Answer:
D. SSS theorem
Step-by-step explanation:
The triangles have similarity by 3 sides:
4/12=5/15=7/21So the answer is SSS
The line of reflection is the ____. y-axis, center of rotation, x-axis
Answer:The line of reflection is the y axis
Step-by-step explanation:
Edwin has 3 1 2 gallons of green paint. He uses 2 3 of the paint to paint his bedroom. He uses the rest of the paint for a mural in his garage. How much paint does Edwin use for the mural?
Answer:
1 1/6
Step-by-step explanation:
Edwin used a quantity of 2.833 gallons of paint for the mural which is the difference between the quantity of paint at the beginning and the used for the bedroom.
We have been given that Edwin has 3 1/2 gallons of green paint. He uses 2/3 of the paint to paint his bedroom. He uses the rest of the paint for a mural in his garage.
What is the fraction?A fraction is defined as a numerical representation of a part of a whole that represents a rational number.
To determine the quantity of paint Edwin used for the mural.
The quantity of paint Edwin used for the mural is the difference between the quantity of paint at the beginning and the used for the bedroom.
The quantity of paint used for the mural = 3 1/2 gallons - 2/3 gallons
The quantity of paint used for the mural = 3.5 - 0.66
The quantity of paint used for the mural = 2.833
Thus, Edwin used a quantity of 2.833 gallons of paint for the mural.
Learn more about the fractions here:
brainly.com/question/10354322
#SPJ2
Consider the differential equation4y'' − 4y' + y = 0; ex/2, xex/2.Verify that the functions ex/2 and xex/2 form a fundamental set of solutions of the differential equation on the interval (−[infinity], [infinity]).The functions satisfy the differential equation and are linearly independent since W(ex/2, xex/2) =
Step-by-step explanation:
Let y1 and y2 be (e^x)/2, and (xe^x)/2 respectively.
The Wronskian of them functions be
W = (y1y2' - y1'y2)
y1 = (e^x)/2 = y1'
y2 = (xe^x)/2
y2' = (1/2)(x + 1)e^x
W = (1/4)(x + 1)e^(2x) - (1/4)xe^(2x)
= (1/4)(x + 1 - x)e^(2x)
W = (1/4)e^(2x)
Since the Wronskian ≠ 0, we conclude that functions are linearly independent, and hence, form a set of fundamental solutions.
Answer:
W = (1/4)(x + 1)e^(2x) - (1/4)xe^(2x)
= (1/4)(x + 1 - x)e^(2x)
W = (1/4)e^(2x)
Step-by-step explanation:
Can anyone help me with the answer please
Answer:
All real numbers
Step-by-step explanation:
The domain is where the graph touches all of the x-coordinates. This parabola touches all x-coordinates from -infinity to +infinity (all real numbers) because it continues outward forever.
Answer: all real numbers
Step-by-step explanation:
The domain is how many x values are possible, but there is no limit to that, it is infinite. So the domain is all real numbers.
c) Consider the time 3:40pm where the initial side is the hour hand and terminal side is the
minute hand. Draw the angle between the two hands in standard position. State the angle in
positive degrees and then restate the angle as a negative angle. (2 pts.)
Answer:
210 degrees-150 degreesStep-by-step explanation:
When the time is 3:40pm
The Initial Side (hour hand) is at 3.Terminal Side (Minute hand) is at 8.(a)The angle between the two hands in standard position is drawn and attached below.
(b)Now, each hour = 30 degrees
Therefore, the angle between 3 and 8 in an anticlockwise movement
= 7 X 30 =210 degrees
Stating the angle as a negative angle, we have:
[tex]210^\circ-360^\circ=-150^\circ\\$The angle as a negative angle is -150^\circ[/tex]
Which leader was a member of the Kikuyu tribe?
A. Kwame Nkrumah
B. Marcus Garvey
C. Mohandas Gandhi
D. Jomo Kenyatta
Answer:
Jomo Kenyatta
Step-by-step explanation:
Jomo Kenyatta was a Kenyan politician, who was one of the first African anti-colonial figures. He became the prime minister of Kenya from 1963 to 1964, and after Kenyan independence in 1964, he became president of Kenya. Jomo Kenyatta was born into a family of Kikuyu farmers in Kiambu, present day Kenya which was then, British East Africa. He had his basic schooling in a missionary school before proceeding to study at Moscow's Communist University of the Toilers of the East, University College London, and the London School of Economics.
Answer:
Jomo Kenyatta
Step-by-step explanation:
took the test
What type of error is present in the underlined
sentence?
Which is the best revision to fix the error?
Answer:
Type of error: Run-on(comma splice).
Best revision to fix it: Adding a semicolon after beginners .
Explanation:
A run-on sentence is described as a sentence in which two independent clauses are joined inappropriately. It could be either comma splice where the two independent clauses are incorrectly linked using a comma or fused sentence when the two clauses run-on without employing appropriate coordinating conjunction or punctuation marks to separate the two ideas.
In the given sentence, it exemplifies a comma splice type of run-on sentence error. To fix this error, a semicolon after 'beginners' can be employed instead of a comma. This will help in connecting the two ideas appropriately where the first idea leads the second. Thus, the final sentence reads as:
'The guitar is another excellent instrument for beginners; however, it takes more practice than a recorder.'
Answer:
Many people play a musical instrument music can be soothing. A lot of schools teach the recorder; it is inexpensive and easy to play. The guitar is another excellent instrument for beginners, it takes more practice than a recorder.
What type of error is present in the underlined sentence?
✔ run-on
Which is the best revision to fix the error?
✔ adding a semicolon after instrument
Step-by-step explanation:
Data on the number of work days missed and the annual salary increase for a company’s employees show that, in general, employees who missed more days of work during the year received smaller raises than those who missed fewer days. A detailed analysis shows that the number of days missed explains 60% of the variation in salary increases. What is the correlation between the number of days missed and salary increase?
Answer:
Step-by-step explanation:
Correlation describes how strongly pairs of given variablé are related. In this case, a detailed analysis that was carried out shows that the number of days missed by employees explains 60% of the variation in salary increases and also impressed upon this fact that employees who missed more days of work during the year received smaller raises than those who missed fewer days.
From the analysis, we can draw a conclusion that there is a correction between days missed and variation in salary increase and that this type of correction is a negative correlation where an increase in the number of days missed will lead to a decrease in the raises awarded to each employee.
P(x)=3x² + 4x³-8+x⁴-7x Degree; Type; Leading coefficent;
Answer:
Degree: 4; Type: quartic; Leading coefficient: 1
Step-by-step explanation:
A utility company offers a lifeline rate to any household whose electricity usage falls below 240 kWh during a particular month. Let A denote the event that a randomly selected household in a certain community does not exceed the lifeline usage during January, and let B be the analogous event for the month of July (A and B refer to the same household). Suppose P(A) = 0.7, P(B) = 0.5, and P(A ∪ B) = 0.8. Compute the following.a. P(A ∩ B).b. The probability that the lifeline usage amount is exceeded in exactly one of the two months.
Complete question is;
A utility company offers a lifeline rate to any household whose electricity usage falls below 240 kWh during a particular month. Let A denote the event that a randomly selected household in a certain community does not exceed the lifeline usage during January, and let B be the analogous event for the month of July (A and B refer to the same household). Suppose P(A) = 0.7, P(B) = 0.5, and P(A ∪ B) = 0.8. Compute the following.
a. P(A ∩ B).
b. The probability that the lifeline usage amount is exceeded in exactly one of the two months.
Answer:
A) 0.4
B) 0.4
Step-by-step explanation:
We are given;
P(A) = 0.7, P(B) = 0.5, and P(A ∪ B) = 0.8
A) To solve this question, we will use the the general probability addition rule for the union of two events which is;
P(A∪B) = P(A) + P(B) − P(A∩B)
Making P(A∩B) the subject of the equation, we have;
P(A∩B) = P(A) + P(B) − P(A∪B)
Thus, plugging in the relevant values, we have;
P(A∩B) = 0.7 + 0.5 - 0.8
P(A∩B) = 0.4
B)The probability that the lifeline usage amount is exceeded in exactly one of the two months can be described in terms of A and B as:
P(A but not B) + P(B but not A) = P(A∩B') + P(B∩A')
where;
A' is compliment of set A
B' is compliment of set B
Now,
P(A∩B') = 0.7 − 0.4 = 0.3
P(B∩A') = 0.5 − 0.4 = 0.1
Thus;
P(A but not B) + P(B but not A) = 0.1 + 0.3 = 0.4
The heights of adult men in America are normally distributed, with a mean of 69.8 inches and a standard deviation of 2.69 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.1 inches and a standard deviation of 2.55 inches.
Required:
a. If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)?
b. What percentage of men are SHORTER than 6 feet 3 inches?
c. If a woman is 5 feet 11 inches tall, what is her z-score (to two decimal places)?
d. What percentage of women are TALLER than 5 feet 11 inches?
Answer:
a) 1.93
b) 97.32% of men are SHORTER than 6 feet 3 inches
c) 2.71
d) 0.34% of women are TALLER than 5 feet 11 inches
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
a. If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)?
For man, [tex]\mu = 69.8, \sigma = 2.69[/tex]
A feet has 12 inches, so this is Z when X = 6*12 + 3 = 75. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{75 - 69.8}{2.69}[/tex]
[tex]Z = 1.93[/tex]
b. What percentage of men are SHORTER than 6 feet 3 inches?
Z = 1.93 has a pvalue of 0.9732
97.32% of men are SHORTER than 6 feet 3 inches
c. If a woman is 5 feet 11 inches tall, what is her z-score (to two decimal places)?
For woman, [tex]\mu = 64.1, \sigma = 2.55[/tex]
Here we have X = 5*12 + 11 = 71.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{71 - 64.1}{2.55}[/tex]
[tex]Z = 2.71[/tex]
d. What percentage of women are TALLER than 5 feet 11 inches?
Z = 2.71 has a pvalue of 0.9966
1 - 0.9966 = 0.0034
0.34% of women are TALLER than 5 feet 11 inches
∠A and ∠B are supplementary, and ∠A and ∠C are supplementary. Which conclusion is valid? Select one: A. ∠B and ∠C are supplementary. B. ∠B and ∠C are acute. C. ∠B and ∠C are complementary. D. ∠B and ∠C are congruent.
Option D is the correct answer.
Answer:
D. ∠B and ∠C are congruent.
Step-by-step explanation:
Since, ∠A and ∠B are supplementary.
Therefore,
∠A + ∠B = 180°.....(1)
Since, ∠A and ∠C are supplementary.
Therefore,
∠A + ∠C = 180°.....(2)
From equations (1) & (2)
∠A + ∠B = ∠A + ∠C
=> ∠B = ∠C
Hence, ∠B and ∠C are congruent.
A group of campers is going to occupy 4 campsites at a campground. There are 14 campsites from which to choose. In how many ways can the campsites be chosen?
There are
possible ways to choose the campsites.
Check
Enter your answer in the answer box and then click Check Answer.
Clear All
All parts showing
Answer:
24024 are the total number of ways of choosing 4 campsites out of 14.
Step-by-step explanation:
We are given that there are a total of 14 campsite out of which 4 campsites are to be chosen.
It is a simple example of selection problem.
Number of ways to choose the first campsite = 14
Now, one campsite is chosen, 13 campsites are left.
Therefore,
Number of ways to choose the second campsite = 13
Now, one more campsite is chosen, 12 campsites are left.
Therefore,
Number of ways to choose the third campsite = 12
Now, one more campsite is chosen, 11 campsites are left.
Therefore,
Number of ways to choose the fourth campsite = 11
So, total number of ways for choosing 4 campsites out of 14:
14 [tex]\times[/tex] 13 [tex]\times[/tex] 12 [tex]\times[/tex] 11 = 24024
Hence, answer is 24024.
Approximately 10% of all people are left-handed. If 200 people are randomly selected, what is the expected number of left-handed people? Round to the whole number. Do not use decimals. Answer:
Answer:
N(L) = 20
The expected number of left handed people is 20.
Step-by-step explanation:
Given;
Percentage of left handed people P(L) = 10%
Total number of selected people N(T) = 200
The Expected number of left handed people N(L) is;
N(L) = Total number of selected people × Percentage of left handed people/100%
N(L) = N(T) × P(L)/100%
Substituting the given values;
N(L) = 200 × 10%/100%
N(L) = 200 × 0.1
N(L) = 20
The expected number of left handed people is 20.
hey guys, can you help me please
=========================================================
Work Shown:
The green triangle in the back has height 2.6 and an unknown base x. Half of this is x/2, which I'll call y. So y = x/2.
The green triangle in the back is split along the vertical dotted line to get two right triangles. The base of each right triangle is y = x/2.
Use the Pythagorean theorem to find y. Use that to find x
a^2+b^2 = c^2
y^2+(2.6)^2 = (3.2)^2
y^2 + 6.76 = 10.24
y^2 = 10.24 - 6.76
y^2 = 3.48
y = sqrt(3.48) .... apply square root
y = 1.8654758 approximately
x/2 = 1.8654758
x = 2*1.8654758
x = 3.7309516 also approximate
The base of the triangle is roughly 3.7309516 meters
We can now find the area of one green triangle
area of triangle = base*height/2 = 3.7309516*2.6/2 = 4.85023708
two triangles have approximate area 2*(4.85023708) = 9.70047416
----------------------------------
So far we've only considered the triangular faces. There are 3 more faces which are the rectangular sides. These are known as the lateral sides.
One way to get the lateral surface area is to multiply the perimeter of the triangle by the depth of the prism
perimeter of triangle = (side1)+(side2)+(side3)
perimeter = 3.7309516 + 3.2 + 3.2
perimeter = 10.1309516
lateral surface area = (depth)*(perimeter)
lateral surface area = (8.26)*(10.1309516)
lateral surface area = 83.681660216
----------------------------------
The last step is to add this lateral surface area onto the area of the two triangles to get the full surface area
surface area = (triangular area) + (lateral surface area)
surface area = (9.70047416) + (83.681660216)
surface area = 93.382134376
surface area = 93.382 square cm
) Let an denote number of n-digit ternary sequences (sequences of 0,1 and 2) which have no consecutive 0’s in them. Find a recurrence relation for an. (Do not solve the recurrence. However, depending on the order of the recurrence, provide a sufficient number of initial conditions. )
Answer:
The recurrence relation for aₙ is aₙ = 2aₙ - 1 + 2aₙ -2 ; is n≥ 3 with the initial conditions as a₁ =3; a₂ = 8
Step-by-step explanation:
Solution
Recurrence relation for n - digit ternary sequence with no occurrence of consecutive 0's in them.
Ternary sequence is sequence with each of digits either 0, 1 or 2.
Now
Let aₙ = denote the number of n - digit ternary sequence with no occurrence of consecutive 0's in them.
Let us first find few initial values of aₙ
For n = 1
a₁ represent the number of 1- digit ternary sequence with no occurrence of consecutive 0's in them.
This 1-digit sequence can be either 0 or 1 or 2.
Thus,
a₁ = 3
For n =2
a₂ represent the number of 2- digit ternary sequence with no occurrence of consecutive 0's in them.
This 2-digit sequence can have either 0 or 1 or 2 as each of its two digit, but making sure that there are no two consecutive 0 in the sequence.
here are " 9 " 2-digit ternary sequence ........... (three choices for 1st digit and three choices for 2nd digit)
But one of these 9 sequence there are consecutive 0's .... (00)
So we eliminate this one sequence.
So, a₂ = 8
Now
let us find the recurrence relation
Fir n ≥ 3
aₙ s the number of n - digit ternary sequence with no occurrence of the consecutive 0's in them.
For the first case: if 1st digit of this n - digit ternary sequence is 1 or 2
Let assume the 1st digit of this n - digit ternary sequence is 1.
Then for remaining n - 1 digits of this n - digit ternary sequence we have to make sure that there is no consecutive 0's in them.
For example, we have to form a n-1-digit ternary sequence with no occurrence of consecutive 0's in them which is by definition aₙ -1
So,
The number of n - digit ternary sequence with no occurrence of consecutive 0's in them if 1st digit of this sequence is 1 is aₙ -1.
Likewise, the number of n - digit ternary sequence with no occurrence of consecutive 0's in them if 1st digit of this sequence is 2 is aₙ -1.
So
If 1st digit of this n - digit ternary sequence is 1 or 2, then the number of n - digit ternary sequence with no occurrence of consecutive 0's in them is shown as:
aₙ-1 + aₙ -1 = 2aₙ -1
For the second case: if 1st digit of this n - digit ternary sequence is 0
If 1st digit of this n - digit ternary sequence is 0, then the next digit cannot be 0 as well because that would make two consecutive 0's in the sequence Thus,
If 1st digit of this n - digit ternary sequence is 0, the next term can be either 1 or 2.
So there are 2 choices for 2nd digit.
After this there are more n-2 digits.
Then
For remaining n - 2 digits of this n - digit ternary sequence we have to make sure that there is no consecutive 0's in them
For example, we have to form a n-2-digit ternary sequence with no occurrence of consecutive 0's in them. which is by definition aₙ - 2.
Now,
The total number of sequence in this case is given as:
2aₙ -2........... (2 choices for 2nd digit and aₙ - 2 choices for remaining n-2 digit)
Hence
The number of n - digit ternary sequence with no occurrence of consecutive 0's in them if 1st digit of this sequence is 0 is aₙ = 2aₙ - 1 + 2aₙ -2 which is n≥ 3
Now,
The recurrence relation for aₙ is shown below:
aₙ = 2aₙ - 1 + 2aₙ -2; is n≥ 3
With the initial conditions as a₁ =3; a₂ = 8
⅝ of a school's population are girls. There are 129 boys. If each classroom can hold 25 students. How many classroom does the school have ?
Answer:
AT least 14 classrooms to hold the total number of students
Step-by-step explanation:
Since we don't know the numer of girls in the school, let's call it "x".
What we know is that the number of girls plus the number of boys gives the total number of students. This is:
x + 129 = Total number of students
Now, since 5/8 of the total number of students are girls, and understanding that 5/8 = 0.625 in decimal form, then we write the equation that states:
"5/8 of the school's population are girls" as:
0.625 (x + 129) = x
then we solve for "x":
0.625 x + 0.625 * 129 = x
0.625 * 129 = x - 0.625 x
80.625 = x (1 - 0.625)
80.625 = 0.375 x
x = 80.625/0.375
x = 215
So now we know that the total number of students is: 215 + 129 = 344
and if each classroom can hold 25 students, the number of classroom needed for 344 students is:
344/25 = 13.76
so at least 14 classrooms to hold all those students
if 3x+2y=72 and y=3x, then x whoever solve I give them all my points
Answer:
[tex]x=8[/tex]
[tex]y=24[/tex]
Step-by-step explanation:
3x+2y=72
If y=3x, we plug it into our equation and get:
3x+2×3x=72
3x+6x=72
9x=72
Divide both sides by 9
x=8
Answer:
x = 8
Step-by-step explanation:
3x + 2y = 72
Put y as (3x), and solve for x.
3x + 2(3x) = 72
Multiply 2(3x).
3x + 6x = 72
Add like terms 3x and 6x.
9x = 72
Divide 9 into both sides and isolate x.
x = 72/9
x = 8
The value of x is 8.
Tyler drew a figure that has two pairs of equal sides, four angles formed by perpendicular lines, and two pairs of parallel sides. What geometric term best describes the figure Tyler drew? What geometric term best describes the figure Tyler drew?
Answer:
A shape with two pairs of parallel lines, perpendicular lines, and two pairs of equal sides can be best described as a rectangle.
The management of a chain of frozen yogurt stores believes that t days after the end of an advertising campaign, the rate at which the volume V (in dollars) of sales is changing is approximated by V ' ( t ) = − 26400 e − 0.49 t . On the day the advertising campaign ends ( t = 0 ), the sales volume is $ 170 , 000 . Find both V ' ( 6 ) and its integral V ( 6 ) . Round your answers to the nearest cent.
Answer:
Step-by-step explanation:
Given the rate at which the volume V (in dollars) of sales is changing is approximated by the equation
V ' ( t ) = − 26400 e^− 0.49 t .
t = time (in days)
.v'(6) can be derived by simply substituting t = 6 into the modelled equation as shown:
V'(6) = − 26400 e− 0.49 (6)
V'(6) = -26400e-2.94
V'(6) = -26400×-0.2217
V'(6) = $5852.88
V'(6) = $5,853 to nearest dollars
V'(6) = 585300cents to nearest cent
To get v(6), we need to get v(t) first by integrating the given function as shown:
V(t) = ∫−26400 e− 0.49 t dt
V(t) = -26,400e-0.49t/-0.49
V(t) = 53,877.55e-0.49t + C.
When t = 0, V(t) = $170,000
170,000 = 53,877.55e-0 +C
170000 = 53,877.55(2.7183)+C
170,000 = 146,454.37+C
C = 170,000-146,454.37
C = 23545.64
V(6) = 53,877.55e-0.49(6)+ 23545.64
V(6) = -11,945.63+23545.64
V(6) = $11,600 (to the nearest dollars)
Since $1 = 100cents
$11,600 = 1,160,000cents
AC =
Round your answer to the nearest hundredth.
A
5
35
B
C
Answer:
2.87 = AC
Step-by-step explanation:
Since this is a right triangle we can use trig functions
sin theta = opp / hyp
sin 35 = AC /5
5 sin 35 = AC
2.867882182= AC
To the nearest hundredth
2.87 = AC
If the denominator of 5/9 is increased by a number and the numerator is doubled, the result is 1. Find the number.
◇Given :-
The denominator of a fraction is increased by a number and numerator will be doubled
To find
We have to find the required number or fraction
[tex]\underline{\bigstar{\sf\ \ Solution:-}}[/tex]
Now let us consided as the number be a
Then
[tex]\underline{\bigstar{\textit\ According\ to \ Question:-}}[/tex]The given fraction is 5/9
[tex]:\implies\sf \dfrac{5\times 2}{9+a}= 1\\ \\ \\ :\implies\sf \dfrac{10}{9+a}=1\\ \\ \\ :\implies\sf 10= 1(9+a)\\ \\ \\ :\implies\sf 10-9=a\\ \\ \\ :\implies\sf 1=a [/tex]
[tex]\underline{\therefore{\textit{\textbf { The \ required \ number \ is \ 1}}}}[/tex]P(AB) can be read as "the probability that A occurs given that Bhas
occurred."
A. True
B. False
Answer:
False
Step-by-step explanation:
from *millermoldwarp*
"Events are called dependent when the probability of an event depends on the occurrence of another. When event A depends on event B, the probability that A occurs, given that B has occurred, is different from the probability that A occurs only ."
hopes this helps
Answer:false
Step-by-step explanation:
For every 1% increase in
unemployment, there is a 2%
decrease in potential GDP. This
creates a GDP gap. What is the GDP
gap when there is 4.5%
unemployment?
Answer:
The GDP gap is 9 % when there is 4.5 % unemployment.
Step-by-step explanation:
The statement shows a reverse relationship, where an increase in unemployment is following by decrease in potential GDP and can be translated into the following rate:
[tex]r = \frac{2\,\% \,GDP}{1\,\% unemp.}[/tex]
The GDP gap at a given increase in unemployment can be estimated by the following expression:
[tex]\frac{g}{u} = r[/tex]
[tex]g = r\cdot u[/tex]
Where:
[tex]r[/tex] - GDP gap-unemployment increase rate, dimensionless.
[tex]u[/tex] - Increase in unemployment rate, measured in percentage.
[tex]g[/tex] - GDP gap, measured in percentage.
If [tex]r = \frac{2\,\% \,GDP}{1\,\% unemp.}[/tex] and [tex]u = 4.5\,\%\,unemp.[/tex], the GDP gap is:
[tex]g = \left(\frac{2\,\%\,GDP}{1\,\%\,unemp.} \right)\cdot (4.5\,\%\,unemp.)[/tex]
[tex]g = 9\,\%\,GDP[/tex]
The GDP gap is 9 % when there is 4.5 % unemployment.
deandre saves rare coins. he starts his collection with 14 coins and plans to save 3 coins each month. write an equation to represent the number of coins saved, y, in terms of the number of months, x. if deandre saved for 30 months, how many coins will he have?
Answer:
equation: y = 3x + 14
number of coins after 30 months: 104 coins
Hope this helps :)
An equation is formed of two equal expressions. The number of coins that will be with Deandre after a period of 30 months is 104 coins.
What is an equation?An equation is formed when two equal expressions are equated together with the help of an equal sign '='.
As it is given that in the initial phase Deandre saves 14 coins. While he adds 3 coins each month. Therefore, the equation that will represent the number of coins that Deandre will have after a period of x months can be written as,
y = 14 + 3x
where y is the number of coins and x is the number of months.
After a period of x=30 months, the number of coins that will be with Deandre can be written as,
[tex]y = 14 + 3x\\\\y = 14 + 3(30)\\\\y = 104[/tex]
Thus, the number of coins that will be with Deandre after a period of 30 months is 104 coins.
Learn more about Equation:
https://brainly.com/question/2263981
What is the area of the triangle below?
18
Answer:
D. 32 sq. unit s
Step-by-step explanation:
4×18/2=32
What number should go in the space? Multiplying by 0.65 is the same as decreasing by _____%
Answer: 35%
Step-by-step explanation:
If no is 10, 10 x 0.65 = 6.5. OR
10 - 35% of 10 = 6.5
Multiplying by 0.65 is the same as decreasing by 35%
Conversion of statements into algebraic expression:To convert the statement into algebraic expression choose the variables first.Then form the expression or equation as per given statements.
Let the number is 'a' and percentage decrease is 'b',
Expression for the given statement will be,
a × 0.65 = a - (b% of a)
[tex]0.65a=a(1-\frac{b}{100})[/tex]
[tex]0.65=1-\frac{b}{100}[/tex]
[tex]\frac{b}{100}=1-0.65[/tex]
[tex]b=100(0.35)[/tex]
[tex]b=35[/tex]
Therefore, Multiplying by 0.65 is the same as decreasing by 35%.
Learn more about the Algebraic expressions for the statements here,
https://brainly.com/question/2043566?referrer=searchResults
Un importante grupo de inversionistas, asociado a una línea de buses interurbanos, está considerando instalar un centro logístico de mantención, a usted le ha encargado la evaluación de este proyecto, considerando un horizonte de 5 años. el estudio técnico del proyecto indica que se requiere disponer de un galpón 1000 m2 dentro de las instalaciones que la empresa ya cuenta, además de un acceso pavimentado con cimientos especiales de 6000 m2. el costo de construcción del galpón es de $ 42 por m2, y el costo de construcción del acceso pavimentado es de $ 32 por cada m2. adicionalmente, se requiere adquirir servidores de punta para realizar el check de los buses antes de comenzar sus recorridos, su costo se estima en $ 630.000, además se necesitan equipos especiales para la revisión de los neumáticos, con un costo de $ 400.000. finalmente, se deberá conseguir un terreno al interior del terminal de buses, con una superficie de 1 m2, con un costo de $50 por m2.
Answer:
Monto total de inicio requerido, de acuerdo con los detalles proporcionados en la pregunta = $ 1,264,000
Total start-up amount required, according to the details provided in the question = $1,264,000
Step-by-step explanation:
- Hay 1000 m² de espacio de almacén para construir a $ 42 por m². Dinero total requerido = 1000 × 42 = $ 42,000.
- Hay 6000 m² de espacio de acceso pavimentado para construir a $ 32 por m². Dinero total requerido = 6000 × 32 = $ 192,000.
- Compra de servidores de última generación para revisar los autobuses antes de comenzar sus recorridos. Costo total = $ 630,000.
- Se necesita comprar equipo especial para revisar los neumáticos. Costo = $ 400,000.
Monto total de inicio requerido, de acuerdo con los detalles proporcionados en la pregunta = 42000 + 192000 + 630000 + 400000 = $ 1,264,000
¡¡¡Espero que esto ayude!!!
English Translation
- There is 1000 m² of warehouse space to construct at $42 per m². Total required money = 1000 × 42 = $42,000
- There is 6000 m² of paved access space to construct at $32 per m². Total money required = 6000 × 32 = $192,000
- Purchase of state-of-the-art servers to check the buses before starting their tours. Total Cost = $630,000
- Purchase of special equipment is needed to check the tires. Cost = $400,000
Total start-up amount required, according to the details provided in the question = 42000 + 192000 + 630000 + 400000 = $1,264,000
Hope this Helps!!!
Anthony brought an 8 -foot board. He cut off 3/4 of the board to build a shelf and gave 1/3 of the rest to his brother for an art project. How many inches long was the piece Anthony gave to his brother?
Answer: 7.2 inches
Step-by-step explanation:
3/4th of 8 feet = 6 ft.
Balance = 2 feet
1/3 of 2 feet = 2/3 = 0.67 ft = 8 inches
European car company advertises that their
car gers 9.4 Kilometers per liter of gasoline. Convert
this figure to miles per galllon
Answer:
22.11 miles per gallon
Step-by-step explanation:
1 km = 0.621371 miles
1 litre = 0. 264172 gallon
Given
Mileage of car = 9.4 Milometers per liter of gasoline
Mileage of car = 9.4 Km/ litres
now we will use 0.621371 miles for Km and 0. 264172 gallon for litres
Mileage of car = 9.4 * 0.621371 miles/ 0. 264172 gallon
Mileage of car = 9.4 * 2.3521 miles/ gallon
Mileage of car = 22.11 miles/ gallon
Thus, 9.4 Km/litres is same as 22.11 miles per gallon.