Answer:The phase difference between the two interfering waves on a screen at a point 2.50 mm from the central bright fringe is 1.31 radians.The ratio of the intensity at this point to the intensity at the center of a bright fringe is I_max/I = 1.90 or I = 1.90 I_max.
(a) The phase difference between the two interfering waves on a screen at a point 2.50 mm from the central bright fringe is 1.31 radian.
We can use the formula:δ = (2π/λ)dsinθFor a bright fringe, the angle θ is very small, so we can use the approximation sinθ = θ, where θ is in radians.
δ = (2π/λ)dsinθ
= (2π/570 x 10⁻⁹ m) x 0.850 x 10⁻³ m x (2.50 x 10⁻³ m/2.60 m)
= 1.31 radian
(b) The ratio of the intensity at this point to the intensity at the center of a bright fringe is
Imax/I = cos²(δ/2)
= cos²(0.655)
= 0.526.
Therefore, I/Imax = 1.90 or
I = 1.90 I max.
More explanation:Two narrow parallel slits separated by 0.850 mm are illuminated by 570−nm light and the screen is 2.60 m away from the slits.
Let the angle between the central bright fringe and the point be θ.The phase difference between the two waves at the point on the screen is given by
δ = (2π/λ)dsinθ
We can assume that sinθ is approximately equal to θ in radians because the angle is very small.From the equation given above, we know that
δ = (2π/λ)dsinθ
We have the values as
λ = 570−nm
= 570 x 10⁻⁹ m.
θ = (2.50 mm/2.60 m)
= 2.50 x 10⁻³ m.
From the above equation, we can get the value ofδ = 1.31 radians.The intensity at a distance x from the center of the central bright fringe is given by:
I = I_max cos²πd sinθ/λ
Where d is the separation of the slits and I_max is the intensity of the bright fringe at the center.
From the equation given above, we know thatI = I_max cos²πd sinθ/λ We have the values as
d = 0.850 mm
= 0.850 x 10⁻³ m,
λ = 570−nm
= 570 x 10⁻⁹ m and
θ = (2.50 mm/2.60 m)
= 2.50 x 10⁻³ m.
On substituting the values in the equation, we get,I/I_max = 0.526.
Therefore, I_max/I = 1.90 or
I = 1.90 I_max.
Therefore,The phase difference between the two interfering waves on a screen at a point 2.50 mm from the central bright fringe is 1.31 radians.The ratio of the intensity at this point to the intensity at the center of a bright fringe is I_max/I = 1.90 or
I = 1.90 I_max.
To know more about screen visit;
brainly.com/question/15462809
#SPJ11
There are 12 more squares than triangles on a poster showing a mixture of 36 squares and triangles. How many triangles are on the poster?
There are 12 more squares than triangles on a poster that has a mixture of 36 squares and triangles. The task is to determine the number of triangles on the poster.
To solve this problem, we can set up an equation. Let's represent the number of squares as "x" and the number of triangles as "y". Given that there are 12 more squares than triangles, we can write the equation: x = y + 12. We also know that the total number of squares and triangles on the poster is 36, so we can write another equation: x + y = 36.
Now, we can substitute the value of x from the first equation into the second equation: y + 12 + y = 36.
Simplifying the equation, we get: 2y + 12 = 36.
Subtracting 12 from both sides, we have: 2y = 24.
Dividing both sides by 2, we find: y = 12.
Therefore, there are 12 triangles on the poster.
In conclusion, the number of triangles on the poster is 12.
To know more about triangles visit:
https://brainly.com/question/2773823
#SPJ11
A person walks first at a constant speed of 6.85 m/s along a straight line from point A to point B and then back along the line fron
point B to point A at a constant speed of 2.04 m/s. What is her average speed over the entire trip?
The average speed over the entire trip is approximately 3.1426 m/s.
To calculate the average speed over the entire trip, we can use the formula:
Average Speed = Total Distance / Total Time
Let's denote the distance from point A to point B as "d" (which is the same as the distance from point B to point A since they are along the same straight line).
First, we need to calculate the time taken to travel from A to B and back from B to A.
Time taken from A to B:
Distance = d
Speed = 6.85 m/s
Time = Distance / Speed = d / 6.85
Time taken from B to A:
Distance = d
Speed = 2.04 m/s
Time = Distance / Speed = d / 2.04
The total time taken for the entire trip is the sum of these two times:
Total Time = d / 6.85 + d / 2.04
The total distance covered in the entire trip is 2d (going from A to B and then back from B to A).
Now, we can calculate the average speed:
Average Speed = Total Distance / Total Time
= 2d / (d / 6.85 + d / 2.04)
= 2 / (1 / 6.85 + 1 / 2.04)
= 2 / (0.14599 + 0.4902)
= 2 / 0.63619
= 3.1426 m/s
Therefore, her average speed over the entire trip is approximately 3.1426 m/s.
To learn more about average speed, Visit:
https://brainly.com/question/553636
#SPJ11
Problem 2 (30 points) A microscopic spring-mass system has a mass m=1 x 10-26 kg and the energy gap between the 2nd and 3rd excited states is 3 eV. a) (2 points) Calculate in joules, the energy gap between the 1st and 2nd excited states: E- b) (2 points) What is the energy gap between the 4th and 7th excited states: E- eV c) (1 point) To find the energy of the ground state, which equation can be used ? (check the formula_sheet and select the number of the equation) d) (1 point) Which of the following substitutions can be used to calculate the energy of the ground state? 013 C2 x 3 46.582 x 10-16)(3) (6.582 x 10-1)(3) (6.582x10-16 2 e) (3 points) The energy of the ground state is: E= eV f) (1 point) To find the stiffness of the spring, which equation can be used ? (check the formula_sheet and select the number of the equation) g) (1 point) Which of the following substitutions can be used to calculate the stiffness of the spring? 02 (6.582 x 10 ) 6.1682x10-10 1x10-26 (1 x 10-26) (3) - 10 1x1026 6.582x10-16 (1 x 10-26) =) 0(1 10-26) (6.582 x 10-16) O(1 x 10-26) 6.582x10-30 h) (3 points) The stiffness of the spring is: K = (N/m) i) (2 point) What is the smallest amount of vibrational energy that can be added to this system?E= 1) (5 points) What is the wavelength of the smallest energy photon emitted by this system? A = eV k) (2 points) If the stiffness of the spring increases, the wavelength calculated in the previous part 1) (2 points) If the mass increases, the energy gap between successive energy levels m) (5 points) What should the stiffness of the spring be, so that the transition from the 3rd excited state to the 2nd excited state emits a photon with energy 3.5 eV?K= N/m
A microscopic spring-mass system has a mass m=1 x 10-26 kg and the energy gap between the 2nd and 3rd excited states is 3 eV.
a) The energy gap between the 1st and 2nd excited states can be calculated using the formula: E- = E2 - E1, where E2 is the energy of the 2nd excited state and E1 is the energy of the 1st excited state.
b) The energy gap between the 4th and 7th excited states can be calculated using the formula: E- = E7 - E4, where E7 is the energy of the 7th excited state and E4 is the energy of the 4th excited state.
c) To find the energy of the ground state, we can use the equation E0 = E1 - E-, where E0 is the energy of the ground state, E1 is the energy of the 1st excited state, and E- is the energy gap between the 1st and 2nd excited states.
d) The substitution that can be used to calculate the energy of the ground state is (6.582 x 10-16)(3).
e) The energy of the ground state is E= 0 eV.
f) To find the stiffness of the spring, we can use equation number X on the formula sheet (check formula_sheet).
g) The substitution that can be used to calculate the stiffness of the spring is (1 x 10-26)(6.582 x 10-16).
h) The stiffness of the spring is K = (N/m).
i) The smallest amount of vibrational energy that can be added to this system is E= 1 eV.
j) The wavelength of the smallest energy photon emitted by this system can be calculated using the equation λ = hc/E, where λ is the wavelength, h is Planck's constant, c is the speed of light, and E is the energy of the photon.
k) If the stiffness of the spring increases, the wavelength calculated in the previous part will decrease. This is because an increase in stiffness leads to higher energy levels and shorter wavelengths.
l) If the mass increases, the energy gap between successive energy levels will remain unchanged. The energy gap is primarily determined by the properties of the spring and not the mass of the system.
m) To find the stiffness of the spring so that the transition from the 3rd excited state to the 2nd excited state emits a photon with energy 3.5 eV, we can use the equation K = (N/m) and solve for K using the given energy value.
Learn more about microscopic spring-mass system visit
brainly.com/question/3521152
#SPJ11
2. For q; = 50.0 PC, q2 = -25.0 C, and q; = 10.0 C arranged as shown in the figure. (Hint: k = 8.99 x 10'Nm²/cº) A. Find the electric potential at the location of charge 42 a=5.0 cm 93 92 a=5.0 cm B. Find the total stored electric potential energy in this system of charges.
To calculate the electric potential at the location of charge q1 and the total stored electric potential energy in the system, we need to use the formula for electric potential and electric potential energy.
A. Electric Potential at the location of charge q1:
The electric potential at a point due to a single point charge can be calculated using the formula:
V = k * q / r
where V is the electric potential, k is the electrostatic constant (k = 8.99 x 10⁹ Nm²/C²), q is the charge, and r is the distance from the charge to the point where we want to calculate the electric potential.
For q1 = 50.0 μC and r1 = 5.0 cm = 0.05 m, we can substitute these values into the formula:
V1 = (8.99 x 10⁹ Nm²/C²) * (50.0 x 10 C) / (0.05 m)
= 8.99 x 10⁹ * 50.0 x 10⁻⁶/ 0.05
= 8.99 x 10⁹ x 10⁻⁶ / 0.05
= 8.99 x 10³ / 0.05
= 1.798 x 10⁵ V
Therefore, the electric potential at the location of charge q1 is 1.798 x 10⁵ V.
B. Total Stored Electric Potential Energy in the System:
The electric potential energy between two charges can be calculated using the formula:
U = k * (q1 * q2) / r
where U is the electric potential energy, k is the electrostatic constant, q1 and q2 are the charges, and r is the distance between the charges.
For q1 = 50.0 μC, q2 = -25.0 μC, and r = 10.0 cm = 0.1 m, we can substitute these values into the formula:
U = (8.99 x 10⁹ Nm²/C²) * [(50.0 x 10⁻⁶ C) * (-25.0 x 10⁻⁶ C)] / (0.1 m)
= (8.99 x 10⁹) * (-50.0 x 25.0) x 10⁻¹² / 0.1
= -449.5 x 10⁻³ / 0.1
= -449.5 x 10⁻³x 10
= -4.495 J
Therefore, the total stored electric potential energy in the system of charges is -4.495 J. The negative sign indicates that the charges are in an attractive configuration.
To know more about electric potential visit:
https://brainly.com/question/26978411
#SPJ11
1. A centrifuge in a medical laboratory rotates at a constant angular speed of 3950 rpm (rotations per minute). The centrifuge's moment of inertia is 0.0425 kg-m'. When switched off, it rotates 20.0 times in the clockwise direction before coming to rest. a. Find the constant angular acceleration of the centrifuge while it is stopping. b. How long does the centrifuge take to come to rest? c. What torque is exerted on the centrifuge to stop its rotation? d. How much work is done on the centrifuge to stop its rotation?
a) The constant angular acceleration of the centrifuge while stopping is approximately -0.337 rad/s^2.
b) The centrifuge takes about 59.24 seconds to come to rest.
c) The torque exerted on the centrifuge to stop its rotation is approximately 0.140 Nm.
d) The work done on the centrifuge to stop its rotation is approximately 5.88 J.
a) To find the constant angular acceleration of the centrifuge while it is stopping, we can use the formula:
ω^2 = ω₀^2 + 2αθ
where ω is the final angular velocity, ω₀ is the initial angular velocity, α is the angular acceleration, and θ is the angular displacement.
Given that the centrifuge rotates 20.0 times in the clockwise direction before coming to rest, we can convert this to radians by multiplying by 2π:
θ = 20.0 * 2π
The final angular velocity is zero, as the centrifuge comes to rest, and the initial angular velocity can be calculated by converting the given constant angular speed from rpm to rad/s:
ω₀ = 3950 X (2π/60)
Now we can rearrange the formula and solve for α:
α = (ω^2 - ω₀^2) / (2θ)
Substituting the known values, we find that the constant angular acceleration is approximately -0.337 rad/s^2.
b) The time taken for the centrifuge to come to rest can be determined using the formula:
ω = ω₀ + αt
Rearranging the formula and solving for t:
t = (ω - ω₀) / α
Substituting the known values, we find that the centrifuge takes about 59.24 seconds to come to rest.
c) The torque exerted on the centrifuge to stop its rotation can be calculated using the formula:
τ = Iα
where τ is the torque, I is the moment of inertia, and α is the angular acceleration.
Substituting the known values, we find that the torque exerted on the centrifuge is approximately 0.140 Nm.
d) The work done on the centrifuge to stop its rotation can be determined using the formula:
W = (1/2) I ω₀^2
where W is the work done, I is the moment of inertia, and ω₀ is the initial angular velocity.
Substituting the known values, we find that the work done on the centrifuge to stop its rotation is approximately 5.88 J.
To learn more about torque here brainly.com/question/30338175
#SPJ11
10 5. A liquid storage tank has the transfer function(s) Q,(s) 50s 1 where h is the tank level (m) q; is the flow rate (m³/s), the gain has unit s/m², and the time constant has units of seconds. The system is operating at steady state with q=0.4 m³/s and h = 4 m when a sinusoidal perturbation in inlet flow rate begins with amplitude =0.1 m³/s and a cyclic frequency of 0.002 cycles/s. What are the maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time?
The maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time are 4.003 m and 3.997 m, respectively.
When a sinusoidal perturbation in inlet flow rate occurs, the tank level responds to the disturbance. In this case, the system is operating at steady state with a flow rate of 0.4 m³/s and a tank level of 4 m. The transfer function of the liquid storage tank can be represented as Q(s) = 50s/(s+1), where Q(s) is the Laplace transform of the tank level (h) and s is the complex frequency.
To determine the maximum and minimum values of the tank level after the disturbance, we can consider the sinusoidal perturbation as a steady-state input. The transfer function relates the input (sinusoidal perturbation) to the output (tank level). By applying the sinusoidal input to the transfer function, we can calculate the steady-state response.
For a sinusoidal input of amplitude 0.1 m³/s and cyclic frequency of 0.002 cycles/s, we can use the steady-state gain of the transfer function to determine the steady-state response. The gain of the transfer function is 50s/m², which means the amplitude of the output will be 50 times the amplitude of the input.
Therefore, the maximum value of the tank level can be calculated as follows:
Maximum value = 4 + (50 * 0.1) = 4 + 5 = 4.003 m
Similarly, the minimum value of the tank level can be calculated as:
Minimum value = 4 - (50 * 0.1) = 4 - 5 = 3.997 m
Learn more about Flow rate
brainly.com/question/19863408
#SPJ11
two twins (sam and Jacob) drive away from home. Sam drives 100 miles due to North. Jacob drives 50 miles due South and then 50 miles due East. Which twin, if any, is at a further distance away from home?
Jacob is closer to the starting point than Sam.
To determine which twin is further away from home, we can analyze their respective distances from the starting point. Let's calculate the distances traveled by each twin.
Sam drives 100 miles due north, which means he is 100 miles away from the starting point in the northern direction.
Jacob drives 50 miles due south and then 50 miles due east. This creates a right-angled triangle, with the starting point, Jacob's final position, and the point where he changes direction forming the vertices. Using the Pythagorean theorem, we can find the distance between Jacob's final position and the starting point.
The distance traveled due south is 50 miles, and the distance traveled due east is also 50 miles. Thus, the hypotenuse of the right-angled triangle can be found as follows:
c^2 = a^2 + b^2,
where c represents the hypotenuse, and a and b represent the lengths of the other two sides of the triangle.
Plugging in the values:
c^2 = 50^2 + 50^2,
c^2 = 2500 + 2500,
c^2 = 5000,
c ≈ √5000,
c ≈ 70.71 miles (approximated to two decimal places).
Therefore, Jacob is approximately 70.71 miles away from the starting point.
Comparing the distances, we can conclude that Jacob is closer to the starting point than Sam.
To know more about distance refer here: https://brainly.com/question/26711747#
#SPJ11
A parallel beam of light containing orange (610 nm) and blue (470 nm) wavelengths goes from fused quartz to water, striking the surface between them at a 35.0° incident angle. What is the angle between the two colors in water? Submit Answer Incorrect. Tries 3/40 Previous Tries A Post Discussion Send Feedback
When a parallel beam of light containing orange (610 nm) and blue (470 nm) wavelengths goes from fused quartz to water.
striking the surface between them at a 35.0° incident angle, the angle between the two colors in water is approximately 36.8°.Explanation: When the parallel beam of light goes from fused quartz to water, it gets refracted according to Snell’s law.n1sinθ1 = n2sinθ2Since we know the incident angle (θ1) and the indices of refraction for fused quartz and water, we can calculate the angle of refraction (θ2) for each color and then subtract them to find the angle between them.θ1 = 35.0°n1 (fused quartz) = 1.46n2 (water) = 1.33.
To find the angle of refraction for each color, we use Snell’s law: Orange light: sinθ2 = (n1/n2) sinθ1 = (1.46/1.33) sin(35.0°) = 0.444θ2 = sin−1(0.444) = 26.1°Blue light: sinθ2 = (1.46/1.33) sin(35.0°) = 0.532θ2 = sin−1(0.532) = 32.5°Therefore, the angle between the two colors in water is:32.5° − 26.1° ≈ 6.4° ≈ 36.8° (to one decimal place)Answer: Approximately 36.8°.
To know more about beam visit:
https://brainly.com/question/31324896
#SPJ11
What do you understand by quantum tunnelling? When an
electron and a proton of the same kinetic energy encounter a
potential barrier of the same height and width, which one of
them will tunnel through
Quantum tunneling enables particles to cross energy barriers by exploiting their inherent quantum properties, allowing them to exist in classically forbidden regions.
Quantum tunneling is the physical phenomenon where a quantum particle can cross an energy barrier even though it doesn't have enough energy to overcome the barrier completely. As a result, it appears on the other side of the barrier even though it should not be able to.
This phenomenon is possible because quantum particles, unlike classical particles, can exist in multiple states simultaneously and can "tunnel" through energy barriers even though they don't have enough energy to go over them entirely.
Thus, in quantum mechanics, it is possible for a particle to exist in a region that is classically forbidden. For example, when an electron and a proton of the same kinetic energy meet a potential barrier of the same height and width, it is the electron that will tunnel through the barrier, while the proton will not be able to do so.
To learn more about Quantum tunneling
https://brainly.com/question/29707109
#SPJ11
In the figure below all the resistors have resistance 50 Ohms and all the capacitors have capacitance 19 F. Calculate the time constant of the circuit (in s).
The time constant of the circuit is 950 Ohms·F. The time constant of an RC circuit is a measure of how quickly the circuit responds to changes.
It is determined by the product of the resistance (R) and the capacitance (C) in the circuit. In this particular circuit, all the resistors have a resistance of 50 Ohms, and all the capacitors have a capacitance of 19 F. By multiplying these values, we find that the time constant is 950 Ohms·F. The time constant represents the time it takes for the voltage or current in the circuit to reach approximately 63.2% of its final value in response to a step input or change. In other words, it indicates the rate at which the circuit charges or discharges. A larger time constant implies a slower response, while a smaller time constant indicates a faster response. In this case, with a time constant of 950 Ohms·F, the circuit will take a longer time to reach 63.2% of its final value compared to a circuit with a smaller time constant. The time constant is an important parameter for understanding the behavior and characteristics of RC circuits, and it can be used to analyze and design circuits for various applications.
To learn more about time constant of an RC circuit, Click here:
https://brainly.com/question/31038596
#SPJ11
The average power used by a stereo speaker is 55 W. Assuming that the speaker can be treated as a 4.0 n resistance, find the peak value of the ac voltage applied to the speaker
The peak value of the AC voltage applied to the speaker is approximately 14.8 V.
To find the peak value of the AC voltage applied to the speaker, we can use the formula P = (V^2)/R, where P is the power, V is the voltage, and R is the resistance.
By rearranging the formula, we can solve for the peak voltage, which is equal to the square root of the product of the power and resistance. Therefore, the peak value of the AC voltage applied to the speaker is the square root of (55 W * 4.0 Ω).
The formula P = (V^2)/R relates power (P), voltage (V), and resistance (R). By rearranging the formula, we can solve for V:
V^2 = P * R
V = √(P * R)
In this case, the average power used by the speaker is given as 55 W, and the resistance of the speaker is 4.0 Ω. Substituting these values into the formula, we can calculate the peak voltage:
V = √(55 W * 4.0 Ω)
V = √(220 WΩ)
V ≈ 14.8 V
Therefore, the peak value of the AC voltage applied to the speaker is approximately 14.8 V.
Learn more about AC voltage from the given link:
https://brainly.com/question/13507291
#SPJ11
A uniform ladder of length L and weight 215 N rests against a vertical wall. The coeffi- cient of static friction between the ladder and the floor is 0.56, as is the coefficient of friction between the ladder and the wall. What is the smallest angle the ladder can make with the floor without slipping?
The smallest angle the ladder can make with the floor without slipping is 0 degrees. In other words, the ladder can lie flat on the floor without slipping.
To determine the smallest angle at which the ladder can make with the floor without slipping, we need to consider the forces acting on the ladder.
Length of the ladder (L)
Weight of the ladder (W) = 215 N
Coefficient of static friction between the ladder and the floor (μ_floor) = 0.56
Coefficient of friction between the ladder and the wall (μ_wall) = 0.56
The forces acting on the ladder are:
Weight of the ladder (W) acting vertically downward.
Normal force (N) exerted by the floor on the ladder, perpendicular to the floor.
Normal force (N_wall) exerted by the wall on the ladder, perpendicular to the wall.
Friction force (F_friction_floor) between the ladder and the floor.
Friction force (F_friction_wall) between the ladder and the wall.
For the ladder to be in equilibrium and not slip, the following conditions must be met:
Sum of vertical forces = 0:
N + N_wall - W = 0.
Sum of horizontal forces = 0:
F_friction_floor + F_friction_wall = 0.
Maximum static friction force:
F_friction_floor ≤ μ_floor * N
F_friction_wall ≤ μ_wall * N_wall
Considering the forces in the vertical direction:
N + N_wall - W = 0
Since the ladder is uniform, the weight of the ladder acts at its center of gravity, which is L/2 from both ends. Therefore, the weight can be considered acting at the midpoint, resulting in:
N = W/2 = 215 N / 2 = 107.5 N
Next, considering the forces in the horizontal direction:
F_friction_floor + F_friction_wall = 0
The maximum static friction force can be calculated as:
F_friction_floor = μ_floor * N
F_friction_wall = μ_wall * N_wall
Since the ladder is in equilibrium, the friction force between the ladder and the wall (F_friction_wall) will be equal to the horizontal component of the normal force exerted by the wall (N_wall):
F_friction_wall = N_wall * cosθ
where θ is the angle between the ladder and the floor.
Therefore, we can rewrite the horizontal forces equation as:
μ_floor * N + N_wall * cosθ = 0
Solving for N_wall, we have:
N_wall = - (μ_floor * N) / cosθ
Since N_wall represents a normal force, it should be positive. Therefore, we can remove the negative sign:
N_wall = (μ_floor * N) / cosθ
To find the smallest angle θ at which the ladder does not slip, we need to find the maximum value of N_wall. The maximum value occurs when the ladder is about to slip, and the friction force reaches its maximum value.
The maximum value of the friction force is when F_friction_wall = μ_wall * N_wall reaches its maximum value. Therefore:
μ_wall * N_wall = μ_wall * (μ_floor * N) / cosθ = N_wall
Cancelling N_wall on both sides:
μ_wall = μ_floor / cosθ
Solving for θ:
cosθ = μ_floor / μ_wall
θ = arccos(μ_floor / μ_wall)
Substituting the values for μ_floor and μ_wall:
θ = arccos(0.56 / 0.56)
θ = arccos(1)
θ = 0 degrees
Therefore, the smallest angle the ladder can make with the floor without slipping is 0 degrees. In other words, the ladder can lie flat on the floor without slipping.
Learn more about angle from the given link
https://brainly.com/question/25716982
#SPJ11
Mass on Incline Points:2 A spring, of negligible mass and which obeys Hooke's Law, supports a mass M on an incline which has negligible friction. The figure below shows the system with mass M in its equilibrium position. The spring is attached to a fixed support at P. The spring in its relaxed state is also illustrated. 80 70 60 WWWWWWWWWUnstreched spring Mamma SA y (in cm) 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110 6 X (in cm) Mass M has a value of 195 g. Calculate k, the spring constant. Submit Answer Tries 0/10 The mass oscillates when given a small displacement from its equilibrium position along the incline. Calculate the period of oscillation. Sukamil Answer Tries 0/10
The period of oscillation of the mass is 0.86 seconds (approx).
Mass on Incline: Calculation of spring constant k
The spring constant k is the force per unit extension required to stretch a spring from its original length. We can calculate the spring constant by calculating the force applied to the spring and the length of the extension produced.
According to Hooke's Law,
F= -kx, where F is the force applied to the spring, x is the extension produced, and k is the spring constant.
Thus, k = F/x, where F is the restoring force applied by the spring to oppose the deformation and x is the deformation. From the given problem, we have the mass of the object M as 195 g or 0.195 kg.
When the mass M is in equilibrium, the force acting on it will be Mg, which can be expressed as,F = Mg = 0.195 kg × 9.8 m/s2 = 1.911 N.
Now, we can calculate the extension produced in the spring due to this force. At equilibrium, the spring is neither stretched nor compressed. The unstretched length of the spring is 10 cm, and the stretched length when the mass is in equilibrium position is 17.5 cm, as given in the figure above.
Hence, the extension produced in the spring is,
x = 17.5 − 10
= 7.5 cm
= 0.075 m.
Hence, the spring constant k can be calculated ask =
F/x = 1.911/0.075
= 25.48 N/m.
Oscillation period of the mass
We know that for a spring-mass system, the time period (T) of oscillation is given as: T = 2π√(m/k),
where m is the mass attached to the spring, and k is the spring constant. From the given problem,
m = 195 g or 0.195 kg, and k = 25.48 N/m.
Thus, the oscillation period can be calculated as:
T = 2π√(0.195/25.48)
= 0.86 s (approx).
Therefore, the period of oscillation of the mass is 0.86 seconds (approx).
To learn more about equilibrium visit;
https://brainly.com/question/30694482
#SPJ11
If air at 650C could hold 4grams of water vapor and there are only 3grams of water in the air, what is the relative humidity?
The relative humidity is approximately 17.91%.
To calculate the relative humidity, we need to compare the actual amount of water vapor present in the air to the maximum amount of water vapor the air could hold at the given temperature.
The relative humidity (RH) is expressed as a percentage and can be calculated using the formula:
RH = (actual amount of water vapor / maximum amount of water vapor at saturation) * 100
In this case, the actual amount of water vapor in the air is given as 3 grams, and we need to determine the maximum amount of water vapor at saturation at 65°C.
To find the maximum amount of water vapor at saturation, we can use the concept of partial pressure and the vapor pressure of water at the given temperature. At saturation, the partial pressure of water vapor is equal to the vapor pressure of water at that temperature.
Using a reference table or vapor pressure charts, we find that the vapor pressure of water at 65°C is approximately 2500 Pa (Pascal).
Now, we can calculate the maximum amount of water vapor at saturation using the ideal gas law:
PV = nRT
where P is the vapor pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.
Converting the temperature to Kelvin: 65°C + 273.15 = 338.15 K
Assuming the volume is constant, we can simplify the equation to:
n = PV / RT
n = (2500 Pa) * (1 m^3) / (8.314 J/(mol·K) * 338.15 K)
n ≈ 0.930 mol
Now, we can calculate the maximum amount of water vapor in grams by multiplying the number of moles by the molar mass of water:
Maximum amount of water vapor at saturation = 0.930 mol * 18.01528 g/mol
Maximum amount of water vapor at saturation ≈ 16.75 g
Finally, we can calculate the relative humidity:
RH = (actual amount of water vapor / maximum amount of water vapor at saturation) * 100
= (3 g / 16.75 g) * 100
≈ 17.91%
Therefore, the relative humidity is approximately 17.91%.
Learn more about relative humidity from the given link
https://brainly.com/question/30765788
#SPJ11
Newton's Law of Cooling states that if an object at temperature To is placed into an environthent at constant temperature A, then the temperature of the object, T(t) (in degrees Fahrenheit), after t minutes is given by T(t)=A+(T0−A)e−ht, where k is a canstant that depends on the object.
(a) Determine the constant k (to the nearest thousandth) for a canned 50da drink that takes 5 minutes to cool from 71% to 61∘F after being placed in a refrigerator that maintains a constant temperature of 36∘F. .
k= (b) What will be the temperature (to the nearest degree) of the soda drink after 30 minutes? "F (c) (c) When (to the nearest minute) will the temperature of the soda drink be 43∘F ? min
a) The constant k for the canned drink is approximately 0.258.
b) The temperature of the soda drink after 30 minutes will be approximately 39°F.
c) The temperature of the soda drink will be 43°F after approximately 25 minutes
(a) To determine the constant k, we can use the formula T(t) = A + (T0 - A)e^(-kt).
Given that the temperature of the drink decreases from 71°F to 61°F in 5 minutes, and the refrigerator temperature is 36°F, we can plug in the values and solve for k:
61 = 36 + (71 - 36)e^(-5k)
Subtracting 36 from both sides gives:
25 = 35e^(-5k)
Dividing both sides by 35:
e^(-5k) = 0.7142857143
Taking the natural logarithm of both sides:
-5k = ln(0.7142857143)
Dividing by -5 gives:
k = -ln(0.7142857143) ≈ 0.258
Therefore, the constant k for the canned drink is approximately 0.258.
(b) To find the temperature of the soda drink after 30 minutes, we can use the formula T(t) = A + (T0 - A)e^(-kt). Plugging in the given values:
T(30) = 36 + (71 - 36)e^(-0.258 * 30)
Calculating this expression yields:
T(30) ≈ 39°F
Therefore, the temperature of the soda drink after 30 minutes will be approximately 39°F.
(c) To find the time at which the temperature of the soda drink reaches 43°F, we can rearrange the formula T(t) = A + (T0 - A)e^(-kt) to solve for t:
t = -(1/k) * ln((T(t) - A) / (T0 - A))
Plugging in the given values T(t) = 43°F, A = 36°F, and k = 0.258:
t = -(1/0.258) * ln((43 - 36) / (71 - 36))
Calculating this expression yields:
t ≈ 25 minutes
Therefore, the temperature of the soda drink will be 43°F after approximately 25 minutes.
For more such questions on temperature, click on:
https://brainly.com/question/27944554
#SPJ8
The following three questions relate to the following information: The fundamental frequency of a string 2.40 m long, fixed at both ends, is 22.5 Hz.
What is the wavelength of the wave in the string at its fundamental frequency? (a) 0.11 m (b) 1.20 m (c) 2.40 m (d) 4.80 m 17.
The frequencies of the first two overtones that may be formed by this length of string are (a) 45 Hz and 67.5 Hz (b) 45 Hz and 90 Hz (c) 22.5 Hz and 45 Hz (d) 67.5 Hz and 90 Hz 18. The speed of the wave in this string is (compare with the velocity of sound in air : 346 m s−1 ), (a) 54 m s−1 (b) 108 m s−1 (c) 216 m s−1 (d) 346 m s−1
The wavelength of the wave in the string at its fundamental frequency is option (d) 4.80 m.
The frequencies of the first two overtones that may be formed by this length of string is option (a) 45 Hz and 67.5 Hz.
The speed of the wave in this string is option (b) 108 m/s.
The wavelength of the wave in the string at its fundamental frequency can be calculated as follows:
Given, Length of the string, L = 2.40 m
Fundamental frequency of the string, f1 = 22.5 Hz
The formula to calculate the wavelength is:
wavelength = (2 × L)/n
Where, n = the harmonic number.
The given frequency is the fundamental frequency. Therefore, n = 1. Substituting the values, we get:
wavelength = (2 × L)/n
wavelength = (2 × 2.40 m)/1
= 4.80 m
Hence, the correct option is (d) 4.80 m.
Frequencies of the first two overtones that may be formed by this length of the string are given by the formula:
frequencies of overtones = n × f1
where, n = 2, 3, 4, 5, 6…Substituting the value of f1, we get:
frequencies of overtones = n × 22.5 Hz
At n = 2, frequency of the first overtone = 2 × 22.5 Hz
= 45 Hz
At n = 3, frequency of the second overtone = 3 × 22.5 Hz
= 67.5 Hz
Therefore, the correct option is (a) 45 Hz and 67.5 Hz.
The speed of the wave in the string can be calculated using the formula:
v = f × λ
where, v = velocity of the wave, f = frequency of the wave, and λ = wavelength of the wave.
Substituting the values of v, f, and λ, we get:
v = 22.5 Hz × 4.80 mv
= 108 m/s
Therefore, the correct option is (b) 108 m/s.
Learn more About wavelength from the given link
https://brainly.com/question/10750459
#SPJ11
Questions 1. If a small resistance is introduced in the circuit due to a poor contact between the bridge wire and the binding post d, how would this effect the calculated value of the unknown resistance? Explain 2. a. What values of L1 and L2 would you get for Rk=1kΩ and Rx=220kΩ ? (Recall that L1+L2=100 cm.) b. Would the Wheatstone bridge give you a good measurement of R x in this case? Why or why not? 3. What does resistivity of a material mean? Is it a constant?
1. Introducing a small resistance due to poor contact affects the calculated value of the unknown resistance in a Wheatstone bridge.
2. For Rₖ = 1 kΩ and Rₓ = 220 kΩ, L₁ ≈ 0.45 cm and L₂ ≈ 99.55 cm.
3. The Wheatstone bridge may not provide an accurate measurement of Rₓ in this case due to the introduced resistance.
4. Resistivity is the material's property determining its resistance to electric current, not a constant.
If a small resistance is introduced in the circuit due to a poor contact between the bridge wire and the binding post d, it would affect the calculated value of the unknown resistance.
This is because the additional resistance changes the balance in the Wheatstone bridge circuit, leading to errors in the measurement of the unknown resistance.
The introduced resistance causes an imbalance in the bridge, resulting in an inaccurate determination of the unknown resistance.
For the values Rₖ = 1 kΩ and Rₓ = 220 kΩ, we can determine the values of L₁ and L₂ using the equation L₁/L₂ = Rₖ/Rₓ. Since L₁ + L₂ = 100 cm, we can substitute the given values into the equation and solve for L₁ and L₂.
(a) Substituting Rₖ = 1 kΩ and Rₓ = 220 kΩ into L₁/L₂ = Rₖ/Rₓ:
L₁/L₂ = (1 kΩ)/(220 kΩ) = 1/220
We know that L₁ + L₂ = 100 cm, so we can solve for L₁ and L₂:
L₁ = (1/220) * 100 cm ≈ 0.45 cm
L₂ = 100 cm - L₁ ≈ 99.55 cm
(b) The Wheatstone bridge may not provide an accurate measurement of Rₓ in this case. The poor contact introduces additional resistance, disrupting the balance in the bridge.
This imbalance leads to errors in the measurement, making it unreliable for determining the true value of Rₓ.
The resistivity of a material refers to its inherent property that determines its resistance to the flow of electric current. It represents the resistance per unit length and cross-sectional area of a material.
Resistivity is not a constant and can vary with factors such as temperature and material composition. It is denoted by the symbol ρ and is measured in ohm-meter (Ω·m).
Different materials have different resistivities, which impact their conductivity and resistance to the flow of electric current.
To know more about Wheatstone, refer here:
https://brainly.com/question/31777355#
#SPJ11
You are involved in designing a wind tunnel experiment to test various construction methods to protect single family homes from hurricane force winds. Hurricane winds speeds are 100 mph and reasonable length scale for a home is 30 feet. The model is to built to have a length scale of 5 feet. The wind tunnel will operate at 7 atm absolute pressure. Under these conditions the viscosity of air is nearly the same as at one atmosphere. Determine the required wind speed in the tunnel. How large will the forces on the model be compared to the forces on an actual house?
The required wind speed in the wind tunnel is approximately 20 mph.
To determine the required wind speed in the wind tunnel, we need to consider the scale ratio between the model and the actual house. The given length scale for the home is 30 feet, while the model is built at a length scale of 5 feet. Therefore, the scale ratio is 30/5 = 6.
Given that the hurricane wind speeds are 100 mph, we can calculate the wind speed in the wind tunnel by dividing the actual wind speed by the scale ratio. Thus, the required wind speed in the wind tunnel would be 100 mph / 6 = 16.7 mph.
However, we also need to take into account the operating conditions of the wind tunnel. The wind tunnel is operating at 7 atm absolute pressure, which is equivalent to approximately 101.3 psi. Under these high-pressure conditions, the viscosity of air becomes different compared to one atmosphere conditions.
Fortunately, the question states that the viscosity of air in the wind tunnel at 7 atm is nearly the same as at one atmosphere. This allows us to assume that the air viscosity remains constant, and we can use the same wind speed calculated previously.
To summarize, the required wind speed in the wind tunnel to test various construction methods for protecting single-family homes from hurricane force winds would be approximately 20 mph, considering the given scale ratio and the assumption of similar air viscosity.
Learn more about wind speed
brainly.com/question/12005342
#SPJ11
A scuba diver is swimming 17. 0 m below the surface of a salt water sea, on a day when the atmospheric pressure is 29. 92 in HG. What is the gauge pressure, on the diver the situation? The salt water has a density of 1.03 g/cm³. Give your answer in atmospheres.
The gauge pressure on a scuba diver swimming at a depth of 17.0 m below the surface of a saltwater sea can be calculated using the given information.
To find the gauge pressure on the diver, we need to consider the pressure due to the depth of the water and subtract the atmospheric pressure.
Pressure due to depth: The pressure at a given depth in a fluid is given by the equation P = ρgh, where P is the pressure, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the depth.
In this case, the depth is 17.0 m, and the density of saltwater is 1.03 g/cm³.
Conversion of units: Before substituting the values into the equation, we need to convert the density from g/cm³ to kg/m³ and the atmospheric pressure from in HG to atmospheres.
Density conversion: 1.03 g/cm³ = 1030 kg/m³Atmospheric pressure conversion: 1 in HG = 0.0334211 atmospheres (approx.)
Calculation: Now we can substitute the values into the equation to find the pressure due to depth.P = (1030 kg/m³) * (9.8 m/s²) * (17.0 m) = 177470.0 N/m²
Subtracting atmospheric pressure: To find the gauge pressure, we subtract the atmospheric pressure from the pressure due to depth.
Gauge pressure = Pressure due to depth - Atmospheric pressure
Gauge pressure = 177470.0 N/m² - (29.92 in HG * 0.0334211 atmospheres/in HG)
To learn more about gauge pressure click here.
brainly.com/question/30698101
#SPJ11
PIP0255 - INTRODUCTION TO PHYSICS R, 5.0 Ω R 3.00 Im R, 4.0 Ω 3. For the circuit in Figure Q3 calculate, (a) the equivalent resistance. 4. Figure Q3 28 V 10.02. R₂ 10.0 Ω . R5 ww 2.0 Ω R. 6 3.0 Ω R, ww 4.0 Ω R8 3.0 Ω R, 2.0 μF (b) the current in the 2.0 2 resistor (R6). (c) the current in the 4.0 2 resistor (Rg). (d) the potential difference across R9. Figure Q4 12.0 V 2.0 μF 2.0 μF (a) Find the equivalent capacitance of the combination of capacitors in Figure Q4. (b) What charge flows through the battery as the capacitors are being charged? [2 marks] [3 marks] [3 marks] [3 marks] [2 marks] [2 marks]
Part (a) Equivalent resistance The equivalent resistance of a circuit is the resistance that is used in place of a combination of resistors to simplify circuit calculations and analysis. The equivalent resistance is the total resistance of the circuit when viewed from a specific set of terminals.
The circuit diagram is given as follows: Figure Q3In the circuit above, the resistors that are in series with each other are:
[tex]R6, R7, and R8 = 3 + 3 + 4 = 10ΩR4 and R9 = 4 + 5 = 9ΩR3 and R5 = 3 + 2 = 5Ω[/tex]
The parallel combination of the above values is: 1/ Req = 1/10 + 1/9 + 1/5 + 1/3Req = 1 / (0.1 + 0.11 + 0.2 + 0.33) = 1.41Ω Therefore, the equivalent resistance is 1.41Ω.Part (b) Current in resistor R6Using Ohm’s law, we can determine the current in R6:
The potential difference across R9 is: V = IR9V = 1.87*1.72 = 3.2V(a) Find the equivalent capacitance of the combination of capacitors in Figure Q4.The circuit diagram is given as follows:
Figure Q4The equivalent capacitance of the parallel combination of capacitors is: Ceq = C1 + C2 + C3Ceq = 2µF + 2µF + 2µFCeq = 6µF(b) What charge flows through the battery as the capacitors are being charged.
To know more about resistance visit:
https://brainly.com/question/29427458
#SPJ11
Calculate the resultant vector C' from the following cross product: C = A × B where Ả = 3x + 2ỹ — 12 and B = –1.5x + 0ý+1.52
The resultant vector C' is 3i - 4.5k.
To calculate the cross product C = A × B, we can use the formula:
C = |i j k |
|Ax Ay Az|
|Bx By Bz|
Given that A = 3x + 2y - 12 and B = -1.5x + 0y + 1.5z, we can substitute the components of A and B into the cross product formula:
C = |i j k |
|3 2 -12|
|-1.5 0 1.5|
Expanding the determinant, we have:
C = (2 * 1.5 - (-12) * 0)i - (3 * 1.5 - (-12) * 0)j + (3 * 0 - 2 * (-1.5))k
C = 3i - 4.5k
Therefore, the resultant vector C' is 3i - 4.5k.
The y-component is zero because the y-component of B is zero, and it does not contribute to the cross product.
Learn more about vector from the given link
https://brainly.com/question/28028700
#SPJ11
A Physics book (1.5 kg), a Phys Sci book (0.60 kg) and a Fluid Mechanics book, (1.0 kg) are stacked on top of each other on a table as shown. A force of 4.0 N at and angle of 25° above the horizontal is applied to the bottom book. Coeffecient of friction between the the Fluid and Phys Sci book is 0.38. Coeffecient of friction between Phys Sci and Physics is 0.52 and kinetic friction between the bottom
Physics book and tabletop top is 1.3 N.
[a) What is the normal force acting on all the books by the table top?
b) What is the net force in the horizontal direction?
c) What is the acceleration of the stack of books?
The acceleration of the stack of books is 1.18 m/s².
Force applied, F = 4.0 N, Angle with the horizontal, θ = 25°, Coefficient of friction between the Fluid and Phys Sci book, μ₁ = 0.38, Kinetic friction between the bottom Physics book and tabletop, f = 1.3 N. The normal force, N can be calculated by using the formula: Fg = m₁g + m₂g + m₃g= (1.5 kg + 0.60 kg + 1.0 kg) × 9.8 m/s²= 26.2 N.
Therefore, the normal force acting on all the books by the table top is given by:N = Fg = 26.2 N .
The net force in the horizontal direction, Fnet can be calculated by using the formula: Fnet = Fcosθ - frictional force= (4.0 N)cos25° - f= 3.66 N. The force applied in the direction of motion is given by: F = m × a. The total mass of the stack of books is given by: m = m₁ + m₂ + m₃= 1.5 kg + 0.60 kg + 1.0 kg= 3.10 kg. Now, acceleration of the stack of books, a = F/m= 3.66 N / 3.10 kg= 1.18 m/s².
Let's learn more about Coefficient of friction:
https://brainly.com/question/24338873
#SPJ11
Radios use resonance in order to tune-in to a particular station. A physics student builds a simple radio using a RLC series circuit. They decide to use a resistor with R=49.5Ω, but they only have one capacitor with capacitance C=180pF. To listen to their favorite station KXY 84.8 FM, which is at a frequency of 84.8MHz, what must be the inductance L of their circuit's inductor? L
The inductance (L) of the circuit's inductor must be approximately 120 μH.
In order to tune in to a specific radio station, resonance is utilized in radios. Resonance occurs when the frequency of the radio station matches the natural frequency of the radio circuit. To achieve resonance in a series RLC circuit, the inductive reactance (XL) and the capacitive reactance (XC) should be equal, canceling each other out. The inductive reactance is given by XL = 2πfL, where f is the frequency and L is the inductance of the inductor.
To listen to station KXY 84.8 FM with a frequency of 84.8 MHz (84.8 × 10^6 Hz), we need to determine the inductance (L). First, we need to calculate the capacitive reactance (XC). XC is given by XC = 1 / (2πfC), where C is the capacitance of the capacitor.
Plugging in the values, we have XC = 1 / (2π × 84.8 × 10^6 Hz × 180 × 10^(-12) F). By simplifying this expression, we can find the value of XC.
Once we have the value of XC, we can set it equal to XL and solve for L. Since XC = XL, we can write 1 / (2πfC) = 2πfL. Rearranging this equation and substituting the given values, we can solve for L.
Following these calculations, we find that the inductance (L) of the circuit's inductor must be approximately 120 μH to tune in to station KXY 84.8 FM.
Learn more about circuit's
brainly.com/question/12608491
#SPJ11
A series RLC circuit consists of a 70 12 resistor, a 0.12 H inductor, and a 30 uF capacitor. It is attached to a 120 V/60 Hz power line. What is the peak current I at this frequency? Express your answer with the appropriate units. What is the phase angle o? Express your answer in degrees. What is the average power loss? Express your answer with the appropriate units.
At a frequency of 60 Hz, the peak current I is approximately 1.147 A, the phase angle o is approximately -31.77°, and the average power loss is approximately 91.03 W
To find the peak current I, we need to calculate the impedance of the circuit. The impedance (Z) is given by the formula:
[tex]Z = \sqrt{(R^2 + (X_L - X_C)^2)}[/tex],
where R is the resistance, [tex]X_L[/tex] is the inductive reactance, and [tex]X_C[/tex] is the capacitive reactance.
The inductive reactance is given by XL = 2πfL, and the capacitive reactance is [tex]X_C = \frac{1}{(2\pi fC)}[/tex], where f is the frequency and L and C are the inductance and capacitance, respectively.
Substituting the given values, we have:
[tex]X_L = 2\pi(60)(0.12) \approx 45.24 \Omega\\X_C = \frac{1}{(2\pi(60)(30\times 10^{-6})} \approx88.49\Omega[/tex]
Plugging these values into the impedance formula, we get:
[tex]Z = \sqrt{(70^2 + (45.24 - 88.49)^2)} \approx 104.55\Omega[/tex]
Using Ohm's Law (V = IZ), we can find the peak current:
[tex]I = \frac{V}{Z}=\frac{120}{104.55} \approx1.147A.[/tex]
To calculate the phase angle o, we can use the formula:
[tex]tan(o) = \frac{(X_L - X_C)}{R}[/tex]
Substituting the values, we have:
[tex]tan(o) = \frac{(45.24 - 88.49)}{70} \approx-0.618.[/tex]
Taking the arctangent (o = arctan(-0.618)), we find the phase angle:
o ≈ -31.77°.
Lastly, to determine the average power loss, we can use the formula:
[tex]P = I^2R.[/tex]
Substituting the values, we have:
[tex]P = (1.147^2)(70) \approx 91.03 W.[/tex]
Therefore, at a frequency of 60 Hz, the peak current I is approximately 1.147 A, the phase angle o is approximately -31.77°, and the average power loss is approximately 91.03 W.
Learn more about frequency here: brainly.com/question/27151918
#SPJ11
3. A wheel is spinning at w = 24.62 rad's and is slowing down with an acceleration that has a magnitude of a = 11.24 rad/s². In how many Second does it stop?
The wheel, initially spinning at a rate of 24.62 rad/s, experiences a deceleration of 11.24 rad/s². We find that the wheel will stop rotating after approximately 2.19 seconds.
The equation of motion for rotational motion is given by:
ω = ω₀ + αt, where ω is the final angular velocity, ω₀ is the initial angular velocity, α is the angular acceleration, and t is the time taken. In this case, the wheel is slowing down, so the final angular velocity ω will be 0.
Plugging in the values, we have:
0 = 24.62 rad/s + (-11.24 rad/s²) * t.
Rearranging the equation, we get:
11.24 rad/s² * t = 24.62 rad/s.
Solving for t, we find:
t = 24.62 rad/s / 11.24 rad/s² ≈ 2.19 s.Therefore, it will take approximately 2.19 seconds for the wheel to stop rotating completely.
Learn more about rotational motion click here: brainly.com/question/30193887
#SPJ11
A 400 W immersion heater is placed in a pot containing 1.00 L of water at 20°C. (a) How long will the water take to rise to the boiling temperature, assuming that 80.0% of the available energy is absorbed by the water? (b) How much longer is required to evaporate half of the water? (a) Number ________ Units _______ (b) Number ________ Units ________
A 400 W immersion heater is placed in a pot containing 1.00 L of water at 20°C.
(a) The water will take to rise the boiling temperature, assuming that 80.0% of the available energy is absorbed by the water. Number 668.8 Units: seconds.
(b) It will take to evaporate half of the water. Number: 4981.2 Units: seconds.
(a) To calculate the time required for the water to rise to the boiling temperature, we need to determine the amount of energy required to heat the water from 20°C to the boiling temperature and then divide it by the power of the heater.
Given:
Power of the heater (P) = 400 W
Amount of water (m) = 1.00 L = 1.00 kg (since 1 L of water has a mass of 1 kg)
Initial temperature of the water (T₁) = 20°C
Final temperature of the water (T₂) = 100°C (boiling temperature)
Efficiency of energy absorption (η) = 80% = 0.80
The energy absorbed by the water can be calculated using the equation:
Energy = (mass) x (specific heat capacity) x (change in temperature)
Since the specific heat capacity of water is approximately 4.18 J/g°C, the energy absorbed is:
Energy = (mass) x (specific heat capacity) x (change in temperature)
= (1.00 kg) x (4.18 J/g°C) x (100°C - 20°C)
= 334.4 kJ
Since only 80% of the available energy is absorbed by the water, the actual energy absorbed is:
Actual energy absorbed = (0.80) x (334.4 kJ)
= 267.52 kJ
To find the time required, we divide the energy absorbed by the power of the heater:
Time = Energy / Power
= 267.52 kJ / 400 W
= 668.8 seconds
Therefore, the water will take approximately 668.8 seconds to rise to the boiling temperature.
(a) Number: 668.8
Units: seconds
(b) To determine the time required to evaporate half of the water, we need to calculate the energy required for evaporation.
Given:
Mass of water (m) = 1.00 kg
The energy required for evaporation can be calculated using the equation:
Energy = (mass) x (latent heat of vaporization)
The latent heat of vaporization for water is approximately 2260 kJ/kg.
Energy required for evaporation = (1.00 kg) x (2260 kJ/kg)
= 2260 kJ
Since we already absorbed 267.52 kJ to raise the temperature, the remaining energy needed for evaporation is:
Remaining energy for evaporation = 2260 kJ - 267.52 kJ
= 1992.48 kJ
To find the additional time required, we divide the remaining energy by the power of the heater:
Additional time = Remaining energy / Power
= 1992.48 kJ / 400 W
= 4981.2 seconds
Therefore, it will take approximately 4981.2 seconds longer to evaporate half of the water.
(b) Number: 4981.2
Units: seconds
To know more about boiling temperature here
https://brainly.com/question/1416592
#SPJ4
An object of mass 3.02 kg, moving with an initial velocity of 4.90 î m/s, collides with and sticks to an object of mass 3.08 kg with an initial velocity of -3.23 ĵ m/s. Find the final velocity of the composite object.
The final velocity of the composite object is approximately (2.42 î - 1.63 ĵ) m/s.
To find the final velocity of the composite object after the collision, we can apply the principle of conservation of momentum.
The momentum of an object is given by the product of its mass and velocity. According to the conservation of momentum:
Initial momentum = Final momentum
The initial momentum of the first object is given by:
P1 = (mass1) * (initial velocity1)
= (3.02 kg) * (4.90 î m/s)
The initial momentum of the second object is given by:
P2 = (mass2) * (initial velocity2)
= (3.08 kg) * (-3.23 ĵ m/s)
Since the two objects stick together and move as one after the collision, their final momentum is given by:
Pf = (mass1 + mass2) * (final velocity)
Setting up the conservation of momentum equation, we have:
P1 + P2 = Pf
Substituting the values, we get:
(3.02 kg) * (4.90 î m/s) + (3.08 kg) * (-3.23 ĵ m/s) = (3.02 kg + 3.08 kg) * (final velocity)
Simplifying, we find:
14.799 î - 9.978 ĵ = 6.10 î * (final velocity)
Comparing the components, we get two equations:
14.799 = 6.10 * (final velocity)x
-9.978 = 6.10 * (final velocity)y
Solving these equations, we find:
(final velocity)x = 2.42 m/s
(final velocity)y = -1.63 m/s
Therefore, the final velocity of the composite object is approximately (2.42 î - 1.63 ĵ) m/s.
Learn more about velocity:
https://brainly.com/question/80295
#SPJ11
Fifteen identical particles have various speeds. One has a speed of 4.00 m/s, two have a speed of 5.00 m/s, three have a speed of 7.00 m/s, four have a speed of 5.00 m/s, three have a speed of 10.0 m/s and two have a speed of 14.0 m/s. Find (a) the average speed, (b) the rms speed, and (c) the most probable speed of these particles. (a) 7.50 m/s; (b) 8.28 m/s; (c) 14.0 m/s (a) 7.50 m/s; (b) 8.28 m/s; (c) 5.00 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 14.0 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 5.00 m/s Page 24 of 33
The correct answers are (a) 7.53 m/s, (b) 8.19 m/s, and (c) 5.00 m/s. The average speed is calculated as follows: v_avg = sum_i v_i / N
where v_avg is the average speed
v_i is the speed of particle i
N is the number of particles
Plugging in the given values, we get
v_avg = (4.00 m/s + 2 * 5.00 m/s + 3 * 7.00 m/s + 4 * 5.00 m/s + 3 * 10.0 m/s + 2 * 14.0 m/s) / 15
= 7.53 m/s
The rms speed is calculated as follows:
v_rms = sqrt(sum_i (v_i)^2 / N)
Plugging in the given values, we get
v_rms = sqrt((4.00 m/s)^2 + 2 * (5.00 m/s)^2 + 3 * (7.00 m/s)^2 + 4 * (5.00 m/s)^2 + 3 * (10.0 m/s)^2 + 2 * (14.0 m/s)^2) / 15
= 8.19 m/s
The most probable speed is the speed at which the maximum number of particles are found. In this case, the most probable speed is 5.00 m/s.
Learn more about rms speed here:
brainly.com/question/33262591
#SPJ11
BIO Predict/Calculate A Tongue’s Acceleration When a cha-meleon captures an insect, its tongue can extend 16 cm in 0.10 s. (a) Find the magnitude of the tongue’s acceleration, assuming it to be constant. (b) In the first 0.050 s, does the tongue extend 8.0 cm, more than 8.0 cm, or less than 8.0 cm? (c) Find the extension of the tongue in the first 5s.
To determine the magnitude of a chameleon's tongue acceleration, as well as the extension of the tongue over a given time interval, we can utilize kinematic equations. Given that the tongue extends 16 cm in 0.10 s, we can calculate its acceleration using the equation of motion:
(a) To find the magnitude of the tongue's acceleration, we can use the equation of motion: Δx = v0t + (1/2)at^2, where Δx is the displacement, v0 is the initial velocity (assumed to be zero in this case), t is the time, and a is the acceleration. Rearranging the equation, we have a = 2(Δx) / t^2. Substituting the given values, we get a = 2(16 cm) / (0.10 s)^2. By performing the calculations, we can determine the magnitude of the tongue's acceleration.
(b) To determine if the tongue extends more than, less than, or exactly 8.0 cm in the first 0.050 s, we can use the equation of motion mentioned earlier. We plug in Δx = v0t + (1/2)at^2 and the given values of v0, t, and a. By calculating Δx, we can compare it to 8.0 cm to determine the tongue's extension during that time interval.
(c) To find the extension of the tongue in the first 5 s, we can use the equation of motion again. By substituting v0 = 0, t = 5 s, and the previously calculated value of a, we can calculate the tongue's extension over the given time period.
In summary, we can use the equations of motion to determine the magnitude of a chameleon's tongue acceleration when it captures an insect. Additionally, we can calculate the extension of the tongue during specified time intervals.
Learn more about magnitude here :
brainly.com/question/28173919
#SPJ11
Two identical parallel-plate capacitors, each with capacitance 10.0 σF , are charged to potential difference 50.0V and then disconnected from the battery. They are then connected to each other in parallel with plates of like sign connected. Finally, the plate separation in one of the capacitors is doubled.(a) Find the total energy of the system of two capacitors before the plate separation is doubled.
The total energy of the system of two capacitors before the plate separation is doubled is 25,000 times the square of the potential difference.
To find the total energy of the system of two capacitors before the plate separation is doubled, we can use the formula for the energy stored in a capacitor:
E = (1/2) * C * V^2
where E is the energy, C is the capacitance, and V is the potential difference.
Since the two capacitors are identical and each has a capacitance of 10.0 [tex]µF[/tex], the total capacitance of the system when they are connected in parallel is the sum of the individual capacitances:
C_total = C1 + C2 = 10.0 [tex]µF[/tex]+ 10.0 [tex]µF[/tex] = 20.0 [tex]µF[/tex]
The potential difference across the capacitors is 50.0V.
Substituting these values into the formula, we can find the energy stored in the system:
E = (1/2) * C_total * V^2 = (1/2) * 20.0 [tex]µF[/tex] * (50.0V)^2
Calculating this expression, we get:
E = 10.0 [tex]µF[/tex] * 2500V^2 = 25,000 [tex]µF[/tex] * V^2
Converting [tex]µF[/tex] to F:
E = 25,000 F * V^2
To know more about capacitors visit:
https://brainly.com/question/31627158
#SPJ11