The power dissipated by the 9 Ω resistor is 0.64 W when the battery EMF is 4V.
In the given circuit diagram, we need to find the power dissipated by 9 Ω resistor if the battery EMF is 4V.
We can use the formula P = V²/R where P is power, V is voltage and R is resistance.
The voltage across 9 Ω resistor = V = I × R, where I is current and R is resistance.
The current flowing through the circuit = I
= V/R (using Ohm’s law)
= 4V/15 Ω
= 0.2666 Amps
The voltage across 9 Ω resistor = V
= I × R
= 0.2666 A × 9 Ω
= 2.4 V
Now, we can find the power dissipated by 9 Ω resistor using the formula:
P = V²/R
= 2.4 V² / 9 Ω
= 0.64 W
Thus, the power dissipated by the 9 Ω resistor is 0.64 W when the battery EMF is 4V.
Learn more about power from the given link
https://brainly.com/question/1634438
#SPJ11
Review. A string is wound around a uniform disk of radius R and mass M . The disk is released from rest with the string vertical and its top end tied to a fixed bar (Fig. P10.73). Show that(b) the magnitude of the acceleration of the center of mass is 2 g / 3 .
Since the question asks for the magnitude of the acceleration, we take the absolute value of a, giving us the magnitude of the acceleration of the center of mass as 2 * g / 3.
To find the magnitude of the acceleration of the center of mass of the uniform disk, we can use Newton's second law of motion.
1. Let's start by considering the forces acting on the disk. Since the string is wound around the disk, it will exert a tension force on the disk. We can also consider the weight of the disk acting vertically downward.
2. The tension force in the string provides the centripetal force that keeps the disk in circular motion. This tension force can be calculated using the equation T = m * a,
3. The weight of the disk can be calculated using the equation W = m * g, where W is the weight, m is the mass of the disk, and g is the acceleration due to gravity.
4. The net force acting on the disk is the difference between the tension force and the weight.
5. Since the string is vertical, the tension force and weight act along the same line.
6. Substituting the equations, we have m * a - m * g = m * a.
7. Simplifying the equation, we get -m * g = 0.
8. Solving for a, we find a = -g.
9. Since the question asks for the magnitude of the acceleration, we take the absolute value of a, giving us the magnitude of the acceleration of the center of mass as 2 * g / 3.
To know more about gravity visit:
https://brainly.com/question/31321801
#SPJ11
1- For an ideal gas with indistinguishable particles in microcanonical ensemble calculate a) Number of microstates (N = T) b) Mean energy (E=U) c) Specific at constant heat Cv d) Pressure (P)
Microcanonical ensemble: In this ensemble, the number of particles, the volume, and the energy of a system are constant.This is also known as the NVE ensemble.
a) The number of microstates of an ideal gas with indistinguishable particles is given by:[tex]N = (V^n) / n!,[/tex]
b) where n is the number of particles and V is the volume.
[tex]N = (V^n) / n! = (V^N) / N!b)[/tex]Mean energy (E=U)
The mean energy of an ideal gas is given by:
[tex]E = (3/2) N kT,[/tex]
where N is the number of particles, k is the Boltzmann constant, and T is the temperature.
[tex]E = (3/2) N kTc)[/tex]
c) Specific heat at constant volume Cv
The specific heat at constant volume Cv is given by:
[tex]Cv = (dE/dT)|V = (3/2) N k Cv = (3/2) N kd) Pressure (P)[/tex]
d) The pressure of an ideal gas is given by:
P = N kT / V
P = N kT / V
To know more about energy visit:
https://brainly.com/question/1932868
#SPJ11
A rock band playing an outdoor concert produces sound at 80 dB, 45 m away from their single working loudspeaker. What is the power of this speaker? 1.5 W 2.5 W 15 W 25 W 150 W 250 W none of the above
The power of the speaker is approximately 8.27 W. None of the given answer choices match this result.
To calculate the power of the speaker, we need to use the inverse square law for sound intensity. The sound intensity decreases with distance according to the inverse square of the distance. The formula for sound intensity in decibels (dB) is:
Sound Intensity (dB) = Reference Intensity (dB) + 10 × log10(Intensity / Reference Intensity)
In this case, the reference intensity is the threshold of hearing, which is 10^(-12) W/m^2.
We can rearrange the formula to solve for the intensity:
Intensity = 10^((Sound Intensity (dB) - Reference Intensity (dB)) / 10)
In this case, the sound intensity is given as 80 dB, and the distance from the speaker is 45 m.
Using the inverse square law, the sound intensity at the distance of 45 m can be calculated as:
Intensity = Intensity at reference distance / (Distance)^2
Now let's calculate the sound intensity at the reference distance of 1 m:
Intensity at reference distance = 10^((Sound Intensity (dB) - Reference Intensity (dB)) / 10)
= 10^((80 dB - 0 dB) / 10)
= 10^(8/10)
= 10^(0.8)
≈ 6.31 W/m^2
Now let's calculate the sound intensity at the distance of 45 m using the inverse square law:
Intensity = Intensity at reference distance / (Distance)^2
= 6.31 W/m^2 / (45 m)^2
≈ 0.00327 W/m^2
Therefore, the power of the speaker can be calculated by multiplying the sound intensity by the area through which the sound spreads.
Power = Intensity × Area
Since the area of a sphere is given by 4πr^2, where r is the distance from the speaker, we can calculate the power as:
Power = Intensity × 4πr^2
= 0.00327 W/m^2 × 4π(45 m)^2
≈ 8.27 W
Therefore, the power of the speaker is approximately 8.27 W. None of the given answer choices match this result.
Learn more about power https://brainly.com/question/8120687
#SPJ11
A. An object is placed 30 cm in front of a diverging mirror having a focal length of magnitude 20 cm. What is the image distance, in cm?
B. When an object is 20 cm in front of a spherical mirror, the image is 12 cm behind the mirror. What is the focal length of the mirror, in cm?
C. When an object is 20 cm in front of a spherical mirror, the image is 12 cm in front of the mirror. What is the focal length of the mirror, in cm?
D. Dentist wants to observe a magnified image of the tooth, what type of mirror should be used?
diverging mirror
plane mirror
fun house mirror
converging mirror
A. he image distance is -60 cm. B. the focal length of the mirror is -7.5 cm C. the focal length of the mirror is 30 cm D. a converging mirror.
A. To find the image distance in this case, we can use the mirror equation: 1/f = 1/v + 1/u= 1/-20 = 1/v + 1/-30. Simplifying the equation, we get: -1/20 = 1/v - 1/30= -1/20 + 1/30 = 1/v= -30 + 20 = 600/v= -10 = 600/v
v= 600/-10, v = -60 cm
So, the image distance is -60 cm, which means the image is formed on the same side as the object (virtual image).
B. In this case, we can use the mirror equation again: 1/f = 1/di + 1/do= 1/f = 1/-12 + 1/-20, 1/f = -1/12 - 1/20, 1/f = (-5 - 3)/60, 1/f = -8/60. Simplifying further, we get: 1/f = -2/15, f = -15/2, f = -7.5 cm
So, the focal length of the mirror is -7.5 cm (negative because it's a concave mirror).
C. In this case, we can use the mirror equation again: 1/f = 1/di + 1/do
1/f = 1/12 + 1/-20, 1/f = 5/60 - 3/60, 1/f = 2/60
f = 30 cm. So, the focal length of the mirror is 30 cm (positive because it's a convex mirror).
D. To observe a magnified image of a tooth, a converging mirror should be used.
Let's learn more about convex mirror:
https://brainly.com/question/31955386
#SPJ11
A diffraction grating has 2100 lines per centimeter. At what angle will the first-order maximum be for 560-nm-wavelength green light?
The first-order maximum for 560-nm-wavelength green light will occur at an angle of approximately 15.05 degrees.
The angle at which the first-order maximum occurs for green light with a wavelength of 560 nm and a diffraction grating with 2100 lines per centimeter can be calculated using the formula for diffraction. The first-order maximum is given by the equation sin(θ) = λ / (d * m), where θ is the angle, λ is the wavelength, d is the grating spacing, and m is the order of the maximum.
We can use the formula sin(θ) = λ / (d * m), where θ is the angle, λ is the wavelength, d is the grating spacing, and m is the order of the maximum. In this case, we have a diffraction grating with 2100 lines per centimeter, which means that the grating spacing is given by d = 1 / (2100 lines/cm) = 0.000476 cm. The wavelength of green light is 560 nm, or 0.00056 cm.
Plugging these values into the formula and setting m = 1 for the first-order maximum, we can solve for θ: sin(θ) = 0.00056 cm / (0.000476 cm * 1). Taking the inverse sine of both sides, we find that θ ≈ 15.05 degrees. Therefore, the first-order maximum for 560-nm-wavelength green light will occur at an angle of approximately 15.05 degrees.
Learn more about diffraction click here:
brainly.com/question/12290582
#SPJ11
A train starts from rest and accelerates uniformly for 2 min. until it acquires a velocity of 60 m/s. The train then moves at a constant velocity for 6 min. The train then slows down uniformly at 0.5 m/s2, until it is brought to a halt. The total distance traveled by the train is A) 23.2 km B) 12.3 km C) 8.4 km D) 7.9 lom E) 332 kom
The total distance traveled by train is C) 8.4 km.
Option C is the correct answer. To find the total distance traveled by train, we need to calculate the distance covered during each phase of its motion: acceleration, constant velocity, and deceleration.
Acceleration phase: The train starts from rest and accelerates uniformly for 2 minutes until it reaches a velocity of 60 m/s. The formula to calculate the distance covered during uniform acceleration is given by:
distance = (initial velocity * time) + (0.5 * acceleration * time^2)
Initial velocity (u) = 0 m/s
Final velocity (v) = 60 m/s
Time (t) = 2 minutes = 2 * 60 = 120 seconds
Using the formula, we can calculate the distance covered during the acceleration phase:
distance = (0 * 120) + (0.5 * acceleration * 120^2)
We can rearrange the formula to solve for acceleration:
acceleration = (2 * (v - u)) / t^2
Substituting the given values:
acceleration = (2 * (60 - 0)) / 120^2
acceleration = 1 m/s^2
Now, substitute the acceleration value back into the distance formula:
distance = (0 * 120) + (0.5 * 1 * 120^2)
distance = 0 + 0.5 * 1 * 14400
distance = 0 + 7200
distance = 7200 meters
Constant velocity phase: The train moves at a constant velocity for 6 minutes. Since velocity remains constant, the distance covered is simply the product of velocity and time:
distance = velocity * time
Velocity (v) = 60 m/s
Time (t) = 6 minutes = 6 * 60 = 360 seconds
Calculating the distance covered during the constant velocity phase:
distance = 60 * 360
distance = 21600 meters
Deceleration phase: The train slows down uniformly at 0.5 m/s^2 until it comes to a halt. Again, we can use the formula for distance covered during uniform acceleration to calculate the distance:
distance = (initial velocity * time) + (0.5 * acceleration * time^2)
Initial velocity (u) = 60 m/s
Final velocity (v) = 0 m/s
Acceleration (a) = -0.5 m/s^2 (negative sign because the train is decelerating)
Using the formula, we can calculate the time taken to come to a halt:
0 = 60 + (-0.5 * t^2)
Solving the equation, we find:
t^2 = 120
t = sqrt(120)
t ≈ 10.95 seconds
Now, substituting the time value into the distance formula:
distance = (60 * 10.95) + (0.5 * (-0.5) * 10.95^2)
distance = 657 + (-0.5 * 0.5 * 120)
distance = 657 + (-30)
distance = 627 meters
Finally, we can calculate the total distance traveled by summing up the distances from each phase:
total distance = acceleration phase distance + constant velocity phase distance + deceleration phase distance
total distance = 7200 + 21600 + 627
total distance ≈ 29,427 meters
Converting the total distance to kilometers:
total distance ≈ 29,427 / 1000
total distance ≈ 29.
To learn more about distance click here:
brainly.com/question/13034462
#SPJ11
5)Jorge has an electrical appliance that operates on 120v. He will soon travel to Peru, where wall outlets provide 230 V. Jorge decides to build a transformer so that his appliance will work for him in Peru. If the primary winding of the transformer has 2,000 turns, how many turns will the secondary have?
The number of turns the secondary will have, if the primary winding of the transformer has 2,000 turns, is 3,833 turns.
How to find the number of turns ?The number of turns in the transformer coils are proportional to the voltage that the coil handles. This can be represented by the equation:
V_primary / V_secondary = N_primary / N_secondary
Rearranging the equation to solve for the secondary turns would give:
N_secondary = N_primary * V_secondary / V_primary
N_secondary = 2000 * 230 / 120
N_secondary = 3, 833 turns
Therefore, Jorge's transformer will need approximately 3833 turns in the secondary coil.
Find out more on primary winding at https://brainly.com/question/16540655
#SPJ4
14. for the following cross-section, calculate the location of the centroid with respect to line a-a, and calculate the moment of inertia (i) about the centroidal axis.
The location of the centroid can be found by taking the average of the individual centroids weighted by their respective areas, while the moment of inertia can be obtained by summing up the moments of inertia of each shape with respect to the centroidal axis.
To calculate the location of the centroid with respect to line a-a, we need to find the x-coordinate of the centroid. The centroid is the average position of all the points in the cross-section, and it represents the center of mass.
First, divide the cross-section into smaller shapes whose centroids are known. Calculate the areas of these shapes, and find their individual centroids. Then, multiply each centroid by its respective area.
Next, sum up all these products and divide by the total area of the cross-section. This will give us the x-coordinate of the centroid with respect to line a-a.
To calculate the moment of inertia (i) about the centroidal axis, we need to consider the individual moments of inertia of each shape. The moment of inertia is a measure of an object's resistance to rotational motion.
Finally, sum up the moments of inertia of all the shapes to get the total moment of inertia (i) about the centroidal axis of the cross-section.
Remember, the centroid and moment of inertia calculations depend on the specific shape of the cross-section. Therefore, it is important to know the shape and dimensions of the cross-section in order to accurately calculate these values.
To know more about centroid visit:
https://brainly.com/question/31238804
#SPJ11
to
project an image of a light bulb on a screen 4.0 m away, what is
the focal length of the converging lens when distance is
6.85m?
The answer is the focal length of the converging lens is approximately 11.8 m.
Distance of the screen from the lens (s) = 4.0 m
Distance of the object from the lens (u) = 6.85 m
Distance of the image from the lens (v) = 4.0m
Focal length of a lens can be calculated as:
`1/f = 1/v - 1/u`, where f is the focal length of the lens, u is the distance between the object and the lens, and v is the distance between the image and the lens.
∴1/f = 1/4 - 1/6.85
f = 11.8 m (approx)
Therefore, the focal length of the converging lens is approximately 11.8 m.
Here's another question on converging lenses: https://brainly.com/question/15123066
#SPJ11
Two objects moving with a speed vv travel in opposite directions in a straight line. The objects stick together when they collide, and move with a speed of v/6v/6 after the collision.
1) What is the ratio of the final kinetic energy of the system to the initial kinetic energy? 2)What is the ratio of the mass of the more massive object to the mass of the less massive object?
Let m1 and m2 be the masses of the two objects moving with speed v in opposite directions in a straight line. The total initial kinetic energy of the system is given byKinitial = 1/2 m1v² + 1/2 m2v²Kfinal = 1/2(m1 + m2)(v/6)²Kfinal = 1/2(m1 + m2)(v²/36)
The ratio of the final kinetic energy to the initial kinetic energy is:Kfinal/Kinitial = 1/2(m1 + m2)(v²/36) / 1/2 m1v² + 1/2 m2v²We can simplify by dividing the top and bottom of the fraction by 1/2 v²Kfinal/Kinitial = (1/2)(m1 + m2)/m1 + m2/1 × (1/6)²Kfinal/Kinitial = (1/2)(1/36)Kfinal/Kinitial = 1/72The ratio of the final kinetic energy of the system to the initial kinetic energy is 1/72.The momentum before the collision is given by: momentum = m1v - m2vAfter the collision, the velocity of the objects is v/6, so the momentum is:(m1 + m2)(v/6)Since momentum is conserved,
we have:m1v - m2v = (m1 + m2)(v/6)m1 - m2 = m1 + m2/6m1 - m1/6 = m2/6m1 = 6m2The ratio of the mass of the more massive object to the mass of the less massive object is 6:1.
To know more about speed visit:
https://brainly.com/question/17661499
#SPJ11
A car with a mass of 1300 kg is westbound at 45 km/h. It collides at an intersection with a northbound truck having a mass of 2000 kg and travelling at 40 km/h.
What is the initial common velocity of the car and truck immediately after the collision if they have a perfect inelastic collision? Convert to SI units
Therefore, the initial common velocity of the car and truck immediately after the collision is approximately 11.65 m/s.
In a perfectly inelastic collision, the objects stick together and move as one after the collision. To determine the initial common velocity of the car and truck immediately after the collision, we need to apply the principle of conservation of momentum.The initial common velocity of the car and truck immediately after the collision, assuming a perfectly inelastic collision, is approximately.
To know more about collision visit :
https://brainly.com/question/13138178
#SPJ11
A quantum simple harmonic oscillator consists of an electron bound by a restoring force proportional to its position relative to a certain equilibrium point. The proportionality constant is 9.21 N/m. What is the longest wavelength of light that can excite the oscillator?
The longest wavelength of light that can excite the quantum simple harmonic oscillator is approximately 1.799 x 10^(-6) meters.
To find the longest wavelength of light that can excite the oscillator, we need to calculate the energy difference between the ground state and the first excited state of the oscillator. The energy difference corresponds to the energy of a photon with the longest wavelength.
In a quantum simple harmonic oscillator, the energy levels are quantized and given by the formula:
Eₙ = (n + 1/2) * ℏω,
where Eₙ is the energy of the nth level, n is the quantum number (starting from 0 for the ground state), ℏ is the reduced Planck's constant (approximately 1.054 x 10^(-34) J·s), and ω is the angular frequency of the oscillator.
The angular frequency ω can be calculated using the formula:
ω = √(k/m),
where k is the proportionality constant (9.21 N/m) and m is the mass of the electron (approximately 9.11 x 10^(-31) kg).
Substituting the values into the equation, we have:
ω = √(9.21 N/m / 9.11 x 10^(-31) kg) ≈ 1.048 x 10^15 rad/s.
Now, we can calculate the energy difference between the ground state (n = 0) and the first excited state (n = 1):
ΔE = E₁ - E₀ = (1 + 1/2) * ℏω - (0 + 1/2) * ℏω = ℏω.
Substituting the values of ℏ and ω into the equation, we have:
ΔE = (1.054 x 10^(-34) J·s) * (1.048 x 10^15 rad/s) ≈ 1.103 x 10^(-19) J.
The energy of a photon is given by the equation:
E = hc/λ,
where h is Planck's constant (approximately 6.626 x 10^(-34) J·s), c is the speed of light (approximately 3.00 x 10^8 m/s), and λ is the wavelength of light.
We can rearrange the equation to solve for the wavelength λ:
λ = hc/E.
Substituting the values of h, c, and ΔE into the equation, we have:
λ = (6.626 x 10^(-34) J·s * 3.00 x 10^8 m/s) / (1.103 x 10^(-19) J) ≈ 1.799 x 10^(-6) m.
Therefore, the longest wavelength of light that can excite the oscillator is approximately 1.799 x 10^(-6) m.
Learn more about harmonic oscillator from the given link:
https://brainly.com/question/13152216
#SPJ11
a man weating 3 diopter power glasses must hold. a newspaper 30cm away from his eyes to see clearly. at what distance from his eyes should he place the newspaper to see it clearly without glasses. show all calculations.
The man should place the newspaper approximately 45 cm away from his eyes to see it clearly without glasses.
When a person wears glasses with a certain power, it means that their eyes require additional focusing power to see objects clearly. In this case, the man is wearing 3 diopter power glasses, which indicates that his eyes need an additional converging power of 3 diopters to focus on objects at a normal reading distance.
The power of a lens is measured in diopters (D), and it is inversely proportional to the focal length of the lens. The formula to calculate the focal length of a lens is:
Focal Length (in meters) = 1 / Power of Lens (in diopters)
Given that the man needs to hold the newspaper 30 cm away from his eyes to see it clearly with his glasses on, we can calculate the focal length of his glasses using the formula mentioned above.
Focal Length of Glasses = 1 / 3 D = 0.33 meters
Now, to determine the distance at which he should place the newspaper without glasses, we can use the lens formula:
1 / Focal Length of Glasses = 1 / Object Distance - 1 / Image Distance
In this case, the object distance (30 cm) and the focal length of the glasses (0.33 meters) are known. We need to find the image distance, which represents the distance at which the man should place the newspaper without glasses.
By substituting the known values into the formula and solving for the image distance, we can determine the answer.
Image Distance = 1 / (1 / Focal Length of Glasses - 1 / Object Distance)
= 1 / (1 / 0.33 - 1 / 0.3)
= 0.45 meters
Therefore, the man should place the newspaper approximately 45 cm away from his eyes to see it clearly without glasses.
Learn more about: The power of glasses is determined by the additional focusing power that the person's eyes need to see clearly. By understanding the power of the glasses, focal length, and lens formula, we can calculate the distance at which the person should place objects to see them clearly without glasses.
#SPJ11
This table shows Wayne’s weight on four different planets.
Planet Wayne’s weight
(pounds)
Mars 53
Neptune 159
Venus 128
Jupiter 333
Arrange the planets in decreasing order of their strength of gravity.
Answer: Jupiter > Neptune > Venus > Mars
Explanation: edmentum
The height above the ground of a child on a swing varies from 50 cm at the lowest point to 200 cm at the highest point. a. Draw the simple, clear and neat figure using drawing instruments. b. Establish the equation of the energy conservation of the system. c. Determine the maximum velocity of the child in cm/s?
a. On this line, mark a point labeled "Lowest Point" at 50 cm above the ground and another point labeled "Highest Point" at 200 cm above the ground. These two points represent the extremities of the child's height on the swing.
b. The equation of energy conservation for the system can be established by considering the conversion between potential energy and kinetic-energy. At the highest point, the child has maximum potential-energy and zero kinetic energy, while at the lowest point, the child has maximum kinetic energy and zero potential energy. Therefore, the equation can be written as:
Potential energy + Kinetic energy = Constant
Since the child's potential energy is proportional to their height above the ground, and kinetic energy is proportional to the square of their velocity, the equation can be expressed as:
mgh + (1/2)mv^2 = Constant
Where m is the mass of the child, g is the acceleration due to gravity, h is the height above the ground, and v is the velocity of the child.
c. To determine the maximum velocity of the child, we can equate the potential energy at the lowest point to the kinetic energy at the highest point, as they both are zero. Using the equation from part (b), we have:
mgh_lowest + (1/2)mv^2_highest = 0
Substituting the given values: h_lowest = 50 cm, h_highest = 200 cm, and g = 9.8 m/s^2, we can solve for v_highest:
m * 9.8 * 0.5 + (1/2)mv^2_highest = 0
Simplifying the equation:
4.9m + (1/2)mv^2_highest = 0
Since v_highest is the maximum velocity, we can rearrange the equation to solve for it:
v_highest = √(-9.8 * 4.9)
However, the result is imaginary because the child cannot achieve negative velocity. This indicates that there might be an error or unrealistic assumption in the problem setup. Please double-check the given information and ensure the values are accurate.
Note: The equation and approach described here assume idealized conditions, neglecting factors such as air resistance and the swing's structural properties.
To learn more about kinetic-energy , click here : https://brainly.com/question/999862
#SPJ11
The electric field in a sinusoidal wave changes as
E=(27N/C)cos[(1.2×1011rad/s)t+(4.2×102rad/m)x]E=(27N/C)cos[(1.2×1011rad/s)t+(4.2×102rad/m)x]
Part C
What is the frequency of the wave?
Express
To determine the frequency of the wave, we can examine the equation provided and identify the coefficient of the time variable. The frequency of the wave is approximately 1.91 × 10^10 Hz.
In the given equation, E = (27 N/C) cos[(1.2 × 10^11 rad/s)t + (4.2 × 10^2 rad/m)x], we can see that the coefficient of the time term is 1.2 × 10^11 rad/s.
The coefficient of the time term represents the angular frequency of the wave, which is related to the frequency by the equation: ω = 2πf, where ω is the angular frequency and f is the frequency.
The frequency corresponds to the coefficient of the time term, which represents the number of oscillations per unit of time. By comparing the given coefficient with the equation ω = 2πf, we can determine the frequency of the wave.
Dividing the angular frequency (1.2 × 10^11 rad/s) by 2π, we find the frequency to be approximately 1.91 × 10^10 Hz.
Therefore, the frequency of the wave is approximately 1.91 × 10^10 Hz.
Learn more about frequency here; brainly.com/question/254161
#SPJ11
Consider the circuit shown below. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) 1₁ 12 13 14 15 || = = R₁ = 70 (a) Find 1₁, 12, 13, 14, and 15 (all in A). (Indicate the direction with the signs of your answers.) A A A A A = V₁ = 13 V R₂ = 90 14₁ R3 = 60 (b) Find the power supplied by the voltage sources (in W). W R₁ = 60 V/₂=4V (c) Find the power dissipated by the resistors (in W). W 15
In the given circuit, we are asked to find the currents (1₁, 12, 13, 14, and 15) in Amperes and the power supplied by the voltage sources and power dissipated by the resistors in Watts.
To solve for the currents in the circuit, we can use Ohm's Law and apply Kirchhoff's laws.
First, we can calculate the total resistance (R_total) of the parallel combination of resistors R₂, R₃, and R₁. Since resistors in parallel have the same voltage across them, we can use the formula:
1/R_total = 1/R₂ + 1/R₃ + 1/R₁
Once we have the total resistance, we can find the total current (I_total) supplied by the voltage sources by using Ohm's Law:
I_total = V₁ / R_total
Next, we can find the currents through the individual resistors by applying the current divider rule. The current through each resistor is determined by the ratio of its resistance to the total resistance:
I₁ = (R_total / R₁) * I_total
I₂ = (R_total / R₂) * I_total
I₃ = (R_total / R₃) * I_total
To calculate the power supplied by the voltage sources, we use the formula:
Power = Voltage * Current
Therefore, the power supplied by the voltage sources can be found by multiplying the voltage (V₁) by the total current (I_total).
Finally, to find the power dissipated by each resistor, we can use the formula:
Power = Current^2 * Resistance
Substituting the respective currents and resistances, we can calculate the power dissipated by each resistor.
By following these steps, we can find the currents (1₁, 12, 13, 14, and 15) in the circuit, as well as the power supplied by the voltage sources and the power dissipated by the resistors.
Learn more about currents here: brainly.com/question/23323183
#SPJ11
A cylinder with a movable piston contains 6 kg of air with initial temperature of 25 ∘
C. The atmospheric pressure is 1 atm. This cylinder is then allowed to heat up and the temperature of the air is raised to 500 ∘
C. The piston is free to move during the heating process. (a) What type of process below is used to describe the above process? (i) Isothermal process (ii) Isobaric process (iii) Isochoric process (b) What is the initial volume (before heating) and final volume of the air (after heating)? (c) Calculate the heat energy required to increase the air temperature from 25 ∘
C to 500 ∘
C. Given that the C v
is 0.718 kJ/kg−k and the specific heat ratio γ=1.4. (d) Calculate the work done by the system. (e) Assume no heat loss to the surrounding, what is the change of specific internal energy of the air? (f) Alternative to (e) above. In reality, the actual change in internal energy of air is 1,200 kJ only. This give evidence to prove the concept of which law of thermodynamic is correct?
(a) The type of process described above is (ii) an isobaric process.
(b) The initial volume of the air before heating and the final volume after heating remain constant, as the piston is free to move. However, the specific values for the volumes are not provided in the given question.
(c) To calculate the heat energy required to increase the air temperature from 25°C to 500°C, we can use the formula:
[tex]Q = m * C_v * (T_final - T_initial)[/tex]
where Q is the heat energy, m is the mass of the air, C_v is the specific heat at constant volume, and T_final and T_initial are the final and initial temperatures, respectively. Given that the mass of air is 6 kg, C_v is 0.718 kJ/kg-K, T_final is 500°C, and T_initial is 25°C, we can substitute these values into the formula to find the heat energy.
(d) To calculate the work done by the system, we need more information, such as the change in volume or the pressure of the air. Without this information, it is not possible to determine the work done.
(e) Assuming no heat loss to the surroundings, the change in specific internal energy of the air can be calculated using the formula:
ΔU = Q - W
where ΔU is the change in specific internal energy, Q is the heat energy, and W is the work done by the system. Since the heat energy (Q) and work done (W) are not provided in the given question, it is not possible to calculate the change in specific internal energy.
(f) The given evidence that the actual change in internal energy of the air is 1,200 kJ supports the first law of thermodynamics, also known as the law of conservation of energy. According to this law, energy cannot be created or destroyed, but it can only change from one form to another. In this case, the change in internal energy is consistent with the amount of heat energy supplied (Q) and the work done (W) by the system. Therefore, the evidence aligns with the first law of thermodynamics.
Learn more about isobaric process
brainly.com/question/12048179
#SPJ11
If the IRC is 75%, what would the ITC be? Is this possible to
calculate with this information?
Yes, it is possible to calculate the ITC with the given information of IRC of 75%. Input Tax Credit (ITC) is the tax paid by the buyer on the inputs that are used for further manufacture or sale.
It means that the ITC is a credit mechanism in which the tax that is paid on input is deducted from the output tax. In other words, it is the tax paid on inputs at each stage of the supply chain that can be used as a credit for paying tax on output supplies. It is possible to calculate the ITC using the given information of the Input tax rate percentage (IRC) of 75%.
The formula for calculating the ITC is as follows: ITC = (Output tax x Input tax rate percentage) - (Input tax x Input tax rate percentage) Where, ITC = Input Tax Credit Output tax = Tax paid on the sale of goods and services Input tax = Tax paid on inputs used for manufacture or sale. Input tax rate percentage = Percentage of tax paid on inputs. As per the question, there is no information about the output tax. Hence, the calculation of ITC is not possible with the given information of IRC of 75%.Therefore, the calculation of ITC requires more information such as the output tax, input tax, and the input tax rate percentage.
To know more about Tax Credit visit :
https://brainly.com/question/30359171
#SPJ11
Answer the question with a cross in the box you think is correct. If you change your mind about an answer, put a line through the box and then mark your new answer with a cross When a guitar string is plucked, a sound of constant frequency is heard. The wave produced on the vibrating guitar string is A. longitudinal and progressive. B. longitudinal and stationary C. transverse and progressive. D. transverse and stationary
The wave produced on the vibrating guitar string is transverse and progressive.
When a guitar string is plucked, it produces a wave that travels along the string. This wave is transverse in nature, meaning that the particles of the medium (the string) vibrate perpendicular to the direction of wave propagation. As the string oscillates up and down, it creates peaks and troughs in the wave pattern, forming a characteristic waveform.
The wave is also progressive, which means it propagates through space. As the plucked string vibrates, the disturbance travels along the length of the string, carrying the energy of the wave with it. This progressive motion allows the sound wave to reach our ears, where we perceive it as a sound of constant frequency.
In summary, when a guitar string is plucked, it generates a transverse and progressive wave. The transverse nature of the wave arises from the perpendicular vibrations of the string's particles, while its progressiveness refers to the propagation of the wave through space, enabling us to hear a sound of constant frequency.
To learn more about string, click here: https://brainly.com/question/946868
#SPJ11
2. Present a brief explanation of how electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch. Include at least one relevant formula or equation in your presentation.
Electrical activity in the human body interacts with electromagnetic waves outside the human body to either our eyesight or sense of touch.
Electromagnetic radiation travels through space as waves moving at the speed of light. When it interacts with matter, it transfers energy and momentum to it. Electromagnetic waves produced by the human body are very weak and are not able to travel through matter, unlike x-rays that can pass through solids. The eye receives light from the electromagnetic spectrum and sends electrical signals through the optic nerve to the brain.
Electrical signals are created when nerve cells receive input from sensory receptors, which is known as action potentials. The nervous system is responsible for generating electrical signals that allow us to sense our environment, move our bodies, and think. Electric fields around objects can be calculated using Coulomb's Law, which states that the force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them.
F = k(q1q2/r^2) where F is the force, q1 and q2 are the charges, r is the distance between the charges, and k is the Coulomb constant. This formula is used to explain how the electrical activity in the human body interacts with electromagnetic waves outside the human body to either our eyesight or sense of touch.
Learn more about Coulomb's Law here:
https://brainly.com/question/506926
#SPJ11
An ideal step-down transformer has a primary coil of 700 turns and a secondary coil of 30 turns. Its primary coil is plugged into an outlet with 120 V(AC), from which it draws an rms current of 0.19 A. What is the voltage and rms current in the secondary coil?
In an ideal step-down transformer with a primary coil of 700 turns and a secondary coil of 30 turns, connected to an outlet with 120 V (AC) and drawing an rms current of 0.19 A in the primary coil, the voltage in the secondary coil is 5.14 V (AC) and the rms current in the secondary coil is 5.67 A.
In a step-down transformer, the primary coil has more turns than the secondary coil. The voltage in the secondary coil is determined by the turns ratio between the primary and secondary coils. In this case, the turns ratio is 700/30, which simplifies to 23.33.
To find the voltage in the secondary coil, we can multiply the voltage in the primary coil by the turns ratio. Therefore, the voltage in the secondary coil is 120 V (AC) divided by 23.33, resulting in approximately 5.14 V (AC).
The current in the primary coil and the secondary coil is inversely proportional to the turns ratio. Since it's a step-down transformer, the current in the secondary coil will be higher than the current in the primary coil. To find the rms current in the secondary coil, we divide the rms current in the primary coil by the turns ratio. Hence, the rms current in the secondary coil is 0.19 A divided by 23.33, which equals approximately 5.67 A.
Therefore, in this ideal step-down transformer, the voltage in the secondary coil is 5.14 V (AC) and the rms current in the secondary coil is 5.67 A.
Learn more about Step-down Transformer here:
brainly.com/question/15200241
#SPJ11
Group A Questions 1. Present a brief explanation of how, by creating an imbalance of positive and negative charges across a gap of material, it is possible to transfer energy when those charges move. Include at least one relevant formula or equation in your presentation.
Summary:
By creating an imbalance of positive and negative charges across a material gap, energy transfer can occur when these charges move. The movement of charges generates an electric current, and the energy transferred can be calculated using the equation P = IV, where P represents power, I denotes current, and V signifies voltage.
Explanation:
When there is an imbalance of positive and negative charges across a gap of material, an electric potential difference is established. This potential difference, also known as voltage, represents the force that drives the movement of charges. The charges will naturally move from an area of higher potential to an area of lower potential, creating an electric current.
According to Ohm's Law, the current (I) flowing through a material is directly proportional to the voltage (V) applied and inversely proportional to the resistance (R) of material. Mathematically, this relationship is represented by the equation I = V/R. By rearranging the equation to V = IR, we can calculate the voltage required to generate a desired current.
The power (P) transferred through the material can be determined using the equation P = IV, where I represents the current flowing through the material and V denotes the voltage across the gap. This equation reveals that the power transferred is the product of the current and voltage. In practical applications, this power can be used to perform work, such as powering electrical devices or generating heat.
In conclusion, by creating an imbalance of charges across a material gap, energy transfer occurs when those charges move. The potential difference or voltage drives the movement of charges, creating an electric current. The power transferred can be calculated using the equation P = IV, which expresses the relationship between current and voltage. Understanding these principles is crucial for various fields, including electronics, electrical engineering, and power systems.
Learn more about Positive and Negative charges here
brainly.com/question/30531435
#SPJ11
Q4: Let's combine our observations on the gravitational force, velocity and path and provide a full explanation on why the velocity and the path of the Earth around the Sun change drastically when we double the mass of the Sun but not when we double the mass of the Earth.
When we double the mass of the Sun, the increased gravitational force leads to a decrease in the Earth's acceleration, resulting in a slower velocity and a larger orbit. On the other hand, when we double the mass of the Earth, the gravitational force does not change significantly,
When considering the gravitational force, velocity, and path of the Earth around the Sun, we need to take into account the fundamental principles of gravitational interactions described by Newton's law of universal gravitation and the laws of motion.
Newton's Law of Universal Gravitation:
According to Newton's law of universal gravitation, the force of gravitational attraction between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers of mass.
F = G × (m1 × m2) / r²
Where:
F is the gravitational force between the two objects,
G is the gravitational constant,
m1 and m2 are the masses of the two objects, and
r is the distance between their centers of mass.
Laws of Motion:
The motion of an object is determined by Newton's laws of motion, which include the concepts of inertia, force, and acceleration.
Newton's First Law (Law of Inertia): An object at rest or in uniform motion will remain in that state unless acted upon by an external force.
Newton's Second Law: The force acting on an object is equal to the mass of the object multiplied by its acceleration.
Newton's Third Law: For every action, there is an equal and opposite reaction.
When we double the mass of the Sun:
By doubling the mass of the Sun, the gravitational force between the Earth and the Sun increases due to the direct proportionality between the force and the masses. The increased gravitational force leads to a higher acceleration experienced by the Earth.
According to Newton's second law (F = m ×a), for a given force, an object with a larger mass will experience a smaller acceleration. Therefore, with the doubled mass of the Sun, the Earth's acceleration decreases compared to the original scenario.
As a result, the Earth's velocity and path around the Sun will change drastically. The decreased acceleration causes the Earth to move at a slower velocity, resulting in a longer orbital period and a larger orbital radius. The Earth will take more time to complete one revolution around the Sun, and its path will be wider due to the decreased curvature of the orbit.
When we double the mass of the Earth:
When we double the mass of the Earth, the gravitational force between the Earth and the Sun does not change significantly. Although the gravitational force is affected by the mass of both objects, doubling the Earth's mass while keeping the Sun's mass constant does not lead to a substantial change in the gravitational force.
According to Newton's second law, the acceleration of an object is directly proportional to the applied force and inversely proportional to the mass. Since the gravitational force remains relatively constant, doubling the mass of the Earth leads to a decrease in the Earth's acceleration.
Consequently, the Earth's velocity and path around the Sun are not drastically affected by doubling its mass. The change in acceleration is relatively small, resulting in a slightly slower velocity and a slightly wider orbit, but these changes are not significant enough to cause a drastic alteration in the Earth's orbital dynamics.
In summary, when we double the mass of the Sun, the increased gravitational force leads to a decrease in the Earth's acceleration, resulting in a slower velocity and a larger orbit. On the other hand, when we double the mass of the Earth, the gravitational force does not change significantly, and the resulting small decrease in acceleration only causes a minor variation in the Earth's velocity and path.
To know more about Newton's law:
https://brainly.com/question/27573481
#SPJ4
An aluminum cylinder 30 cm deep has an internal capacity of 2.00L at 10 °C. It is completely filled with turpentine and then warmed to 80 °C. (a) If the liquid is then cooled back to 10 °C how far below the surface of the rim of the cylinder will the liquid be.( the coefficient of volume expansion for turpentine is 9.0 x 10 –4 °C-1. )
The distance below the surface of the rim of the cylinder will be approximately 30 cm, to two decimal places.
The volume of the aluminum cylinder = 2 L
Let the volume of turpentine = V1 at 10°C
Let the new volume of turpentine = V2 at 80°C
Coefficient of volume expansion of turpentine = β = 9.0 × 10⁻⁴/°C.
Volume expansion of turpentine from 10°C to 80°C = ΔV = V2 - V1 = V1βΔT
Let the distance below the surface of the rim of the cylinder be 'h'.
Therefore, the volume of the turpentine at 80°C is given by; V2 = V1 + ΔV + πr²h...(1)
From the problem, we have the Diameter of the cylinder = 2r = 4 cm.
So, radius, r = 2 cm. Depth, d = 30 cm
So, the height of the turpentine in the cylinder = 30 - h cm
At 10°C, V1 = 2L
From the above formulas, we have: V2 = 2 + (2 × 9.0 × 10⁻⁴ × 70 × 2) = 2.126 L
Now, substituting this value of V2 in Eq. (1) above, we have;2.126 = 2 + π × 2² × h + 2 × 9.0 × 10⁻⁴ × 70 × 2π × 2² × h = 0.126 / (4 × 3.14) - 2 × 9.0 × 10⁻⁴ × 70 h
Therefore, h = 29.98 cm
Learn more about volume at https://brainly.com/question/14197390
#SPJ11
A closely wound, circular coil with a diameter of 5.00 cm has 410 turns and carries a current of 0.400 A Part B What is the magnitude of the magnetic field at a point on the axis of the coil a distance of 6.50 cm from its center? Express your answer in teslas. | ΑΣΦ ? В. B Submit Previous Answers Request Answer
Answer:Part A: The magnetic field at the center of the circular coil has a magnitude of 1.03×10⁻⁴ T and points out of the page.Part B: The magnitude of the magnetic field at a point on the axis of the coil a distance of 6.50 cm from its center is 1.19×10⁻⁵ T.
Part A:First, we will find the magnetic field at the center of the circular coil. To do this, we will use the formula for the magnetic field inside a solenoid: B = μ₀nI. Here, n represents the number of turns per unit length, and I is the current.μ₀ is a constant that represents the permeability of free space.
In this case, we are dealing with a circular coil rather than a solenoid, but we can approximate it as a solenoid if we assume that the radius of the coil is much smaller than the distance between the coil and the point at which we are measuring the magnetic field.
This assumption is reasonable given that the radius of the coil is 2.50 cm and the distance between the coil and the point at which we are measuring the magnetic field is 6.50 cm.
Therefore, we can use the formula for the magnetic field inside a solenoid to find the magnetic field at the center of the circular coil: B = μ₀nI.
Because the coil has a diameter of 5.00 cm, it has a radius of 2.50 cm. Therefore, its cross-sectional area is
A = πr²
= π(2.50 cm)²
= 19.63 cm².
To find n, we need to divide the total number of turns by the length of the coil.
The length of the coil is equal to its circumference, which is
C = 2πr
= 2π(2.50 cm)
= 15.71 cm.
Therefore, n = N/L
= 410/15.71 cm⁻¹
= 26.1 cm⁻¹.
Substituting the values for μ₀, n, and I, we get:
B = μ₀nI
= (4π×10⁻⁷ T·m/A)(26.1 cm⁻¹)(0.400 A)
= 1.03×10⁻⁴ T.
We can use the right-hand rule to determine the direction of the magnetic field.
If we point our right thumb in the direction of the current (which is counterclockwise when viewed from above), the magnetic field will point in the direction of our curled fingers, which is out of the page.
Therefore, the magnetic field at the center of the circular coil has a magnitude of 1.03×10⁻⁴ T and points out of the page.
Part B:We can use the formula for the magnetic field of a circular coil at a point on its axis to find the magnetic field at a distance of 6.50 cm from its center:
B = μ₀I(2R² + d²)-³/²,
where R is the radius of the coil, d is the distance between the center of the coil and the point at which we are measuring the magnetic field, and the other variables have the same meaning as before. Substituting the values, we get:
B = (4π×10⁻⁷ T·m/A)(0.400 A)(2(2.50 cm)² + (6.50 cm)²)-³/²
= 1.19×10⁻⁵ T
Part A: The magnetic field at the center of the circular coil has a magnitude of 1.03×10⁻⁴ T and points out of the page.
Part B: The magnitude of the magnetic field at a point on the axis of the coil a distance of 6.50 cm from its center is 1.19×10⁻⁵ T.
To know more about circular visit;
brainly.com/question/13731627
#SPJ11
(20\%) Problem 4: Consider the circuit diagram depicted in the figure. A 50% Part (a) What equation do you get when you apply the loop rule to the loop abcdefgha, in t 0= Hints: deduction per hint. Hints remaining: 22 Feedback: 10% deduction per feedback. (A) 50% Part (b) If the current through the top branch is I2=0.59 A, what is the current through the
(a) Applying the loop rule to the loop abcdefgha in the circuit diagram, we obtain the equation:
ΔVab + ΔVbc + ΔVcd + ΔVde + ΔVef + ΔVfg + ΔVgh + ΔVha = 0
This equation states that the sum of the voltage changes around the closed loop is equal to zero. Each term represents the voltage drop or voltage rise across each component or segment in the loop.
(b) If the current through the top branch is I2 = 0.59 A, we can determine the current through the bottom branch by analyzing the circuit. From the diagram, it is evident that the two branches share a common segment, which is the segment ef. The total current entering this segment must be equal to the sum of the currents in the two branches:
I1 + I2 = I3
Given that I2 = 0.59 A, we can substitute this value into the equation:
I1 + 0.59 A = I3
Thus, the current through the bottom branch, I3, is equal to I1 + 0.59 A.
To learn more about circuit click here brainly.com/question/12608491
#SPJ11
There are two identical, positively charged conducting spheres fixed in space. The spheres are 42.0 cm apart (center to center) and repel each other with an electrostatic force of 1=0.0630 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of 2=0.100 N . The Coulomb force constant is =1/(40)=8.99×109 N⋅m2/C2 . Using this information, find the initial charge on each sphere, 1 and 2 , if 1 is initially less than 2 .
The initial charge on sphere 1 is 2.945 × 10⁻⁷ C, and the initial charge on sphere 2 is 3.180 × 10⁻⁷ C.
Let the initial charges on the two spheres be q₁ and q₂. The electrostatic force between two point charges with charges q₁ and q₂ separated by a distance r is given by Coulomb's law:
F = (k × q₁ × q₂) / r²
where k = 1/(4πϵ₀) = 8.99 × 10⁹ N·m²/C² is the Coulomb force constant.
ϵ₀ is the permittivity of free space. ϵ₀ = 1/(4πk) = 8.854 × 10⁻¹² C²/N·m².
The electrostatic force between the two spheres is:
F₁ = F₂ = 0.0630 N.
The distance between the centers of the spheres is r = 42.0 cm = 0.420 m.
Let the final charges on the two spheres be q'₁ and q'₂.
The electrostatic force between the two spheres after connecting them by a wire is:
F'₁ = F'₂ = 0.100 N.
Now, the charges on the spheres redistribute when the wire is connected. So, we need to use the principle of conservation of charge. The net charge on the two spheres is conserved. Let Q be the total charge on the two spheres.
Then, Q = q₁ + q₂ = q'₁ + q'₂ ... (1)
The wire has negligible resistance, so it does not change the potential of the spheres. The potential difference between the two spheres is the same before and after connecting the wire. Therefore, the charge on each sphere is proportional to its initial charge and inversely proportional to the distance between the centers of the spheres when connected by the wire. Let the charges on the spheres change by q₁ to q'₁ and by q₂ to q'₂.
Let d be the distance between the centers of the spheres when the wire is connected. Then,
d = r - 2a = 0.420 - 2 × 0.015 = 0.390 m
where a is the radius of each sphere.
The ratio of the final charge q'₁ on sphere 1 to its initial charge q₁ is proportional to the ratio of the distance d to the initial distance r. Thus,
q'₁/q₁ = d/r ... (2)
Similarly,
q'₂/q₂ = d/r ... (3)
From equations (1), (2), and (3), we have:
q'₁ + q'₂ = q₁ + q₂
and
q'₁/q₁ = q'₂/q₂ = d/r
Therefore, (q'₁ + q'₂)/q₁ = (q'₁ + q'₂)/q₂ = 1 + d/r = 1 + 0.390/0.420 = 1.929
Therefore, q₁ = Q/(1 + d/r) = Q/1.929
Similarly, q₂ = Q - q₁ = Q - Q/1.929 = Q/0.929
Substituting the values of q₁ and q₂ in the expression for the electrostatic force F₁ = (k × q₁ × q₂) / r², we get:
0.0630 = (8.99 × 10⁹ N·m²/C²) × (Q/(1 + d/r)) × (Q/0.929) / (0.420)²
Solving for Q, we get:
Q = 6.225 × 10⁻⁷ C
Substituting the value of Q in the expressions for q₁ and q₂, we get:
q₁ = 2.945 × 10⁻⁷ C
q₂ = 3.180 × 10⁻⁷ C
Learn more about electrostatic force at https://brainly.com/question/20797960
#SPJ11
Imagine that you have 8 Coulombs of electric charge in a tetrahedron. Calculate the size of the electric flux to one of the four sides.?
8 Coulombs of electric charge in a tetrahedron. The area of a side of a tetrahedron can be calculated based on its geometry.
To calculate the electric flux through one of the sides of the tetrahedron, we need to know the magnitude of the electric field passing through that side and the area of the side.
The electric flux (Φ) is given by the equation:
Φ = E * A * cos(θ)
where:
E is the magnitude of the electric field passing through the side,
A is the area of the side, and
θ is the angle between the electric field and the normal vector to the side.
Since we have 8 Coulombs of electric charge, the electric field can be calculated using Coulomb's law:
E = k * Q / r²
where:
k is the electrostatic constant (8.99 x 10^9 N m²/C²),
Q is the electric charge (8 C in this case), and
r is the distance from the charge to the side.
Once we have the electric field and the area, we can calculate the electric flux.
To know more about tetrahedron refer here:
https://brainly.com/question/11946461#
#SPJ11
a resistive device is made by putting a rectangular solid of carbon in series with a cylindrical solid of carbon. the rectangular solid has square cross section of side s and length l. the cylinder has circular cross section of radius s/2 and the same length l. If s = 1.5mm and l = 5.3mm and the resistivity of carbon is pc = 3.5*10^-5 ohm.m, what is the resistance of this device? Assume the current flows in a uniform way along this resistor.
A resistive device is made by putting a rectangular solid of carbon in series with a cylindrical solid of carbon. the rectangular solid has square cross section of side s and length l. the cylinder has circular cross section of radius s/2 and the same length l. If s = 1.5mm and l = 5.3mm and the resistivity of carbon is pc = 3.5×10^-5 ohm.m, the resistance of the given device is approximately 41.34 ohms.
To calculate the resistance of the given device, we need to determine the resistances of the rectangular solid and the cylindrical solid separately, and then add them together since they are connected in series.
The resistance of a rectangular solid can be calculated using the formula:
R_rectangular = (ρ ×l) / (A_rectangular),
where ρ is the resistivity of carbon, l is the length of the rectangular solid, and A_rectangular is the cross-sectional area of the rectangular solid.
Given that the side of the square cross-section of the rectangular solid is s = 1.5 mm, the cross-sectional area can be calculated as:
A_rectangular = s^2.
Substituting the values into the formula, we get:
A_rectangular = (1.5 mm)^2 = 2.25 mm^2 = 2.25 × 10^-6 m^2.
Now we can calculate the resistance of the rectangular solid:
R_rectangular = (3.5 × 10^-5 ohm.m × 5.3 mm) / (2.25 × 10^-6 m^2).
Converting the length to meters:
R_rectangular = (3.5 × 10^-5 ohm.m ×5.3 × 10^-3 m) / (2.25 × 10^-6 m^2).
Simplifying the expression:
R_rectangular = (3.5 × 5.3) / (2.25) ohms.
R_rectangular ≈ 8.235 ohms (rounded to three decimal places).
Next, let's calculate the resistance of the cylindrical solid. The resistance of a cylindrical solid is given by:
R_cylindrical = (ρ ×l) / (A_cylindrical),
where A_cylindrical is the cross-sectional area of the cylindrical solid.
The radius of the cylindrical cross-section is s/2 = 1.5 mm / 2 = 0.75 mm. The cross-sectional area of the cylindrical solid can be calculated as:
A_cylindrical = π × (s/2)^2.
Substituting the values into the formula:
A_cylindrical = π ×(0.75 mm)^2.
Converting the radius to meters:
A_cylindrical = π × (0.75 × 10^-3 m)^2.
Simplifying the expression:
A_cylindrical = π × 0.5625 × 10^-6 m^2.
Now we can calculate the resistance of the cylindrical solid:
R_cylindrical = (3.5 × 10^-5 ohm.m × 5.3 × 10^-3 m) / (π × 0.5625 × 10^-6 m^2).
Simplifying the expression:
R_cylindrical = (3.5 × 5.3) / (π ×0.5625) ohms.
R_cylindrical ≈ 33.105 ohms (rounded to three decimal places).
Finally, we can calculate the total resistance of the device by adding the resistances of the rectangular solid and the cylindrical solid:
R_total = R_rectangular + R_cylindrical.
R_total ≈ 8.235 ohms + 33.105 ohms.
R_total ≈ 41.34 ohms (rounded to two decimal places).
Therefore, the resistance of the given device is approximately 41.34 ohms.
To learn more about resistance visit: https://brainly.com/question/24119414
#SPJ11