Answer:
[tex]y = 20.7[/tex]
Step-by-step explanation:
Given
The figure above
Required
Calculate the y component
Represent the y component with y, the resultant vector with s and the angle with [tex]\theta[/tex]
The y component of a vector (as it is, in this case) is calculated as thus;
[tex]sin\theta = \frac{y}{s}[/tex]
[tex]Where\ \theta = 15\\ s = 80[/tex]
Substituting these values in the equation
[tex]sin\theta = \frac{y}{s}[/tex] becomes
[tex]sin\ 15= \frac{y}{80}[/tex]
Multiply both sides by 80
[tex]80 * sin\ 15= \frac{y}{80} * 80[/tex]
[tex]80 * sin\ 15= y[/tex]
[tex]80 * 0.2588190451= y[/tex]
[tex]20.705523608 = y[/tex]
[tex]y = 20.705523608[/tex]
[tex]y = 20.7[/tex] (Approximated)
A rectangular carton has twice the height, one-
third the length, and four times the width of a
second carton. The ratio of the volume of the
first carton to that of the second is
A)16:3
B)3:1
C)8:3
D)3:8
Please Help!! I will give brainliest to correct answer
A carpool service has 2,000 daily riders. A one-way ticket costs $5.00. The service estimates that for each $1.00 increase to the one-way fare, 100 passengers will find other means of transportation. Let x represent the number of $1.00 increases in ticket price.
Choose the inequality to represent the values of x that would allow the carpool service to have revenue of at least $12,000. Then, use the inequality to select all the correct statements.
options:-
The price of a one-way ticket that will maximize revenue is $7.50.
The price of a one-way ticket that will maximize revenue is $12.50.
-100x^2 + 1,500x + 10,000 >/= 12,000
The maximum profit the company can make is $4,125.00.
The maximum profit the company can make is $15,625.00.
100x^2 - 1,500x - 10,000 >/= 12,000
100x^2 + 1,500x - 10,000 = 12,000
(There can be more than one correct answers)
Answer.
Step-by-step explanation:
Find the product of:additive inverse of−5/6, multiplicative inverse of 4/12 and reciprocal of 9/5.
Answer:
25/18
Step-by-step explanation:
Additive inverse of a number X is the number which when is added to X =0
ex: additive inverse of 2 is -2 since 2 +(-2)=0
Multiplicative inverse of a number N is the number which when multiplied by N gives 1
ex: multiplicative inverse of 6/7 is 7/6
6/7*7/6=1
Ex of reciprocal is
5/9 & 9/5
7/6 & 6/7
Additive inverse of -5/6=5/6
Multiplicative inverse of 4/12 is 12/4
Reciprocal of 9/5 is 5/9
(5/6)*(12/4)*(5/9)=25/18
Answer:
(5/6)*(12/4)*(5/9)=25/18
Step-by-step explanation:
plz help!!
will give the brainliest!!
Answer:
x = 3
Inverse matrix:
[tex]A^{-1} = \begin{pmatrix} \frac{1}{9} & \frac{2}{9} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \quad[/tex]
Step-by-step explanation:
Determinant: ad - bc
a = 3, b = 2, c = 3, d = -1
3 * (-1) - (2 * x) = -9
-3 - 2x = -9
-2x = -6
x = 3
For matrix
[tex]A = \begin{pmatrix}a & b\\c & d\end{pmatrix} \quad[/tex]
the inverse is
[tex]A^{-1} = \dfrac{1}{ad - bc}\begin{pmatrix}d & -b \\-c & a\end{pmatrix}\quad[/tex]
Here we have: det = -9
a = 3, b = 2, c = 3, d = -1
Inverse matrix:
[tex]A^{-1} = \dfrac{1}{-9}\begin{pmatrix} -1 & -2 \\ -3 & 3 \end{pmatrix}\quad[/tex]
[tex]A^{-1} = \begin{pmatrix} \frac{-1}{-9} & \frac{-2}{-9} \\\frac{-3}{-9} & \frac{3}{-9}\end{pmatrix} \quad[/tex]
[tex]A^{-1} = \begin{pmatrix} \frac{1}{9} & \frac{2}{9} \\\frac{1}{3} & -\frac{1}{3}\end{pmatrix}\quad[/tex]
The points in a plane in a fixed distance from a given point
is called a circle. What is the fixed distance called?
a. chord
b. radius
c. diameter
d. not given
Answer:
radius
Step-by-step explanation:
That "fixed distance" is the 'radius' of the circle.
Construct perpendiculars image below
Answer: draw a straight line trough point B, same thing with the second one,for the third you must draw a straight line from the angle across to the segment. (make sure all of the intersections are 90 degrees
If sin(21°) = 0.36, and cosθ = 0.36, what's the measure of ∠θ? ANSWERS: A) m∠θ = 21° B) m∠θ = 0.36° C) m∠θ = 90° D) m∠θ = 69°
Hey there! :)
Answer:
m∠θ = 69°.
Step-by-step explanation:
If sin (21°) = 0.36 and cos θ = 0.36, the two angles are complementary because the sine and cosine values are equivalent. Therefore:
90 - 21 = 69°.
The correct answer is D) m∠θ = 69°.
What is the factored form of 125a6-64?
Answer:
(5a^2-4)*(25a^4+20a^2+16)
Step-by-step explanation:
Answer:
Its B, (5a^2-4)(25a^4+20a^2+16)
Step-by-step explanation:
Edge 2020
Simplify: (2 cot(−240°)cos(-1050°)− cot^2(50°)) / (sec^2(40°))
Thanks! (:
Answer:
\frac{2\cot \left(-240^{\circ \:}\right)\cos \left(-1050^{\circ \:}\right)-\cot ^2\left(50^{\circ \:}\right)}{\sec ^2\left(40^{\circ \:}\right)}
Step-by-step explanation:
ok
Please could I have some help :)
Answer:
a) x = 128 degrees
b) Angle APD is the arc angle, which is equal to the central angle x subtended by the arc. Therefore angle APD = 128 degrees (and not 116 degrees)
Step-by-step explanation:
Given:
attached diagram
ABC is a straight line
Solution:
a) Find x
ABC is a straight line
angle ABD = supplement of CBD = 180-CBD = 180-116 = 64 degrees.
x is the central angle of the arc APD
so angle ABD is the inscribed angle which equals half of the arc angle =>
angle ABD = x/2 = 64 degrees
Solve for x
x/2 = 64
x = 2*64
x = 128 degrees
b.
Angle APD is the arc angle, which is equal to the central angle x subtended by the arc. Therefore angle APD = 128 degrees (and not 116 degrees)
Find the missing side lengths. Leave your answers as radicals in simplest form.
ANSWER QUICK
Answer:
C
Step-by-step explanation:
It is an iscoceles triangle because there are 180 degrees in a triangle and the right angle plus the 45 degree equals 135 and 180 minus 135 is 45.
Since it is an iscoceles triangle that means that n = 3 and the pythagorean theorom says that a^2 + b^2 = c^2 which means that m = 3^2 plus 3^2 with a root.
3^2 is 9 so you get 18
the root of 18 is infinite, however can be simplified to 3 root to 2 because 3 times 3 equals 9 times 2 equals a root of 18
Hope this helps!
URGENT HELP NEEDED! YOU WILL GET BRAINLIEST! Convert to a product: cot(α) - 1
Answer:
WHAT
Step-by-step explanation:
simplify this please 41 =12d-741=12d−7
Answer:
Simplifying
41 = 12d + -7
Reorder the terms:
41 = -7 + 12d
Solving
41 = -7 + 12d
Solving for variable 'd'.
Move all terms containing d to the left, all other terms to the right.
Add '-12d' to each side of the equation.
41 + -12d = -7 + 12d + -12d
Combine like terms: 12d + -12d = 0
41 + -12d = -7 + 0
41 + -12d = -7
Add '-41' to each side of the equation.
41 + -41 + -12d = -7 + -41
Combine like terms: 41 + -41 = 0
0 + -12d = -7 + -41
-12d = -7 + -41
Combine like terms: -7 + -41 = -48
-12d = -48
Divide each side by '-12'.
d = 4
Simplifying
d = 4
NEED HELP ASAPPP!!! Drag each scenario to show whether the final result will be greater than the original
value, less than the original value, or the same as the original value.
1. A $30 increase followed by a $30 decrease
2. A 20% decrease followed by a 40% increase
3. A 100% increase followed by a 50% decrease
4. A 75% increase followed by a 33% decrease
5. 55% decrease followed by a 25% increase
Answer:
Greater than the original = 2, 4
Less than the original = 5
Same as the original = 1, 3
Step-by-step explanation:
Let the original value be x.
1. A $30 increase followed by a $30 decrease.
New value [tex]=x+30-30=x[/tex], it is same as original value.
2. A 20% decrease followed by a 40% increase.
Afer 20% decrease.
New value [tex]=x-\dfrac{20}{100}x=x-0.2x=0.8x[/tex]
Afer 40% increase.
New value [tex]=0.8x+\dfrac{40}{100}(0.8x)=0.8x+0.32x=1.12x[/tex], it is greater than original value.
Similarly check the other values.
3. A 100% increase followed by a 50% decrease.
New value [tex]=x+\dfrac{100}{100}x-\dfrac{50}{100}(x+x)=x[/tex], it is same as original value.
4. A 75% increase followed by a 33% decrease
New value [tex]=x+\dfrac{75}{100}x-\dfrac{33}{100}(x+0.75x)=1.1725x[/tex], it is greater than the original value.
5. 55% decrease followed by a 25% increase
New value [tex]=x-\dfrac{55}{100}x+\dfrac{25}{100}(x-0.55x)=0.5625x[/tex], it is less than the original value.
Therefore, Greater than the original = 2, 4, Less than the original = 5, Same as the original = 1, 3 .
A 100% increase followed by a 50% decrease
A $30 increase followed by a $30 decrease
Less Than The Original:55% decrease followed by a 25% increase
Greater Than The Original:A 20% decrease followed by a 40% increase
A 75% increase followed by a 33 1/3% decrease
*LAST QUESTION , PLEASE ANSWER TY* (: Quadrilateral ABCD is inscribed in a circle. If angle A measures (3x – 10)° and angle C measures (2x)°, find x.
[tex]\mathfrak{\huge{\pink{\underline{\underline{AnSwEr:-}}}}}[/tex]
Actually Welcome to the Concept of the Quadrilaterals.
Basically we know that, the sum of opposite angles of a quadrilateral inscribed in a circle is always 180°.
so applying this law here, we get as,
2X + (3X-10) = 180°
=> 5X - 10° = 180°
=> 5X = 190°
=> X = 190°/5
=> X = 38°
thus the angle X= 38°.
Thuy is substituting t = 3 and t = 8 to determine if the two expressions are equivalent.
Answer:
The expressions are not equivalent.
Step-by-step explanation:
The answers would be 196 and 193 for t = 8
The answers would be 76 and 73 for t = 3
Find the missing segment in the attached image
Answer:
The length of the missing segment is 36
Step-by-step explanation:
Given
The figure above
Required
Determine the missing segment
Let the missing segment be represented with x
Given that, there exist parallel lines between the two triangles;
The relationship between the sides of the triangles is as follows;
[tex]\frac{20}{24} = \frac{30+20}{24+x}[/tex]
[tex]\frac{20}{24} = \frac{50}{24+x}[/tex]
Cross Multiply
[tex]20 * (24 + x) = 24 * 50[/tex]
[tex]20 * (24 + x) = 1200[/tex]
Divide both sides by 20
[tex]\frac{20 * (24 + x)}{20} = \frac{1200}{20}[/tex]
[tex](24 + x)= \frac{1200}{20}[/tex]
[tex]24 + x= 60[/tex]
Subtract 24 from both sides
[tex]24 - 24 + x = 60 - 24[/tex]
[tex]x = 60 - 24[/tex]
[tex]x = 36[/tex]
Hence, the length of the missing segment is 36
MATH— Please help me answer this question. Hopefully you can see the picture
What is the slope of the line?
Answer:
5/3
Step-by-step explanation:
it should be y/x
you can count 5 up and 3 over
Answer:
8/5
Step-by-step explanation:
You can use the formula [tex]\frac{y_{1}-y_{2}}{x_{1}-x_{2}}[/tex] with a pair of points [tex](x_{1},y_{1})[/tex][tex](x_{2},y_{2})[/tex]. We can use points (1,4) and (-4,-4). Plugging in the equation we get (4-(-4))/(1-(-4)), which simplifies to 8/5, which is the slope.
Determine the approximate area of a sector with a central angle of 75° and a radius of 14 yards. Question 16 options: A) 9.2 yards2 B) 128.3 yards2 C) 40.8 yards2 D) 0.21 yards2
Answer:
B) 128.3 square yards
Step-by-step explanation:
A = (n/360 deg)(pi)r^2
where n = central angle of sector.
A = (75/360)(3.14159)(14 yd)^2
A = 128.3 yd^2
Answer:
B. 128.3 yards
Step-by-step explanation:
Area of a Sector Formula: A = ∅/360πr²
Simply plug in our variables:
A = 75/360(π)(14)²
A = 5π/24(196
A = 128.3
What equation could be used to find the missing leg length a in a right triangle with a hypotenuse of 60 and leg length of 51?
Answer:
Pythagorean Theorem: a² + b² = c² should be used.
Step-by-step explanation:
51² + b² = 60²
b² = 60² - 51²
b = 3√111
b = 31.607
Pythagorean Theorem is used to find any missing side of a right triangle if 2 other sides are present.
Answer:
Pythagoras theorem
EXPLANATION
HYPOTHENUS SQUARE =OPPOSITE SQUARE + ADJACENT SQUARE
i.e 60^2= 51^2+x^2
i.e 3600=2601+x^2
collecting like terms we have
3600-2601=x^2
999=x^2
√999=x
x=31.6
Karl set out to Alaska on his truck.
The amount of fuel remaining in the truck's tank (in liters) as a function of distance driven (in kilometers) is
graphed.
How much fuel did the truck consume every 100 kilometers
Answer:
the amount of fuel consumed every 100 kilometers is 62.5 litres.
Step-by-step explanation:
To determine the amount of fuel consumed every 100 kilometers.
Note: since the graph is a straight line graph (linear graph) the amount of fuel consumed every 100 kilometers is constant (i.e the same for every 100 kilometers). So, we only need to derive the amount of fuel consumed any 100 kilometers on the graph.
From the graph, the amount of fuel consumed for the first 100 kilometers is;
[tex]F = F_0 - F_{100} .........................1[/tex]
[tex]F_0 = 500\\F_{100} \simeq 437.5\\[/tex]
substituting into equation 1.
[tex]F = F_0 - F_{100} \\F = 500 - 437.5\\ F = 62.5 litres\\[/tex]
Therefore, the amount of fuel consumed every 100 kilometers is 62.5 litres.
Answer:500
Step-by-step explanation:got it on Kahn
Points E, F, and D are on circle C, and angle G
measures 60°. The measure of arc EF equals the
measure of arc FD.
Which statements about the arcs and angles are
true? Select three options,
O ZEFD - ZEGD
E
O ZEGD ZECD
ED FD
С
G60°
mEF = 60
OmFD = 120
Mark this and return
Save and Exit
Next
Submit
Answer:
The correct statements are:
1: mEFD = mEGD
3: mED = mFD
5: mFD = 120°
Step-by-step explanation:
Let's analyse each statement:
1: mEFD = mEGD
Let's find the value of the angle ECD, using the sum of the internal angles of a quadrilateral:
[tex]60 + 90 + 90 + mECD = 360[/tex]
[tex]mECD = 120\°[/tex]
The angle ECD is a central angle, related to the arc ED, so the arc ED also has 120°.
The angle EFD inscribes the arc ED, so we have:
[tex]mEFD = mED/2[/tex]
[tex]mEFD = 120/2 = 60\°[/tex]
So the angles mEFD and mEGD are equal. The statement is TRUE.
2. mEGD = mECD
This statement is FALSE, because mEGD = 60° and mECD = 120°
3. mED = mFD
If mED is 120° and mEF = mFD, we have:
[tex]mED + mEF + mFD = 360[/tex]
[tex]2*mFD = 360 - 120[/tex]
[tex]mFD = 120\°[/tex]
So the statement is TRUE, both arcs have 120°.
4. mEF = 60°
This statement is FALSE, because we calculated before that mEF = mFD = 120°
5. mFD = 120°
This statemente is TRUE, because we calculated before that mFD = 120°.
So the correct statements are 1, 3 and 5
The true statements are: [tex]\angle EFD =\angle EGD[/tex], [tex]\overset{\huge\frown}{FD} = \overset{\huge\frown}{ED}[/tex] and [tex]\overset{\huge\frown}{FD} =120[/tex]
Start by calculating the measure of angle ECD.
We have:
[tex]\angle ECD = 2 * \angle EGD[/tex]
So, we have:
[tex]\angle ECD = 2 * 60[/tex]
[tex]\angle ECD = 120[/tex]
The above means that:
[tex]\overset{\huge\frown}{ED} = 120[/tex]
So, the measure of angle EFD is:
[tex]\angle EFD = 0.5 * \overset{\huge\frown}{ED}[/tex]
[tex]\angle EFD = 0.5 * 120[/tex]
[tex]\angle EFD = 60[/tex]
From the question, we have:
[tex]\angle EGD = 60[/tex]
So, it is true that:
[tex]\angle EFD =\angle EGD[/tex]
To calculate the measure of arc FD, we have:
[tex]\overset{\huge\frown}{FD} + \overset{\huge\frown}{DE} + \overset{\huge\frown}{EF} =360[/tex]
Lengths EF and DE are congruent.
So, we have:
[tex]2\overset{\huge\frown}{FD} + \overset{\huge\frown}{DE} =360[/tex]
[tex]\overset{\huge\frown}{DE} = \overset{\huge\frown}{ED} = 120[/tex]
So, we have:
[tex]2\overset{\huge\frown}{FD} + 120 =360[/tex]
Divide through by 2
[tex]\overset{\huge\frown}{FD} + 60 =180[/tex]
Subtract 60 from both sides
[tex]\overset{\huge\frown}{FD} =120[/tex]
This means that:
[tex]\overset{\huge\frown}{FD} = \overset{\huge\frown}{ED}[/tex] and [tex]\overset{\huge\frown}{FD} =120[/tex] are true
Hence, the true statements are: [tex]\angle EFD =\angle EGD[/tex], [tex]\overset{\huge\frown}{FD} = \overset{\huge\frown}{ED}[/tex] and [tex]\overset{\huge\frown}{FD} =120[/tex]
Read more about cyclic theorems at:
https://brainly.com/question/26168678
PLEASE HELP! WILL MARK BRAINLIEST! 30 POINTS! ONLY DUE TOMORROW!
1. How many palindromes of length 5 can you form using letters with the following properties: they start with a consonant, and the consonants and vowels alternate; no letter appears more than twice. (Note: assume letters "a", "e", "i", "o", and "u" are the vowels of the English alphabet).
2. How many different words can be formed with the letters AAAABBCCD (not necessarily meaningful words)?
3. How many six-digit numbers have all their digits of equal parity (all odd or all even)?
4. You want to distribute 7 candies to 4 kids. If every kid must receive at least one candy, in how many ways can you do this?
5. In how many ways can we put five identical fruits into three bowls? Note that the bowls may be empty.
THANK YOU SO MUCH!
Answer:
Step-by-step explanation:
5. cut the five fruits into 3 equal parts....
5x3=15 pieces
15/3(bowls)=5 pieces in each bowl
cut the fruits in multiples of 5 divisible by 3....that many ways possible
(similarly 4th qstion can be done)!!
Find the missing side lengths. Answers are in simplest radical form with the denominator rationalized
Answer:
[tex]m = 5 \sqrt{3}[/tex]
[tex]n = 5[/tex]
Step-by-step explanation:
Given
The triangle above
Required
Find the missing lengths
The missing lengths can be calculated by applying trigonometry ratios
From the triangle above,
the Hypotenuse is 10
Angle = 60
Calculating m
The relationship between m, the Hypotenuse and angle 60 is defined as follows;
[tex]sin \theta = \frac{Opp}{Hyp}[/tex]
Where [tex]\theta = 60[/tex]
[tex]Opp = m[/tex]
[tex]Hyp = 10[/tex]
The above formula becomes
[tex]sin60= \frac{m}{10}[/tex]
Multiply both sides by 10
[tex]10 * sin60= \frac{m}{10} * 10[/tex]
[tex]10 * sin60= m[/tex]
In radical from, [tex]sin60 = \frac{\sqrt{3}}{2}[/tex]
[tex]10 * sin60= m[/tex] becomes
[tex]10 * \frac{\sqrt{3}}{2}= m[/tex]
[tex]\frac{10* \sqrt{3}}{2}= m[/tex]
[tex]5 \sqrt{3}= m[/tex]
[tex]m = 5 \sqrt{3}[/tex]
Calculating n
The relationship between n, the Hypotenuse and angle 60 is defined as follows;
[tex]cos\theta = \frac{Adj}{Hyp}[/tex]
Where [tex]\theta = 60[/tex]
[tex]Adj = n[/tex]
[tex]Hyp = 10[/tex]
The above formula becomes
[tex]cos60= \frac{n}{10}[/tex]
Multiply both sides by 10
[tex]10 * cos60= \frac{n}{10} * 10[/tex]
[tex]10 * cos60= n[/tex]
In radical from, [tex]cos60= \frac{1}{2}[/tex]
[tex]10 * cos60= n[/tex] becomes
[tex]10 * \frac{1}{2}= n[/tex]
[tex]\frac{10*1}{2}= n[/tex]
[tex]5 = n[/tex]
[tex]n = 5[/tex]
SOMEONE PLEASE HELP ME ASAP PLEASE!!!
Answer:
the equation of the line in slope-intercept form is;
[tex]y=8x-26[/tex]
Step-by-step explanation:
First use the formula for the slope of the segment that joins the two given points:
[tex]slope=\frac{y_2-y_1}{x_2-x_1} =\frac{6-(-2)}{4-3}=\frac{8}{1} =8[/tex]
now that we have the slope, we can use the point-slope form of a line to find the line with slope 8 that passes through any of the given points, for example through (3, -2):
[tex]y-y_0=m\,(x-x_0)\\y-(-2)=8\,(x-3)\\y+2=8\,(x-3)\\y=8x-24-2\\y=8x-26[/tex]
Alex, Toby and Samuel are playing a game together.
At the end of the game, they will make a classification with one of them in First
place, one of them in Second place and one of them in Third place.
Work out how many possible outcomes there could be at the end of their game.
The number of possible outcomes there could be at the end of their game is 6 outcomes
This is a permutation problem since it required arrangement
If Alex, Toby, and Samuel are playing a game together and at the end, they will make a classification with one of them in first place, one of them in Second place and one of them in Third place, this can be done in 3! ways
Since n! = n(n-1)(n-2)!
Hence 3! = 3(3-1)(3-2)
3! = 3 * 2 * 1
3! = 6 ways
Hence the number of possible outcomes there could be at the end of their game is 6 outcomes
Learn more here: https://brainly.com/question/24115376
which mathematical operation is represented in the phrase "15 more than q"
A) +
B) ×
C) ÷
D) -
Answer:
[tex]\boxed{OptionA}[/tex]
Step-by-step explanation:
More than always indicates "ADDITION". So the mathematical operation is "+".
Answer:
A. +
Step-by-step explanation:
The key word in the phrase is "more than"
That signifies an increase of value which is addition's main function
If the number that was represented in the phrase is x, then we could write out an equation
x=q+15
What are the zeros of f(x) = x2 + x - 30?
O A. x= -6 and x = 5
B. x= -2 and x= 15
o
C. x= -5 and x = 6
D. x= -15 and x = 2
SS
Answer:
A
Step-by-step explanation:
The zeroes of the function are the x values when f(x) = 0 so we can write:
0 = x² + x - 30
0 = (x + 6)(x - 5) (To factor this we need to find 2 numbers that have a sum of 1 and a product of -30; these numbers are 6 and -5)
x + 6 = 0 or x - 5 = 0 (Use Zero Product Property)
x = -6, 5
Hey there! :)
Answer:
A. x = -6 and x = 5.
Step-by-step explanation:
Given:
f(x) = x² + x - 30
Factor the equation by finding two numbers that sum up to 1 and multiply into -30. We get:
-5, 6
Use these to express this quadratic function in factored form:
f(x) = (x - 5) (x + 6)
Set each factor equal to 0 to solve for the zeros of the equation:
0 = x - 5
x = 5
-------------
0 = x + 6
x = -6
Therefore, the correct answer is A. x = -6 and x = 5.
Find the missing length indicated.
Answer:
Step-by-step explanation:
x=✓64*36=✓8^2*6^2
x=8*6
x=48