Answer:
Please check explanation for answer
Explanation:
Here, we are concerned with stating the advantages and disadvantages of using a 6 tube passes instead of a 2 tube passes of the same diameter:
Advantages
* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface
* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too
Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.
Disadvantages
* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.
* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of manufacturing costs
One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacuum. The two sides are separated by a piston that is initially held in place by the pins. The pins are removed and the gas suddenly expands until it hits the stops. What happens to the internal energy of the gas?
a. internal energy goes up
b. internal energy goes down
c. internal energy stays the same
d. we need to know the volumes to make the calculation
Answer:
Option C = internal energy stays the same.
Explanation:
The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.
So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.
Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.
The amount of heat,q = Work,w.
In the concept of free expansion the only thing that changes is the volume.
A long corridor has a single light bulb and two doors with light switch at each door. design logic circuit for the light; assume that the light is off when both switches are in the same position.
Answer and Explanation:
Let A denote its switch first after that we will assume B which denotes the next switch and then we will assume C stand for both the bulb. we assume 0 mean turn off while 1 mean turn on, too. The light is off, as both switches are in the same place. This may be illustrated with the below table of truth:
A B C (output)
0 0 0
0 1 1
1 0 1
1 1 0
The logic circuit is shown below
C = A'B + AB'
If the switches are in multiple places the bulb outcome will be on on the other hand if another switches are all in the same place, the result of the bulb will be off. This gate is XOR. The gate is shown in the diagram adjoining below.