I
where N is the number of turns, I the current and L length of the solenoid.
Using this equation let's examine the different responses to permute increasing the magnetic field
A) True. a thicker wire decreases the resistance and the current can increase the system.
B) False. If there is no voltage source there is no current in the system
C) True. the field is proportional to the number of turns
D) True. the magnetic moments of the core align with the field increasing its value
E) True. When the loops are closer together, more of them can fit per unit length
F) False. If the wire is shorter the number of turns decreases.
The correct answers are: A, C, D, E
A 1500-kg car traveling due north with a speed of 25 m/s collides head-on with a 4500-kg truck traveling due south with a speed of 15 m/s. The two vehicles stick together after the collision. What is the total momentum of the system prior to the collision
Answer:
OMG IM ON THE SAME QUESTION
Explanation:
A stone is dropped from the top of a cliff. The splash it makes when striking the water below is heard 6.9 s later. How high is the cliff?
a
The
is a point that lies along a vertical line drawn from the suspension point of an object when the object is at
a standstill.
centripetal force
b. center of mass
c. equilibrium
d. center point
Which of the following changes when an unbalanced force acts on an object?
A. mass
B. motion
C. inertia
D. weight
The answer is Motion
what is the definition of mutual flux?
Answer:
Is where two or more inductors are “linked” so that voltage is induced in one coil proportional to the rate-of-change of current in another
what dose nuclear reactions produce?
Answer:
a new chromebook for you and you will get to know the other one that
A student mixed two clear liquids together in a beaker. A solid and a new liquid formed. The student forgot to write down the mass of one of the reactants. The
rest of the data are shown in the table below.
What is the mass of liquid reactant A?
A 1.0 g
B 8.0 g
C 9.0 g
D 11.0 g
E 20.0 g
(will give brainliest to whoever is correct and shows reasoning) What is the acceleration of an object that has a velocity of 60m/s and is moving in a circle of radius 50m?
Answer:
a = 72 m/s^2
Explanation:
Since the object is moving in circle, the acceleration points TOWARDS the centre of the circle (it is centripetal acceleration)
a = v^2 / r
a = 60^2 / 50
a = 72 m/s^2
What is local business?explain with exampls
Define Mechanical advantage
fe effort of 2125N is used to lift a Lead of 500N
through a Verticle high of 2.N using a buly System
if the distance Moved by the effort is 45m
Calculate 1. Work done on the load
2. work done by the effort
3. Efficiency of the System
Answer:
1) 1000Nm
2) 95,625Nm
3) 1.05%
Explanation:
Mechanical Advantage is the ratio of the load to the effort applied to an object.
MA = Load/Effort
1) Workdone on the load = Force(Load) * distance covered by the load
Workdone on the load = 500N * 2m
Workdone on the load = 1000Nm
2) work done by the effort = Effort * distance moves d by effort
work done by the effort = 2125 * 45
work done by the effort = 95,625Nm
3) Efficiency = Workdone on the load/ work done by the effort * 100
Efficiency = 1000/95625 * 100
Efficiency = 1.05%
Hence the efficiency of the system is 1.05%
3. Materials that lets electricity to pass
Answer:
materials that allow electricity to pass through them are called conductors, some examples of conductors are many metals, such as copper, iron and steel.
Calculate the kinetic energy of an 80,000 kg airplane that is flying with a velocity of 167 m/s.
Answer:
1115560000 J
Explanation:
1/2 * 80,000 * 167^2 m/s = 1115560000 J
(1) Which appliance is designed to transfer electrical energy to kinetic energy?
D)
A food mbuer
BB kettle
Clamp
D radio
Answer:
bb kettle
Explanation:
it transfres electricsl to kinetic
A banana peel has lots of friction.
True or False
Answer:
False
Explanation:
I learned it the hard way trust me T^T
Equipotential lines are usually shown in a manner similar to topographical contour lines, in which the difference in the value of consecutive lines is constant. Clear the equipotential lines using the Erase button on the voltage tool. Place the first equipotential line 1 m away from the charge. It should have a value of roughly 9 V. Now, produce several additional equipotential lines, increasing and decreasing by an interval of 3 V (e.g., one with 12 V, one with 15 V, and one with 6 V). Don't worry about getting these exact values. You can be off by a few tenths of a volt. Which statement best describes the distribution of the equipotential lines?
1. The equipotential lines are closer together in regions where the electric field is weaker.
2. The equipotential lines are closer together in regions where the electric field is stronger.
3. The equipotential lines are equally spaced. The distance between each line is the same for all adjacent lines.
Answer:
B or 2
Explanation: