What mass of benzene is cooled from 83.8 °C to 77.1 °C when 167 J of energy is transferred out of the system? (The specific heat of benzene is 1.740 J/g °C).

Answers

Answer 1

Answer:

14.32g

Explanation:

Initial temperature = 83.8°C

Final temperature = 77.1°C

Temperature change, ΔT = 83.8°C - 77.1°C = 6.7

Heat, H = 167J

Specific heat, c = 1.740J/g °C

m = ?

All these parameters are related with the equation below;

H = mcΔT

m = H / cΔT

m = 167 /  (1.740 * 6.7)

m = 167 / 11.658 = 14.32g


Related Questions

What volume of water is required to dilute 120 cm3 of 10 mol dm–3 sulphuric acid to a concentration of 2 mol dm–3?​

Answers

Answer:

0.48 dm3  (or 480 cm3)

Explanation:

First find the original no. of moles existing in the sulphuric acid:

no. of moles = volume (in dm3) x concentration

                     = 120/1000 x 10

                     = 1.2 mol

Then let the total volume of the diluted acid be v dm3.

Since

Concentration = no. of moles / volume,

so by substituting the given information,

2 = 1.2 / v

v = 0.6 dm3

Hence, the volume of water required

= 0.6 - 120/1000

= 0.48 dm3  (or 480 cm3)

Considering the definition of dilution, 600 cm³ of water is required to dilute 120 cm³ of 10 [tex]\frac{mol}{dm^{3} }[/tex] sulphuric acid to a concentration of 2 [tex]\frac{mol}{dm^{3} }[/tex].

First of all, you have to know that when it is desired to prepare a less concentrated solution from a more concentrated one, it is called dilution.

Dilution is the procedure followed to prepare a less concentrated solution from a more concentrated one and consists of reducing the amount of solute per unit volume of solution. This is accomplished simply by adding more solvent to the solution in the same amount of solute.

In a dilution the amount of solute does not change, but as more solvent is added, the concentration of the solute decreases, as the volume of the solution increases.

A dilution is mathematically expressed as:

Ci×Vi = Cf×Vf

where

Ci: initial concentration Vi: initial volume Cf: final concentration Vf: final volume

In this case, you know:

Ci= 10 [tex]\frac{mol}{dm^{3} }[/tex] Vi= 120 cm³ Cf= 2 [tex]\frac{mol}{dm^{3} }[/tex] Vf= ?

Replacing in the definition of dilution:

10[tex]\frac{mol}{dm^{3} }[/tex]× 120 cm³= 2 [tex]\frac{mol}{dm^{3} }[/tex]× Vf

Solving:

Vf= (10[tex]\frac{mol}{dm^{3} }[/tex]× 120 cm³) ÷2 [tex]\frac{mol}{dm^{3} }[/tex]

Vf= 600 cm³

In summary, 600 cm³ of water is required to dilute 120 cm³ of 10 [tex]\frac{mol}{dm^{3} }[/tex] sulphuric acid to a concentration of 2 [tex]\frac{mol}{dm^{3} }[/tex].

Learn more about dilution:

brainly.com/question/20113402?referrer=searchResults brainly.com/question/22762236?referrer=searchResults

Question 23
1 pts
When solutions of AgNO3 and NaOH react, the balanced molecular equation is:
2 AgNO3(aq) + 2NaOH(aq) O--> Ag2O(s) + 2 NaNO3(aq) + H20(1)
How much Ag2O is produced when 0.200 g of AgNO3 and 0.200 g of NaOH react?
a. 0.127 g
c. 0.273 g
b. 0.136 g
d. 0.400 g
OB
OC
OA
OD

Answers

Answer:

Option B. 0.136 g

Explanation:

The balanced equation for the reaction is given below:

2AgNO3(aq) + 2NaOH(aq) —> Ag2O(s) + 2NaNO3(aq) + H2O(l)

Next, we shall determine the masses of AgNO3 and NaOH that reacted and the mass of Ag2O produced from the balanced equation. This is illustrated below:

Molar mass of AgNO3 = 108 + 14 + (16x3) = 170g/mol

Mass of AgNO3 from the balanced equation = 2 x 170 = 340g

Molar mass of NaOH = 23 + 16 + 1 = 40g/mol

Mass of NaOH from the balanced equation = 2 x 40 = 80g

Molar mass of Ag2O = (108x2) + 16 = 232g/mol

Mass of Ag2O from the balanced equation = 1 x 232 = 232g

Summary:

From the balanced equation above,

340g of AgNO3 reacted with 80g of NaOH to produce 232g of Ag2O.

Next, we shall determine the limiting reactant. This can be obtained as follow:

From the balanced equation above,

340g of AgNO3 reacted with 80g of NaOH.

Therefore, 0.2g of AgNO3 will react with = (0.2 x 80)/340 = 0.047g of NaOH.

From the calculations made above, only 0.047g out of 0.2g of NaOH given, reacted completely with 0.2g of AgNO3. Therefore, AgNO3 is the limiting reactant and NaOH is the excess reactant.

Now, we can calculate the mass of Ag2O produced from the reaction of 0.2g of AgNO3 and 0.2g of NaOH.

In this case, we shall use the limiting reactant because it will produce the maximum yield of Ag2O as all of it is used up in the reaction.

The limi reactant is AgNO3 and the mass of Ag2O produced can be obtained as follow:

From the balanced equation above,

340g of AgNO3 reacted to produce 232g of Ag2O.

Therefore, 0.2g of AgNO3 will react to produce = (0.2 x 232)/340 = 0.136g of Ag2O.

Therefore, 0.136g of Ag2O was produced from the reaction.

How are scientific questions answered?
A. Through observing and measuring the physical world
B. Through testing a theory about the physical world
c. Through forming a hypothesis about the question
D. Through predicting a solution about the question
SUBM

Answers

Answer:

Option B

Explanation:

Scientific question are answered through experimentation, through testing the theory about the physical world.

Answer: its A

through observing and measuring the physical world

Explanation:

What is the final pH of a solution with an initial concentration of 2.5mM Ascorbic acid (H2C6H6O6) which has the following Kas: 7.9x10-5 and 1.6x10-12

Answers

Answer:

pH = 3.39

Explanation:

The equilibrium in water of ascorbic acid (With its conjugate base) is:

H₂C₆H₆O₆(aq) + H₂O(l) ⇄ HC₆H₆O₆⁻(aq) + H₃O⁺(aq)

Where the acidic dissociation constant is written as:

Ka = 7.9x10⁻⁵ = [HC₆H₆O₆⁻] [H₃O⁺] / [H₂C₆H₆O₆]

H₂O is not taken in the Ka expression because is a pure liquid.

As initial concentration of H₂C₆H₆O₆ is 2.5x10⁻³M, the equilibrium concentration of each species in the equilibrium is:

[H₂C₆H₆O₆] = 2.5x10⁻³M - X

[HC₆H₆O₆⁻] = X

[H₃O⁺] = X

Replacing in the Ka expression:

7.9x10⁻⁵ = [X] [X] / [2.5x10⁻³M - X]

1.975x10⁻⁷ - 7.9x10⁻⁵X = X²

0 = X² + 7.9x10⁻⁵X - 1.975x10⁻⁷

Solving for X:

X = -0.00048566→  False solution, there is no negative concentrations

X = 0.00040666 → Right solution

As [H₃O⁺] = X, [H₃O⁺] = 0.00040666

pH is defined as -log [H₃O⁺];

pH = -log 0.00040666,

pH = 3.39

Identify the correctly written chemical reaction
A. Reactant + Reactant = Product
B. Reactant + Reactant → Product + Product
C. Reactant + Product → Reactant + Product
D. Product + Product Reactant + Reactant

Answers

Answer:

B. Reactant + Reactant -> Product + Product

Explanation:

Reactants are substances that- as the name suggests- reacts with other substances at the beginning of a reaction

Products are substances that are produced as a result of the reaction

Typically, when writing a chemical reaction, an arrow is used to show the direction the reaction is moving.  In this case, the arrows in options B and C suggest that the reaction only moves in one direction- forwards

And as mentioned above, reactants are the substances at the start of the reaction, they're what mixes together to form a new product.  

To keep things simple:

Products can't be at the beginning of a reaction since they weren't formed yet.

Similarly, reactants can't be part of the products since they already existed and didn't need to be made. In a lot cases, the reactants would be completely used up to make the products

As such, only one possible chemical reaction would follow that reasoning:

    Reactant + Reactant ->  Product + Product

Reactant + Reactant → Product + Product is the correctly written chemical reaction. Hence, option B is correct.

What is a chemical equation?

A chemical equation is a mathematical expression of the chemical reaction which represents the product formation from the reactants.

In an equation, the reactants are written on the left-hand side and the products are written on the right-hand side demonstrated by one-headed or two-headed arrows.

Hence, option B is correct.

Learn more about the chemical equation here:

https://brainly.com/question/12363199

#SPJ2

How many moles of aqueous potassium ions and sulfate ions are formed when 63.7 g of K2SO4 dissolves in water

Answers

Answer:

WHEN 63.7 g OF K2SO4 IS DISSOLVED IN WATER, 0.73 MOLES OF POTASSIUM ION AND 0.366 MOLES OF SULFATE ION ARE FORMED.

Explanation:

Equation for the reaction:

K2SO4 + H20 ------->2 K+ + SO4^2-

When K2SO4 dissolves in water, potassium ion and sulfate ion are formed.

1 mole of K2SO4 produces 2 moles and 1 mole of SO4^2-

At STP, 1 mole of K2SO4 will be the molar mass of the substance

Molar mass of K2SO4 = ( 39 *2 + 32 + 16*4) g/mol

Molar mass = 174 g/mol

So therefore;

1 mole of K2SO4 contains 174 g and it produces 2 moles of potassium and 1 mole of sulfate ion

When 63.7 g is used; we have:

174 g = 2 moles of K+

63.7 g = ( 63.7 * 2 / 174) moles of K+

= 0.73 moles of K+

Forr sulfate ion, we have:

174 g = 1 mole ofSO4^2-

63.7 g = (63.7 * 1 / 174) moles of SO4^2-

= 0.366 moles of SO4^2-

In other words, when 63.7 g of K2SO4 is dissolved in water, 0.73 moles of potassium ion and 0.366 moles of sulfate ion are formed.

What is the specific heat of a metal with a mass of 14.0 g, heat of 3.45 kJ and a change in temperature of 3.2 ℃?

Answers

i think your question is not complete sir. supposely you can use Q=mc0.
(0.014)(4.2)(3.2)

Determine the rate of a reaction that follows the rate law:
rate = k[A]”[B]", where:
k= 1.5
[A] = 1 M
[B] = 3 M
m = 2
n = 1

Answers

Answer:

k= 1.5

[A] = 1 M

[B] = 3 M

m = 2

n = 1

Explanation:

rate = k[A]”[B]"

The rate of the reaction is 4.5 mol L⁻¹s⁻¹.

What is meant by rate of a reaction ?

Rate of a reaction is defined as the change in concentration of any one of the reactants or products of the reaction, in unit time.

Here,

The concentration of A, [A] = 1 M

The concentration of B, [B] = 3 M

The partial order with respect to A, m = 2

The partial order with respect to B, n = 1

The rate constant of the reaction, k = 1.5

The rate of the reaction,

r = k[A]^m [B}^n

r = 1.5 x 1² x 3

r = 4.5 mol L⁻¹s⁻¹

Hence,

The rate of the reaction is 4.5 mol L⁻¹s⁻¹.

To learn more about rate of a reaction, click:

https://brainly.com/question/29049197

#SPJ2

The NaOH solution is standardized (or its true concentration) is found by reacting it with KHSO4. One of the two products from when NaOH reacts with KHSO4 is H2O. The other product is is a salt consisting of what?

a. NaK (aq)
b. (aq)
c. NaS (aq)
d. None of the above

Answers

the answer to this problem is c
the answer is going to be “C. NaS (aq)” hope you have a good day and hope this helped

A certain radioactive element has a half life of 8694 years. How much of a 8.30 g sample is left after 8323 years

Answers

Answer: The amount of sample left after 8323 years is 4.32g

Explanation:

Expression for rate law for first order kinetics is given by:

[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]

where,

k = rate constant

t = age of sample

a = let initial amount of the reactant

a - x = amount left after decay process  

a) for completion of half life:

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

[tex]t_{\frac{1}{2}}=\frac{0.693}{k}[/tex]

[tex]k=\frac{0.693}{8694years}=7.97\times 10^{-5}years^{-1}[/tex]

b) amount left after 8323 years

[tex]t=\frac{2.303}{7.97\times 10^{-5}}\log\frac{8.30g}{a-x}[/tex]

[tex]8323=\frac{2.303}{7.97\times 10^{-5}}\log\frac{8.30g}{a-x}[/tex]

[tex]0.285=\log\frac{8.30}{a-x}[/tex]

[tex]\frac{8.30}{a-x}=1.92[/tex]

[tex](a-x)=4.32g[/tex]

The amount of sample left after 8323 years is 4.32g

A volumetric flask contains 25.0 mL of a 14% m/V sugar solution. If 2.5 mL of this solution is added to 22.5 mL of distilled water, what is the % m/V of the new solution.

Answers

Answer:

The new solution is 1.4% m/V

Explanation:

The concentration of the new solution, obtained by adding 22.5 mL of distilled water to 2.5 mL of 14 % m/V sugar solution, is 1.4% m/V.

We have 2.5 mL (V₁) of a concentrated solution and add it to 22.5 mL of distilled water. Assuming the volumes are additives, the volume of the new solution (V₂) is:

[tex]2.5 mL + 22.5 mL = 25.0 mL[/tex]

We want to prepare a dilute solution from a concentrated one, whose concentration is 14% m/V (C₁). We can calculate the concentration of the dilute solution (C₂) using the dilution rule.

[tex]C_1 \times V_1 = C_2 \times V_2\\C_2 = \frac{C_1 \times V_1}{V_2} = \frac{14\% m/V \times 2.5 mL}{25.0 mL} = 1.4 \% m/V[/tex]

The concentration of the new solution, obtained by adding 22.5 mL of distilled water to 2.5 mL of 14 % m/V sugar solution, is 1.4% m/V.

You can learn more about dilution here: https://brainly.com/question/13844449

The monomer of poly(vinyl chloride) has the formula C2H3Cl. If there are 1,565 repeat units in a single chain of the polymer, what is the molecular mass (in amu) of that chain? Enter your answer in scientific notation.

Answers

Answer:

[tex]\large \boxed{9.780 \times 10^{4}\text{ u}}[/tex]

Explanation:

The molecular mass of a monomer unit is:

C₂H₃Cl = 2×12.01 + 3×1.008 + 35.45 = 24.02 + 3.024 + 35.45 = 62.494 u

For 1565 units,

[tex]\text{Molecular mass} = \text{1565 units} \times \dfrac{\text{62.494 u}}{\text{1 unit }} = \mathbf{9.780 \times 10^{4}}\textbf{ u}\\\\\text{The molecular mass of the chain is $\large \boxed{\mathbf{9.780 \times 10^{4}}\textbf{ u}}$}[/tex]

3A 2B --> 5C If compound A has a molar mass of 159.7 g/mol and compound C has a molar mass of 57.6 g/mole, how many grams of compound C will be produced from 18.24 grams of compound A and excess compound B

Answers

Answer:

10.96 grams of compound C will be produced from 18.24 grams of compound A and excess compound B.

Explanation:

3A + 2B ⇒ 5C

By stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction) the following amounts of reagent and products participate in the reaction:

A: 3 molesB: 2 molesC: 5 moles

The excess reagent will be that which is not completely depleted during the reaction.

The amount of product obtained from the reaction will always depend on the amount of limiting reagent in the reaction. Then, being B the excess reagent and therefore A the limiting reagent and knowing that compound A has a molar mass of 159.7 g/mole and compound C has a molar mass of 57.6 g/mole, by stoichiometry the following mass amounts of A and C participate in the reaction:

A: 3 moles* 159.7 g/mole=  479.1 gC: 5 moles* 57.6 g/mole=  288 g

Then it is possible to apply the following rule of three: if by stoichiometry of the reaction 479.1 grams of A produce 288 grams of C, 18.24 grams of A, how much mass of C does it produce?

[tex]mass of C=\frac{18.24 grams of A*288 grams of C}{479.1 grams of A}[/tex]

mass of C= 10.96 grams

10.96 grams of compound C will be produced from 18.24 grams of compound A and excess compound B.

Based on the Valence Shell Electron Pair Repulsion Theory (or VSEPR), molecules will arrange to keep the following as far apart as physically possible
a) mobile electrons
b) valence electron pairs
c) inner shell electrons
d) the electrons closest to the nuclei

Answers

Answer:

B. Valence Electron Pairs

Explanation:

Valence-shell electron-pair repulsion, or VSEPR, describes the shape of molecules by determining the repulsion of valence electrons. Therefore, our answer is B.

what is the polarity of black pepper

Answers

Answer:

Polarity in chemistry referred to physical properties of compounds related to solubility, melting and boiling properties.

Polarity of black pepper can be seen when black pepper is sprinkled on water. The balck pepper float on water and get displaced if touched.

It means black pepper is non-polar and have no difference in electronegativity between bonded atoms. Black pepper is so light in weight and non-polar, the surface tension of water keep it floating in the water.

7. An element's most stable ion forms an ionic compound with chlorine having the formula XCl2. If the ion of element X has a mass of 89 and 36 electrons, what is the identity of the element, and how many neutrons does it have

Answers

Answer:

The element is strontium and the number of neutrons it have is 51.

Explanation:

Based on the given information, the ionic compound is,  

XCl₂ ⇔ X₂⁺ + 2Cl⁻

X2+ is the ion of the mentioned element

As mentioned in the given question, the number of electrons of the element X is 36 and as seen from the reaction the charge present on the ion is +2. Now the atomic number will be,  

No. of electrons = atomic number - charge

36 = atomic number - 2

Atomic number = 38

Based on the periodic table, the atomic number 38 is for strontium element, and the sign of strontium is Sr. Hence, the element X is Sr.  

Now based on the given information, the mass number of the element is 89. Now the no. of neutrons will be,  

No. of neutrons = mass number - atomic number

= 89 - 38

= 51 neutrons.  

Why does the excess of base used in these eliminations favor the E2 over the E1 mechanism for elimination

Answers

Answer:

The base is involved in the rate determining step of an E2 reaction mechanism

Explanation:

Let us get back to the basics. Looking at an E1 reaction, the rate determining step is unimolecular, that is;

Rate = k [Carbocation] since the rate determining step is the formation of a carbonation.

For an E2 reaction however, the reaction is bimolecular hence for the rate determining step we can write;

Rate = k[alkyl halide] [base]

The implication of this is that an excess of either the alkyl halide or base will facilitate an E2 reaction.

Hence, when excess base is used, E2 reaction is favoured since the base is involved in its rate determining step. In an E1 reaction, the base is not involved in the rate determining step hence an excess of the base has no effect on an E1 reaction.

The average molecular speed in a sample of Ar gas at a certain temperature is 391 m/s. The average molecular speed in a sample of Ne gas is ______ m/s at the same temperature.

Answers

Answer:

550 m/s

Explanation:

The average molecular speed (v) is the speed associated with a group of molecules on average. We can calculate it using the following expression.

[tex]v = \sqrt{\frac{3 \times R \times T}{M} }[/tex]

where,

R: ideal gas constantT: absolute temperatureM: molar mass of the gas

We can use the info of argon to calculate the temperature for both samples.

[tex]T = \frac{v^{2} \times M}{3 \times R} = \frac{(391m/s)^{2} \times 39.95g/mol}{3 \times 8.314J/k.mol} = 2.45 \times 10^{5} K[/tex]

Now, we can use the same expression to find the average molecular speed in a sample of Ne gas.

[tex]v = \sqrt{\frac{3 \times R \times T}{M} } = \sqrt{\frac{3 \times (8.314J/k.mol) \times 2.45 \times 10^{5}K }{20.18g/mol} } = 550 m/s[/tex]

determine the rate of reaction that follows the rate= k[A]^m[B]^n

Answers

rate=0.2*3^1*3^2=0.2*3*9=5.4(mol/L)s so the correct answer is C.

The next few questions will walk you through solving the following problem: At a given temperature, a 5.0M solution of hydrazine (N2H4) as a pH of 11.34. Hydrazine is base.
A. What is the concentration of hydroxide ion at equilibrium?
B. What is the pK for hydrazine reacting with water at this temperature?

Answers

Answer:

A. [OH⁻] = 2.188x10⁻³M

B. pKb = 6.02

Explanation:

When hydrazine is in equilbrium with water, its reaction is:

N₂H₄(aq) + H₂O(l) ⇄ HN₂H₄⁺(aq) + OH⁻(aq)

Where Kb, is defined as the ratio between concentrations in equilibrium of the species, thus:

Kb = [HN₂H₄⁺] [OH⁻] / [N₂H₄]

A. From pH, you can find [OH⁻], thus:

pH = -log [H⁺]

11.34 = -log [H⁺]

4.57x10⁻¹² = [H⁺]

As 1x10⁻¹⁴ = [OH⁻] [H⁺]

1x10⁻¹⁴ / 4.57x10⁻¹² = [OH⁻]

[OH⁻] = 2.188x10⁻³M

B. Concentrations in equilibrium of the species are:

[N₂H₄] = 5.0M - X

[HN₂H₄⁺] = X

[OH⁻] = X

Where X is reaction coordinate

As [OH⁻] = 2.188x10⁻³M

X = 2.188x10⁻³M

Replacing:

[N₂H₄] = 5.0M - 2.188x10⁻³M = 4.9978M

[HN₂H₄⁺] = 2.188x10⁻³M

[OH⁻] = 2.188x10⁻³M

Replacing in Kb expression:

Kb = [HN₂H₄⁺] [OH⁻] / [N₂H₄]

Kb = [2.188x10⁻³M] [2.188x10⁻³M] / [4.9978M]

Kb = 9.577x10⁻⁷

pKb is defined as -log Kb

pKb = -log 9.577x10⁻⁷

pKb = 6.02

A 1.555-g sample of baking soda decomposes with heat to produce 0.991 g Na2CO3. Refer to Example Exercise 14.l and show the calculation for the theoretical yield of Na2CO3.
What is the percent yield of sodium carbonate, Na2CO3?
6. A 1473-g unknown mixture with baking soda is heated and has a mass loss of 0.325 g. Refer to Example Exercise 14.2 and show the calculation for the percentage NaHCOs in the mixture.

Answers

Answer:

a) 101%

b)59.7%

Explanation:

The equation for the thermal decomposition of baking soda is shown;

2NaHCO3 → Na2CO3 + H2O + CO2

Number of moles of baking soda= mass/molar mass= 1.555g/84.007 g/mol = 0.0185 moles

From the reaction equation;

2 moles of baking soda yields 1 mole of sodium carbonate

0.0185 moles of baking soda will yield = 0.0185 moles ×1 /2 = 9.25 ×10^-3 moles of sodium carbonate.

Therefore, mass of sodium carbonate= 9.25 ×10^-3 moles × 106gmol-1= 0.9805 g of sodium carbonate. This is the theoretical yield of sodium carbonate.

%yield = actual yield/theoretical yield ×100

% yield = 0.991/0.9805 ×100

%yield = 101%

Since ;

2NaHCO3 → Na2CO3 + H2O + CO2

And H2O + CO2 ---> H2CO3

Hence I can write, 2NaHCO3 → Na2CO3 + H2CO3

Molar mass of H2CO3= 62.03 gmol-1

Molar mass of baking soda= 84 gmol-1

Therefore, mass of baking soda=

0.325/62.03 × 2 × 84 = 0.88 g of NaHCO3

% of NaHCO3= 0.88/1.473 × 100 = 59.7%

The decomposition reaction of baking soda is a reaction in which water and carbon dioxide ae given off as gaseous products.

5. The theoretical yield of Na₂CO₃ is approximately 0.9809 gramsThe percentage yield of sodium carbonate is approximately 101.02%.

6. Percentage of NaHCO₃ in the mixture is approximately 59.76%.

Reasons:

Mass of baking soda = 1.555 g

Mass of Na₂CO₃ produced = 0.991 g

Required:

Calculation for the theoretical yield

Solution:

Theoretical yield (mass) of Na₂CO₃ produced is found as follows;

Molar mass of Na₂CO₃ = 105.9888 g/mol

Molar mass of NaHCO₃ = 84.007 g/mol

[tex]\displaystyle 1.555 \, g \, NaHCO_3 \times \frac{1 \, mol \, NaHCO_3}{84.007 \, g \, NaHCO_3} \times \frac{1 \, mol \, Na_2CO_3}{2 \, mol \, NaHCO_3} \times 105.9888 \ g \approx 0.9809 \, g \, Na_2CO_3[/tex]

The theoretical yield of Na₂CO₃ ≈ 0.9809 grams.

The percentage yield is given as follows;

[tex]\displaystyle Percentage \ yield = \mathbf{\frac{Actual \, Yield}{Theorectical \, Yield} \times 100 \%}[/tex]

The percentage yield of Na₂CO₃ is therefore;

[tex]\displaystyle Percentage \ yield \ of \ Na_2CO_3= \frac{0.991}{0.9809} \times 100 \% \approx \underline{ 101.02 \%}[/tex]

(Some baking soda may remain if the reaction is not completed)

6. Mass of the unknown mixture of baking soda = 1473 g

Mass loss from the mixture = 0.325 g

Required:

The percentage of NaHCO₃ in the mixture.

Solution:

The chemical in the mass loss from heating the NaHCO₃ = H₂CO₃

Molar mass of H₂CO₃ = 62.03 g/mol

[tex]\displaystyle \mathrm{Number \ of \ moles \ of \ H_2CO_3 \ produced} = \frac{0.325 \, g}{62.03 \, g/mol} \approx 5.2394 \times 10^{-3} \ moles[/tex]

The chemical reaction is presented as follows;

2NaHCO₃(s) [tex]\underrightarrow {\Delta \ Heated}[/tex] Na₂CO₃(s) + H₂CO₃(g)2 moles of NaHCO₃  produces 1 mole of H₂CO₃

The number of moles of NaHCO₃ in the mixture is therefore;

2 × 5.2394 × 10⁻³ moles ≈ 1.04788 × 10⁻² moles

Mass of NaHCO₃ in the mixture is therefore

Mass of NaHCO₃ = 1.04788 × 10⁻²  moles × 84.007 g/mol = 0.88029 g

[tex]\displaystyle Percentage \ of \ NaHCO_3 \ in \ the \ mixture \ = \mathbf{ \frac{Mass \ of \ NaHCO_3}{Mass \ of \ mixture} \times 100}[/tex]

Which gives;

[tex]\displaystyle Percentage \ of \ NaHCO_3 \ in \ the \ mixture \ = \ \frac{0.88029 \, g}{1.473 \, g} \times 100 \approx \underline{ 59.76 \%}[/tex]

Learn more here:

https://brainly.com/question/21091465

Therapeutic drugs generally need to have some hydrophobic and hydrophilic components to be able to effectively reach their target organs and tissues given there are aqueous and nonaqueous parts of the body. The degree to which a compound is hydrophobic and hydrophilic can be determined by measuring its relative solubility in water and octanol, C8H17OH, and water. To do this, a sample of the compound is added to a mixture of water and octanol and mixed well. Water and octanol are immiscible so after the mixture settles, the concentration of the compound in water and the concentration of the compound in octanol is measured. The ratio of the concentrations is called the partition ratio:

Answers

The question is incomplete as some part is missing:

concentration in octanol Partition Ratio = concentration in water

a) What are the intermolecular forces of attraction between octanol molecules? Explain.

b) Which of the intermolecular forces of attraction identified in (a) account for most of the interactions between octanol molecules? Explain. Use the immiscibility in water and the data included in figures 1 and 2 as evidence to support your answer.

c) Would a compound with a partition coefficient less than one be more hydrophobic or more hydrophilic than one with a partition coefficient greater than 10? Explain.

d) Would nonane (figure 2) be more soluble in water or octanol? Explain.

e) Draw another structure for a compound with the same chemical formula as nonane (CH20) that has a lower boiling point. Explain.

f) Are any of the C atoms in the structure you drew for CH20 sp?hybridized? Explain.

Octanol Boiling point = 195°C Figure 2 Nonane (CH20) Boiling point = 151°C

Answer:

1. The forces between octanol molecules would be attractive. These forces include Vanderwaal forces, H-bonds due to the presence of highly polar O-H group.

2. H-bonding ahould account for most of the attractive forces. The O-H bond should behave like and dipole, oxygen of one molecule attracts the hydrogen of the neighbouring molecule forming D-H...A links throughout (D stands for donor of H-Bond and A for acceptor for H-Bond).

3. Partition coefficient less than 1 will be more hydrophilic, generally drugs with low partition coefficients are regarded as hydrophilic. As parition coefficient of 10 mean more of the solute is dispersed in octanol as compared to water.

4. Nonane is non polar, so it would not dissolve in water. It follows the rule like dissolves like. Polar substances dissolve in polar solvents. 1-octanol is able to bind with water through hydrogen bonds thus its soluble in water but nonane doesn't. Nonane will forms a different layer from water.

5) no all carbons in 2-methyloctane are single bonded. Thus sp3 hybrid. A sp2 hybridised carbon would have a double bond C=C.

Consider the following precipitation reaction occurring in aqueous solution:
3 SrCl2(aq)+2 Li3PO4(aq) →Sr3(PO4)2(s)+6 LiCl(aq)

Write the complete ionic equation and the net ionic equation for this reaction.

Answers

Answer:

[tex]3Sr^{+2}+6Cl^{-}+6Li^{+}+2PO_{4}^{3-}-->Sr_{3}(PO_{4})_{2}+6Li^{+}+6Cl^{-}\\\\3Sr^{+2}+2PO_{4}^{3-} --->Sr_{3}(PO_{4})_{2}[/tex]

First equation is the complete ionic equation.

Second equation is the net ionic equation.

Calculate the height of a column of water at 25 °C that corresponds to normal atmospheric pressure. The density of water at this temperature is 1.0 g/

Answers

Answer:

10.328 m

Explanation:

normal atmospheric pressure = 101325 Pa

density of water at 25 °C = 1.0 g/cm^3 = 1000 kg/m^3

pressure = pgh

where p = density

g = acceleration due to gravity = 9.81 m/s^2

h = height of column

imputing values, we have

101325 = 1000 x 9.81 x h

height of column h = 101325/9810 = 10.328 m

Which of the following types of electromagnetic radiation have higher frequencies than visible light and which have shorter frequencies than visible light?
1. Gamma rays
2. Infrared radiation
3. Ultraviolet liht
4. X-rays
5. Microwaves
6. Radio waves

Answers

Answer:

3,4,1 and 6,5,2

Explanation:

In the electromagnetic spectrum the arrangement of the waves in increasing frequencies and decreasing wavelengths are as follows;

Radio waves

Microwaves

Infrared waves

Visible light rays

Ultraviolet rays

X-rays

Gamma rays

(a simple mnemonic is RMIVUXG)

A substance used as a cleaner and a fuel is 37.48% C, 49.93% O and 12.58% H by mass. A 0.2804-g sample of the substance occupies a volume of 250.0 mL when it is vaporized at 75o C and 1.00 atm of pressure.
R = 0.0821 L atm/ mol K
a) This compound can be made by combining gaseous carbon monoxide with hydrogen gas (with this compound as the only product). What is the maximum mass of this compound that can be prepared if 8.0 kg of hydrogen gas react with 59.0 kg of carbon monoxide gas?
b) If 59.6 kg of the product is actually produced, given the reaction described in (a), what is the percent yield?
c) This compound (the substance you identified in part a) is a potential replacement for gasoline. The products of the complete combustion of this fuel are the same as those for the complete combustion of a hydrocarbon (CO2 and H2O). Calculate the volume of CO2 produced at 27o C and 766 mmHg when 1.00 gallon of this fuel is completely combusted. The density of the fuel is 0.7914 g/mL. 1 gallon = 3.785 liters
d) A claim was made that this fuel is better for the environment because it produces less CO2 per gallon than gasoline, which can be represented by the formula C8H18 (octane). Is this claim true? Octane has a density of 0.6986 g/mL

Answers

Answer:

Explanation:

We shall find out the molecular formula of the substance .

Ration of number of atoms of C , O and H

= [tex]\frac{37.48}{12} :\frac{49.93}{16} :\frac{12.58}{1}[/tex]

= 3.12 : 3.12 : 12.58

= 1 : 1 : 4

volume of gas at NTP

= 250 x 273 / 350 mL .

= 195 mL .

Molecular weight of the substance = .2804 x 22400 / 195 g

= 32. approx

Let the molecular formula be

(COH₄)n  

n x 32 = 32

n = 1

Molecular formula = COH₄

The compound appears to be CH₃OH

a )

CO + 2H₂ = CH₃OH

28g     4g          32g

59      8

For 8 kg hydrogen , CO required = 56 kg

CO is in excess .  hydrogen is the limiting reagent .

mass of product formed

= 32 x 8 / 4

= 64 kg

b )

percentage yield = product actually formed / product to be formed theoretically  x 100

= 59.6 x 100 / 64

= 93.12 %

c )

2CH₃OH + 3O₂ = 2CO₂ + 4H₂O .

64 g                     2 x 22.4 L

Gram of gas in 1 gallon of fuel

= .7914 x 3785

= 2995.5 g

CO₂ produced at NTP by 2995.5 g CH₃OH

= 2 x 22.4 x 2995.5 / 64 L

= 2096.85 L

At 27° C and 766 mm Hg , this volume is equal to

2096.85 x 300 x 760 / 273 x 766

= 2286.18  L .

d )

C₈H₁₈  =  8CO₂

114g           8 x 22.4 L

gram of fuel per unit gallon

= .6986 x 3785

= 2644.2g

gram of CO₂ produced by 1 gallon of fuel  at NTP

= 8 x 22.4 x 2644.2 / 114

= 4156.5 L

So it produces more CO₂ .

Recall that when a reaction is at equilibrium, the forward and reverse reactions occur at the same rate. To illustrate this idea, consider the reaction of A (small, red spheres) and B (large, blue spheres) to form AB.

A+B ⇌ AB

Notice that the reaction never stops. Even after several minutes, there is A and B left unreacted, and the forward and reverse reactions continue to occur. Also note that amounts of each species (i.e., their concentrations) stay the same.

Required:
What is the value of the equilibrium constant for this reaction?
Assume each atom or molecule represents a 1 M concentration of that substance.

Answers

Answer:

Equilibrium constant Kc = [x]² / [A - x] [B - x]

Explanation:

The equilibrium constant is defined as the ratio of the concentration of the products to that of the reactants at equilibrium

ie Kc = [products] / [reactants].

The balanced equation of the reaction is given as : A + B ⇄ AB

At the beginning of the reaction,

Initial concentration I = A = 1M

                                       B = 1M

                                      AB = 0M

After a period of time and assuming 'x' to be the concentration of product AB formed, the concentrations become

                                         C = reactant A = [A - x] M

                                                 rectant B =   [B - x] M

                                              Product AB =  [x] [x] M

At equilibrium, the concentrations are,

                                            E  = rectant A = [A - x] M

                                                   reactant B = [B - x] M

                                                   product AB = [x]² M

therefore , the equilibrium constant, Kc  = [products]/[reactants]

                                                                   = [x]² / [A - x] [B - x]

Consider the following reaction where Kc = 6.50×10-3 at 298 K: 2NOBr(g) 2NO(g) + Br2(g) A reaction mixture was found to contain 9.83×10-2 moles of NOBr(g), 5.44×10-2 moles of NO(g), and 4.13×10-2 moles of Br2(g), in a 1.00 liter container. Is the reaction at equilibrium? If not, what direction must it run in order to reach equilibrium? The reaction quotient, Qc

Answers

Answer:

This reaction isn't yet at an equilibrium. It must shift in the direction of the reactant (namely [tex]\rm NOBr\; (g)[/tex]) in order to reach an equilibrium.

For this mixture, the reaction quotient is [tex]Q_c = 0.0126[/tex].

Explanation:

A reversible reaction is at equilibrium if and only if its reaction quotient [tex]Q_c[/tex] is equal to the equilibrium constant [tex]K_c[/tex].

Start by calculating the equilibrium quotient [tex]Q_c[/tex] of this reaction. Given the reaction:

[tex]\rm 2\; NOBr\; (g) \rightleftharpoons 2\; NO\; (g) + Br_2\; (g)[/tex].

Let [tex][\mathrm{NOBr\; (g)}][/tex], [tex][\mathrm{NO\; (g)}][/tex], and [tex][\mathrm{Br_2\; (g)}][/tex] denote the concentration of the three species. The formula for the reaction quotient of this system will be:

[tex]\displaystyle Q_c = \frac{[\mathrm{NO\; (g)}]^2 \cdot [\mathrm{Br_2\; (g)}]}{[\mathrm{NOBr\; (g)}]^2}[/tex].

(Note, that in this formula, both [tex][\mathrm{NO\; (g)}][/tex] and [tex][\mathrm{NOBr\; (g)}][/tex] are raised to a power of two. That corresponds to the coefficients in the balanced reaction.)

Calculate the reaction quotient given the concentration of each species:

[tex]\displaystyle Q_c = \frac{[\mathrm{NO\; (g)}]^2 \cdot [\mathrm{Br_2\; (g)}]}{[\mathrm{NOBr\; (g)}]^2} \approx 1.26\times 10^{-2} = 0.0126[/tex].

(Note that the unit is ignored.)

Apparently, [tex]Q_c > K_c[/tex]. Since [tex]Q_c[/tex] and [tex]K_c[/tex] are not equal, this reaction is not at an equilibrium. If external factors like temperature stays the same,

Keep in mind that [tex]Q_c[/tex] denotes a quotient. To reduce the value of a quotient, one may:

reduce the value of the numerator, increase the value of the denominator, orboth.

In [tex]Q_c[/tex], that means reducing the concentration of the products while increasing the concentration of the reactants. In other words, the system needs to shift in the direction of the reactants before it could reach an equilibrium.

If an electron has a principal quantum number (n) of 7 and an angular momentum quantum number (l) of 1, the subshell designation is ________

Answers

Answer:

7p

Explanation:

principal quantum number is 7

n=7( principle shell)

angular momentum quantum number gives sub shell

l = 1 means it is p orbital

so answer is 7p orbital

Write the following isotope in nuclide notation: oxygen-14

Answers

Answer:

[tex]14\\8[/tex]O

Explanation:

The top number always represents the mass number.

The bottom number always represents the atomic number.

The element always goes after the numbers.

If charge is present, that comes after the element.

Other Questions
Use the function below to find f(4).f(x)=1/3x4^xA. 8/3B.256/3C.64/3D.16/3 Ms. Daffy tells you that the longest side of her right-triangular garden is 26m and one of the sides is 14m. A. She asks you to find the other side of the garden. A particle is released as part of an experiment. Its speed t seconds after release is given by v (t )equalsnegative 0.4 t squared plus 2 t, where v (t )is in meters per second. a) How far does the particle travel during the first 2 sec? b) How far does it travel during the second 2 sec? Use a proportion to solve the problem. Round to the nearest tenth as needed.Triangle in a triangle Find the height of the building. Assume that the height of the person is 5 ft.104 ftbuilding13 ft5 ft HELP PLEASE I WILL GIVE 13 POINTS The timeline below shows several crucial dates in Zapotec history: The timeline of Zapotec history shows the following dates: 1486 Zapotec war victory over Aztecs. 1494 Aztecs destroy Zapotec capital cities. 1496 Peace treaty with Aztecs. 1519 Zapotecs voluntarily submit to Spanish rule. 1522 Zapotec king baptized as a Christian. 1529 unsuccessful rebellion against Spain. PLEASE HELP! What preceded the peace treaty between the Zapotecs and Aztecs? (5 points) Many years of war between the two sides Conquest by the Spanish Death of the Zapotec king Beginning of Christianity in the region Use the graph to approximate the ordered pair where the exponential function begins to exceed the quadratic function.the graph of an exponential function f of x equals two and two tenths to the power of x minus 7 tenths and a quadratic function g of x equals one eighth times x squared plus 2 times x plus 8 -125>-135 divide each side by -5 what is the resulting true inequality Identify the advantages of using 6 tube passes instead of just 2 of the same diameter in shell-and-tube heat exchanger.What are the advantages and disadvantages of using 6 tube passes instead of just 2 of the same diameter? . The job of applications engineer for which Maria was applying requires (a) excellent technical skills with respect to mechanical engineering, (b) a commitment to working in the area of pollution control, (c) the ability to deal well and confidently with customers who have engineering problems, (d) a willingness to travel worldwide, and (e) a very intelligent and well-balanced personality. List 10 questions you would ask when interviewing applicants for the job. Pls help see the picture posted the graph of y=f(x) is shown on the grid (Blank) tells you that the exact momentum and position of a particle can't be known at the same time.A. The Schrodinger equationB. Quantum mechanicsC. The uncertainty principleD. Particle-wave duality In one of his most memorable summer vacations, Danny recalls traveling to South Korea where he met a host of interesting people and lifelong friends. He also, however, recalls feeling disoriented and out of place because of the different cultural norms and beliefs. This feeling of disorientation that Danny experienced is an example of what? i need helppppppppppppp What is the circumference of the circle below? (Round your answer to the nearest tenth.) helloo guysss pleaseeee help with this one Plz help me plzzzzzz!!!! Magnetic field lines exit out of the . Magnetic field lines enter into the . Magnetic field lines travel around a bar magnet in n order to identify information in your composition that may contradict your thesis, you should _____.