Answer:
When we love someone we experience the same positive thoughts and experiences as when we like a person. But we also experience a deep sense of care and commitment towards that person. Being “in love” includes all the above but also involves feelings of sexual arousal and attraction.
Explanation:
What is the force of gravity for a 12 kg turkey?
Please help asap
Answer: 117.6N
Explanation:
By the second Newton's law, we know that:
F = m*a
F = force
m = mass
a = acceleration
We know that in the surface of the Earth, the gravitational acceleration is g = 9.8m/s^2.
Then we just can input that acceleration in the above equation, and also replace m by 12kg, and find that the force due the gravity is:
F = 12kg*9.8m/s^2 = 117.6N
While riding a multispeed bicycle, the rider can select the radius of the rear sprocket that is fixed to the rear axle. The front sprocket of a bicycle has radius 12.0 cm. If the angular speed of the front sprocket is 0.600 rev/s, what is the radius of the rear sprocket for which the tangential speed of a point on the rim of the rear wheel will be 5.00 m/s?
Answer:
2.9 cm
Explanation:
Assuming that the rear wheel has a radius of 0.330 m
Given that
r(a) = 12 cm -> 0.12 m
w(a) = 0.6 rev/s -> 3.77 rad/s
v = 5 m/s
r(w) = 0.330 m
The speed on any point on the rim at the sprocket in the front is
v(a) = w(a).r(a) = 3.77 * 0.12 = 0.4524 m/s
Also,
v(a) = speed at any point on the chain
v(b) = speed at any point on the rim of the rear sprocket
v(a) = v(b)
where v(b) = w(b).r(b)
Recall that the speed at any point on the rear wheel is v, where
v = w(b).r(w)
5 = w(b) * 0.330
w(b) = 5/0.330
w(b) = 15.15 rad/s
On substituting this in the equation, we have
v(b) = w(b).r(b).
Remember also, that v(a) = v(b), so
0.4524 = 15.15 * r(b)
r(b) = 0.4524 / 15.15
r(b) = 0.029 m -> 2.9 cm
Therefore, the radius of the rear sprocket needed is 2.9 cm
How much work would be done on a particle with 5.0 C of charge on it if it moved from an equipotential line at 5.5 volts to another equipotential line at 3.5 volts?
Answer:
10J
Explanation:
In this question we have the following information
The charge of the particle is q = 5 C
The equipotenetial level is V1 = 5.5 v
and also the
equipotenetial level is V2 = 3.5 v
So we calculate the
work done W=q x (v1-v2)
workdone = 5 x (5.5-3.5)
= 5x2
=10 J
Workdone = 10 J
So we conclude that the workdone on a particle with these information is 10j
The x component of vector A is -25.0m and the y component id +40.0m (a) what is the magnitude of A?(b) What is the angle between the direction of A and the positive direction of x?
Answer:
θ = 122°
Explanation:
Components of a Vector
A vector in the plane can be defined by its rectangular components:
[tex]\vec A =<x,y>[/tex]
Or also can be given by its polar components:
[tex]\vec A =<r,\theta>[/tex]
Where r is the magnitude of the vector and θ is the angle it forms with the positive direction of x.
The relation between them is:
[tex]r=\sqrt{x^2+y^2}[/tex]
[tex]\displaystyle \theta=\arctan\frac{y}{x}[/tex]
It's given the x-component of vector A is x=-25 m and the y-component is y=40 m
(a)
The magnitude of the vector is:
[tex]r=\sqrt{(-25)^2+40^2}[/tex]
[tex]r=\sqrt{625+1600}[/tex]
[tex]r=\sqrt{2225}[/tex]
[tex]r\approx 47.2\ m[/tex]
(b)
[tex]\displaystyle \theta=\arctan\frac{40}{-25}[/tex]
[tex]\displaystyle \theta=\arctan (-1.6)[/tex]
The calculator gives us the value
θ = -58°
But the real angle lies on the second quadrant since x is negative and y is positive, thus:
θ = -58° + 180° = 122°
θ = 122°
8. A rectangle is measured to be 6.4 +0.2 cm by 8.3 $0.2 cm.
a) Calculate its perimeter in cm
b) Calculate the uncertainty in its perimeter.
Answer:
a) The perimeter of the rectangle is 29.4 centimeters.
b) The uncertainty in its perimeter is 0.8 centimeters.
Explanation:
a) From Geometry we remember that the perimeter of the rectangle ([tex]p[/tex]), measured in centimeters, is represented by the following formula:
[tex]p = 2\cdot (w+l)[/tex] (1)
Where:
[tex]w[/tex] - Width, measured in centimeters.
[tex]l[/tex] - Length, measured in centimeters.
If we know that [tex]w = 6.4\,cm[/tex] and [tex]l = 8.3\,cm[/tex], then the perimeter of the rectangle is:
[tex]p = 2\cdot (6.4\,cm+8.3\,cm)[/tex]
[tex]p = 29.4\,cm[/tex]
The perimeter of the rectangle is 29.4 centimeters.
b) The uncertainty of the perimeter ([tex]\Delta p[/tex]), measured in centimeters, is estimated by differences. That is:
[tex]\Delta p = 2\cdot (\Delta w + \Delta l)[/tex] (2)
Where:
[tex]\Delta w[/tex] - Uncertainty in width, measured in centimeters.
[tex]\Delta l[/tex] - Uncertainty in length, measured in centimeters.
If we know that [tex]\Delta w = 0.2\,cm[/tex] and [tex]\Delta l = 0.2\,cm[/tex], then the uncertainty in perimeter is:
[tex]\Delta p = 2\cdot (0.2\,cm+0.2\,cm)[/tex]
[tex]\Delta p = 0.8\,cm[/tex]
The uncertainty in its perimeter is 0.8 centimeters.
A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. How far away is the cliff? The speed of sound in air a ordinary temperature is 343 m/s.
Answer:
480.2 m
Explanation:
The following data were obtained from the question:
Speed of sound (v) = 343 m/s.
Time (t) = 2.8 s
Distance (x) of the cliff =?
The distance of the cliff from the woman can be obtained as follow:
v = 2x /t
343 = 2x /2.8
Cross multiply
2x = 343 × 2.8
2x = 960.4
Divide both side by the coefficient of x i.e 2
x = 960.4/2
x = 480.2 m
Therefore, the cliff is 480.2 m away from the woman.
The distance should be 480.2 m
The calculation is as follows:Since A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. And, there is the velocity of 343 m/s
[tex]v = 2x \div t\\\\343 = 2x \div 2.8\\\\2x = 343 \times 2.8[/tex]
2x = 960.4
x = 480.2 m
Learn more: https://brainly.com/question/1504221?referrer=searchResults
When particles get close to the surface, they interact with atoms in
the
(Finish the sentence)
A baseball is thrown across the field. The ____________is measured from where the ball is thrown to where landed was 75 feet.
motion
direction
distance
reference point
Answer:
distance i think
Explanation:
A spinning ice skater will slow down if she extends her arms away from her body. Which of the following statements explain this phenomenon
A) circular motion is always uniform
B) A centripetal force always points outward
C) Angular momentum is always conserved
D) Centripetal acceleration cannot change
Marking brainliest
Answer:
B, which is why ice skaters often keep their arms close to their body when doing spins and jumps to minimize resistance.
Please answer my question
Answer:
Answer is (b) Mercury, venus and Mars.
Explanation:
i think b is correct!!
;-) :-) :-) :-)
"2.40 A pressure of 4 × 106N/m2 is applied to a body of water that initially filled a 4300 cm3 volume. Estimate its volume after the pressure is applied."
Answer:Final volume after pressure is applied=4,292cm3
Explanation:
Using the bulk modulus formulae
We have that The bulk modulus of waTer is given as
K =-V dP/dV
Where K, the bulk modulus of water = 2.15 x 10^9N/m^2
2.15 x 10^9N/m^2= - 4,300 x 4 × 106N/m2 / dV
dV = - 4,300 x 4 × 10^6N/m^2/ 2.15 x 10^9N/m^2
dV (change in volume)= -8.000cm^3
Final volume after pressure is applied,
V= V+ dV
V= 4300cm3 + (-8.000cm3)
=4300cm3 - 8.000cm3
Final Volume, V =4,292cm3
What would happen if there is more male hyenas than female hyenas in a population?
Choices:
Male hyenas will compete to mate with the females.
Some male hyenas will die.
Male hyenas for wait for more females to join the population.
Answer:
Option 1
Explanation:
I always see animals do that
A projectile is shot straight up from the earth's surface at a speed of 11,000 km/hr. How high does it go? ________km?
Taken from "Physics for Scientists and Engineers by Randall D. Knight 2nd Edition. Chapter 13 #34. There is an answer in the database already, but I do not understand it.
Answer:
476.35 km
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 11000 km/hr
Final velocity (v) = 0 km/hr (at maximum height)
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) = ?
Next, we shall convert 9.8 m/s² to km/hr². This is illustrated below:
1 m/s² = 12960 km/hr²
Therefore,
9.8 m/s² = 9.8 m/s² × 12960 km/hr² / 1 m/s²
9.8 m/s² = 127008 km/hr²
Thus, 9.8 m/s² is equivalent to 127008 km/h²
Finally, we shall determine the maximum height reached by the projectile.
This is illustrated below:
Initial velocity (u) = 11000 km/hr
Final velocity (v) = 0 km/hr (at maximum height)
Acceleration due to gravity (g) = 127008 km/hr²
Maximum height (h) = ?
v² = u² – 2gh (since the projectile is going against gravity)
0² = 11000² – (2 × 127008 × h)
0 = 121×10⁶ – 254016h
Collect like terms
0 – 121×10⁶ = – 254016h
– 121×10⁶ = – 254016h
Divide both side by – 254016
h = – 121×10⁶ / – 254016
h = 476.35 km
Thus, the maximum height reached by the projectile is 476.35 km
A model of Earth’s water budget shows that the precipitation on oceans is 420,000 km3 and the precipitation on land is 130,000 km3. If the evaporation from land is 90,000 km3, how much is the evaporation from oceans?
Answer:
Evaporation from oceans = 460,000 km³
Explanation:
Given:
Precipitation on oceans = 420,000 km³
Precipitation on land = 130,000 km³
Evaporation from land = 90,000 km³
Find:
Evaporation from oceans
Computation:
Evaporation from oceans = Precipitation on oceans + Precipitation on land - Evaporation from land
Evaporation from oceans = 420,000 km³ + 130,000 km³ - 90,000 km³
Evaporation from oceans = 460,000 km³
Answer:ccccccC
Explanation:okay
A repeated back and forth or up and down motion is called a
Answer:
A vibration is a repeated back-and-forth or up-and-down motion.
Explanation:
Waves carry energy through empty space or through a medium without transporting matter.
Bob rides his bike with a constant speed of 10 miles per hour. How long will he take to travel a distance of 15 miles?
[tex]{\underline{\pink{\textsf{\textbf{ Answer : }}}}}[/tex]
➡ 150hrs.
[tex]{\underline{\pink{\textsf{\textbf{Explanation : }}}}}[/tex]
➡ Time = distance × speed
➡ Time = 15*10
➡ Time = 150hrs ans.
The earliest mineral observed to showmagnetic properties is called
A leadstone
Blodestone
Cloadstone
Dnone of the above
E all of the above
Answer:
B: lodestone
Explanation:
Each magnet has its magnetic poles, north (N) and south (S). Diversified ones are attracted and reptiles of the same name are repelled, similarly to charges, so it was considered possible to separate the magnet at the north and south poles.
Magnetic properties can be lost if the magnet is exposed to high temperatures if it falls or due to some mechanical shocks.
A man walks south at a speed of 2.00 m/s for 60.0 minutes. He then turns around and walks north a distance 3000 m in 25.0 minutes. What is the average velocity of the man during his entire motion?
Answer:
v = 0.823 m/s
Explanation:
A man walks south at a speed of 2.00 m/s for 60.0 minutes.
The distance covered in South = 60 × 60 × 2 = 7200 m
He then turns around and walks north a distance 3000 m in 25.0 minutes.
As they moved in opposite direction, net displacement will be : 7200 - 3000 = 4200 m
Average velocity of the man = net displacement/time
[tex]v=\dfrac{4200\ m}{(60+25)\times 60}\\\\=0.823\ m/s[/tex]
So, the average velocity of the man is 0.823 m/s.
A ball is kicked off the ground reaching a maximum height of 60m and lands 80m away. Calculate the initial speed and the angle above the horizontal of the ball when it was kicked
Answer:
36.87°
Explanation:
Given
Maximum height = 60m
Horizontal distance (range) = 80,m
Required
Initial speed U
Angle of launch
To get the speed, we will use the range formula;
R = U √2H/g
80 = U√2(60)/9.8
80 = U√12.25
80 = 3.5U
U = 80/3.5
U = 22.86m/s
Get the angle of launch
Using the formula
Theta = tan^-1(y/x)
y is the vertical distance
x is the horizontal distance
Theta = tan^-1(60/80)
Theta = tan^-1(0.75)
Theta = 36.87°
Hence the angle of launch is 36.87°
A racecar accelerates from rest at 6.5 m/s2 for 4.1 s. How fast will it be going at the end of that time?
Answer:
The final velocity of the car is 26.65 m/s.
Explanation:
Given;
acceleration of the racecar, a = 6.5 m/s²
initial velocity of the car, u = 0
time of motion, t = 4.1 s
The final velocity of the car is given by;
v = u + at
where;
v is the final velocity of the car
suvstitute the givens
v = 0 + (6.5)(4.1)
v = 26.65 m/s.
Therefore, the final velocity of the car is 26.65 m/s.
A large pizza is cut into 8 even slices. A person orders 4 large pizzas from a restaurant. How many total slices of pizza did the person order?
Answer:
32 slicesExplanation:
Step one:
given data
we are told that 1 large pizza can be cut into 8 even slices
Required
we want to find how many slices are there in 4 large pizzas
Step two:
so if 1 pizza has 8 slices
4 pizza will have x
cross multiply we have
x= 8*4
x=32 slices
Answer as soon as possible
Answer:
the velocity of the acorn
Explanation:
just do in in real life and see
Answer:
it is probably the velocity of the acorn
A cheetah can maintain a maximum constant velocity of 34.2 m/s for 8.70 s. What is
the displacement the cheetah covered at that velocity?
Answer:
297.54mExplanation:
step one:
given data
velocity v=34.2m/s
time t= 8.7s
Step two
Required is the distance the cheetah has covered on the condition
we know that speed= distance/time
make distance subject of formula we have
distance= velocity *time
distance= 34.2*8.7
distance = 297.54m
Therefore the displacement the cheetah covered at that velocity
is 297.54m
during a baseball game you are running home and slide into home plate. However you come up short and you are tagged out. Which force stops you from sliding all the way home? a friction b gravity c pull d push
Answer:1 because
Explanation: it’s pointing to the earth and gravity
Pulls things down to earth
A projector lens projects an image from a 6.35 cm wide LCD screen onto a
screen 3.25 m wide. If the focal length of the projector lens is 13.8 cm, the screen
must be how far from the projector
Answer:
For any given projector, the width of the image (W) relative to the throw distance (D) is know as the throw ratio D/W or distance over width. So for example, the most common projector throw ratio is 2.0. This means that for each foot of image width, the projector needs to be 2 feet away or D/W = 2/1 = 2.0.
If the particles were moving with a speed much less than c, the magnitude of the momentum of the second particle would be twice that of the first. However, what is the ratio of the magnitudes of momentum for these relativistic particles?
Answer:
p₂ / p₁ = 2 (v₁ / v₂)
Explanation:
The moment is a very useful concept, since it is one of the quantities that is conserved during shocks and explosions, for which it had to be redefined to be consistent with special relativity,
p = m v / √[1+ (v/c)² ]
for the case of speeds much lower than the speed of light this expression is close to
p = m v
In this exercise they indicate that the moment of the second particle is twice the moment of the first, when their velocities are small
p₂ = 2 p₁
p₂/p₁ = 2
in consecuense
m v₂ = 2 m v₁
v₂ = 2 v₁
consider particles of equal mass.
By the time their speeds increase they enter the relativistic regime
p₂ = mv₂ /√(1 + v₂² /c²)
p₁ = m v₁ /√(1 + v₁² / c²)
let's look for the relationship between these two moments
p₂ / p₁ = mv₂ / mv₁ [√ (1+ v₁² / c²) /√ (1 + v₂² / c²)
from the initial statement
p₂ / p₁ = 2 √(c² + v₁²) / (c² + v₂²)
we take c from the root
p₂ / p₁ = 2 √ [(1+ v₁²) / (1 + v₂²)]
this is the exact result, to have an approximate shape suppose that the velocities are much greater than 1
p₂ / p₁ = 2 √ [v₁² / v₂²] = 2 √ [(v₁ / v₂)²]
p₂ / p₁ = 2 (v₁ / v₂)
we see the value of the moment depends on the speed of the particles
A ball is thrown vertically upward with an initial velocity of 23 m/s. What are its position and velocity after 2 s?
Answer:
The position of the ball after 2 s is 26.4 mThe velocity of the ball after 2 s is 3.4 m/sExplanation:
Given;
initial velocity of the ball, u = 23 m/s
time of motion, t = 2 s
The position of the ball after 2 s is given by;
h = ut - ¹/₂gt²
h = (23 x 2) - ¹/₂ x 9.8 x 2²
h = 46 - 19.6
h = 26.4 m
The velocity of the ball after 2 s is given by;
v² = u² + 2(-g)h
v² = u² - 2gh
v² = 23² - (2 x 9.8 x 26.4)
v² = 529 - 517.44
v² = 11.56
v = √11.56
v = 3.4 m/s
What is the current in the wire now?
Answer:
220v
Explanation:
Sorry, the question is incomplete
Answer:
on the potential difference applied and on the resistance of the wire.
Explanation:
Ohms law state that the current through a conductor between two points is directly proportional to the potential difference across the two points. Imtroducing the comstant of proportionality, the resistance, one arrives at the usual athematical equation that describes this relationship: I = V/R.
2. Which bicyclist was traveling the fastest at the end of the race?
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, to determine the bicyclist that traveled the fastest at the end of the race, the speed of the bicyclists at the end of the race will determine this (not the bicyclist that came first nor there overall speed). The speed of the bicyclist at the end of the race can be determined by using the formula below
s = d ÷ t
Where s is the speed of each bicyclist at the end of the race
d is the specific distance covered by the bicyclist at the end of the race
t is the time taken for the bicyclist to complete that distance
It should be noted that to get an accurate result, the distance covered at the end of the race must be the same for all the bicyclists.
How much work is done by the gravitational force on the block?
Answer:
Work = Mass * Gravity * Height and is measured in Joules. Imagine you find a 2 -Kg book on the floor and lift it 0.75 meters and put it on a table. Remember, that “force” is simply a push or a pull. If you lift 100 kg of mass 1-meter, you will have done 980 Joules of work.
Explanation: