Answer:
R(smaller) = 1.3 Ω and R(larger) = 5.4 Ω
Explanation:
Ohm's Law states that:
V = IR
R = V/I
where,
R = Resistance
V = Potential Difference
I = Current
Therefore, for series connection:
Rs = Vs/Is
where,
Rs = Resistance when connected in series = R(smaller) + R(larger)
Vs = Potential Difference when connected in series = 12 V
Is = Current when connected in series = 1.78 A
Therefore,
R(smaller) + R(larger) = 12 V/1.78 A
R(smaller) + R(larger) = 6.74 Ω --------------- equation 1
R(smaller) = 6.74 Ω - R(larger) --------------- equation 2
Therefore, for series connection:
Rp = Vp/Ip
where,
Rp = Resistance when connected in parallel = [1/R(smaller) + 1/R(larger)]⁻¹
Rp = [{R(smaller) + R(larger)}/{R(smaller).R(larger)]⁻¹
Rp = R(smaller).R(larger)/[R(smaller) + R(larger)]
Vp = Potential Difference when connected in parallel = 12 V
Ip = Current when connected in parallel = 11.3 A
Therefore,
R(smaller).R(larger)/[R(smaller) + R(larger)] = 12 V/11.3 A
using equation 1 and equation 2, we get:
[6.74 Ω - R(larger)].R(larger)/6.74 Ω = 1.06 Ω
6.74 R(larger) - R(larger)² = (6.74)(1.06)
R(larger)² - 6.74 R(larger) + 7.16 = 0
solving this quadratic equation we get:
R(larger) = 5.4 Ω (OR) R(larger) = 1.3 Ω
using these values in equation 2, we get:
R(smaller) = 1.3 Ω (OR) R(smaller) = 5.4 Ω
Since, it is given in the question that R(smaller)<R(larger).
Therefore, the correct answers will be:
R(smaller) = 1.3 Ω and R(larger) = 5.4 Ω
what is a push or a pull on an object known as
Answer:
Force
Explanation:
Force is simply known as pull or push of an object
Suppose two children push horizontally, but in exactly opposite directions, on a third child in a sled. The first child exerts a force of 79 N, the second a force of 92 N, kinetic friction is 5.5 N, and the mass of the third child plus sled is 24 kg.
1. Using a coordinate system where the second child is pushing in the positive direction, calculate the acceleration in m/s2.
2. What is the system of interest if the accelaration of the child in the wagon is to be calculated?
3. Draw a free body diagram including all bodies acting on the system
4. What would be the acceleration if friction were 150 N?
Answer:
Please, read the anser below
Explanation:
1. In order to calculate the acceleration of the children you use the Newton second law for the summation of the implied forces:
[tex]F_2-F_1-F_f=Ma[/tex] (1)
Where is has been used that the motion is in the direction of the applied force by the second child
F2: force of the second child = 92N
F1: force of the first child = 79N
Ff: friction force = 5.5N
M: mass of the third child = 24kg
a: acceleration of the third child = ?
You solve the equation (1) for a, and you replace the values of the other parameters:
[tex]a=\frac{F_2-F_1.F_f}{M}=\frac{96N-79N-5.5N}{24kg}=0.48\frac{m}{s^2}[/tex]
The acceleration is 0.48m/s^2
2. The system of interest is the same as before, the acceleration calculated is about the motion of the third child.
3. An image with the diagram forces is attached below.
4. If the friction would be 150N, the acceleration would be zero, because the friction force is higher than the higher force between children, which is 92N.
Then, the acceleration is zero
Water molecules are made of slightly positively charged hydrogen atoms and slightly negatively charged oxygen atoms. Which force keeps water molecules stuck to one another? strong nuclear gravitational weak nuclear electromagnetic
Answer:
The answer is electromagnetic
Answer:
electromagnetic
Explanation:
edge 2021
A positively charged particle Q1 = +45 nC is held fixed at the origin. A second charge Q2 of mass m = 4.5 μg is floating a distance d = 25 cm above charge The net force on Q2 is equal to zero. You may assume this system is close to the surface of the Earth.
|Q2| = m g d2/( k Q1 )
Calculate the magnitude of Q2 in units of nanocoulombs.
Answer:
( About ) 6.8nC
Explanation:
We are given the equation |Q2| = mgd^2 / kQ1. Let us substitute known values into this equation, but first list the given,
Charge Q2 = +45nC = (45 × 10⁻⁹) C
mass of charge Q2 = 4.5 μg, force of gravity = 4.5 μg × 9.8 m/s² = ( 4.41 × 10^-5 ) N,
Distance between charges = 25 cm = 0.25 m,
k = Coulomb's constant = 9 × 10^9
_______________________________________________________
And of course, we have to solve for the magnitude of Q2, represented by the charge magnitude of the charge on Q2 -
(4.41 × 10^-5) = [(9.0 × 10⁹) × (45 × 10⁻⁹) × Q₂] / 0.25²
_______________________________________________________
Solution = ( About ) 6.8nC
As you know, a common example of a harmonic oscillator is a mass attached to a spring. In this problem, we will consider a horizontally moving block attached to a spring. Note that, since the gravitational potential energy is not changing in this case, it can be excluded from the calculations. For such a system, the potential energy is stored in the spring and is given by
U = 12k x 2
where k is the force constant of the spring and x is the distance from the equilibrium position. The kinetic energy of the system is, as always,
K = 12mv2
where m is the mass of the block and v is the speed of the block.
A) Find the total energy of the object at any point in its motion.
B) Find the amplitude of the motion.
C) Find the maximum speed attained by the object during its motion.
Answer:
a) [tex]E = \frac{1}{2} \cdot k \cdot x^{2} + \frac{1}{2} \cdot m \cdot v^{2}[/tex], b) Amplitude of the motion is [tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex], c) The maximum speed attained by the object during its motion is [tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex].
Explanation:
a) The total energy of the object is equal to the sum of potential and kinetic energies. That is:
[tex]E = K + U[/tex]
Where:
[tex]K[/tex] - Kinetic energy, dimensionless.
[tex]U[/tex] - Potential energy, dimensionless.
After replacing each term, the total energy of the object at any point in its motion is:
[tex]E = \frac{1}{2} \cdot k \cdot x^{2} + \frac{1}{2} \cdot m \cdot v^{2}[/tex]
b) The amplitude of the motion occurs when total energy is equal to potential energy, that is, when objects reaches maximum or minimum position with respect to position of equilibrium. That is:
[tex]E = U[/tex]
[tex]E = \frac{1}{2} \cdot k \cdot A^{2}[/tex]
Amplitude is finally cleared:
[tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex]
Amplitude of the motion is [tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex].
c) The maximum speed of the motion when total energy is equal to kinetic energy. That is to say:
[tex]E = K[/tex]
[tex]E = \frac{1}{2}\cdot m \cdot v_{max}^{2}[/tex]
Maximum speed is now cleared:
[tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex]
The maximum speed attained by the object during its motion is [tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex].
A cat’s crinkle ball toy of mass 15g is thrown straight up with an initial speed of 3m/s. Assume in this problem that air drag is negligible. If the gravitational potential energy is taken to be zero at the point where it leaves your hand, what is the gravitational potential energy when the ball is at its peak height?
Answer:
P.E = 0.068 J = 68 mJ
Explanation:
First we need to find the height attained by the ball toy. For this purpose, we will be using 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = -9.8 m/s² (negative sign due to upward motion)
h = height attained by the ball toy = ?
Vf = Final Velocity = 0 m/s (since it momentarily stops at the highest point)
Vi = Initial Velocity = 3 m/s
Therefore,
2(-9.8 m/s²)h = (0 m/s)² - (3 m/s)²
h = (9 m²/s²)/(19.6 m/s²)
h = 0.46 m
Now, the gravitational potential energy of ball at its peak is given by the following formula:
P.E = mgh
P.E = (0.015 kg)(9.8 m/s²)(0.46 m)
P.E = 0.068 J = 68 mJ
If a bar magnet is falling through a loop of wire, the induced current in the loop of wire sets up a field which exerts a force on the magnet. This force between the magnet and the loop will be attractive when:
Answer:
When the magnet is leaving the loop
Explanation:
According to Lenz's law the direction of an induced current in a conductor will oppose the effect which produces it. As the current is induced in the wire loop and force is exerted on the magnet, the force between the magnet and the loop will be attractive when the magnet is leaving the loop because it's is the one that produces the effect which create the current.
which of the following best describes a stable atom?
g The Trans-Alaskan pipeline is 1,300 km long, reaching from Prudhoe Bay to the port of Valdez, and is subject to temperatures ranging from -71°C to +35°C. How much does the steel pipeline expand due to the difference in temperature?
Answer:
ΔL = 1.653 km
Explanation:
The linear expansion of any object due to change in temperature is given by the following formula:
ΔL = αLΔT
where,
ΔL = Change in length or expansion of steel pipe line = ?
α = coefficient of linear expansion of steel = 12 x 10⁻⁶ /°C
L = Original Length of the steel pipe = 1300 km
ΔT = Change in temperature = 35°C - (- 71°C) = 35°C + 71°C = 106°C
Therefore,
ΔL = (12 x 10⁻⁶ /°C)(1300 km)(106°C)
ΔL = 1.653 km
A box weighing 180 newtons is hanging by rope as shown in the figure. Find the tension T2.
The question is incomplete, however, the correct question is attached
in the image format:
Answer:
B. 171 N
Explanation:
The equation of the forces along the
Horizontal direction:
[tex]T_{2} cos62^{0} = T_{1} cos20^{0}[/tex]...... 1
Verticalb direction:
[tex]T_{1} sin20^{0} = T_{2} sin62^{0}[/tex] = W . . . 2
Where W = 180 N is the weight of the box.
From equation (1),
[tex]= T_{1} =T_{2} \frac{cos62^{0}}{ cos20^{0}}[/tex]
Substituting into equation (2),
[tex](T_{2} \frac{cos62^{0}}{ cos20^{0}})[/tex][tex]sin20^{0} = T_{2} sin62^{0}[/tex]
= [tex]T = \frac{W}{cos62x^{0} tan20x^{0}+sin62x^{0} }[/tex]
=117 N
Thus, the correct answer is option B. 117 N
A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.
Answer:
P = 5.97 × 10^(5) Pa
Explanation:
We are given;
Mass of balloon;m_b = 4.3 kg
Radius;r = 1.54 m
Temperature;T = 289 K
Density;ρ = 1.19 kg/m³
We know that, density = mass/volume
So, mass = Volume x Density
We also know that Force = mg
Thus;
F = mg = Vρg
Where m = mass of balloon(m_b) + mass of helium (m_he)
So,
(m_b + m_he)g = Vρg
g will cancel out to give;
(m_b + m_he) = Vρ - - - eq1
Since a sphere shaped balloon, Volume(V) = (4/3)πr³
V = (4/3)π(1.54)³
V = 15.3 m³
Plugging relevant values into equation 1,we have;
(3 + m_he) = 15.3 × 1.19
m_he = 18.207 - 3
m_he = 15.207 kg = 15207 g
Molecular weight of helium gas is 4 g/mol
Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles
From ideal gas equation, we know that;
P = nRT/V
Where,
P is absolute pressure
n is number of moles
R is the gas constant and has a value lf 8.314 J/mol.k
T is temperature
V is volume
Plugging in the relevant values, we have;
P = (3802 × 8.314 × 289)/15.3
P = 597074.53 Pa
P = 5.97 × 10^(5) Pa
A long horizontal hose of diameter 3.4 cm is connected to a faucet. At the other end, there is a nozzle of diameter 1.8 cm. Water squirts from the nozzle at velocity 14 m/sec. Assume that the water has no viscosity or other form of energy dissipation.
A) What is the velocity of the water in the hose ?
B) What is the pressure differential between the water in the hose and water in the nozzle ?
C) How long will it take to fill a tub of volume 120 liters with the hose ?
Answer:
a) v₁ = 3.92 m / s , b) ΔP = = 9.0 10⁴ Pa, c) t = 0.0297 s
Explanation:
This is a fluid mechanics exercise
a) let's use the continuity equation
let's use index 1 for the hose and index 2 for the nozzle
A₁ v₁ = A₂v₂
in area of a circle is
A = π r² = π d² / 4
we substitute in the continuity equation
π d₁² / 4 v₁ = π d₂² / 4 v₂
d₁² v₁ = d₂² v₂
the speed of the water in the hose is v1
v₁ = v₂ d₂² / d₁²
v₁ = 14 (1.8 / 3.4)²
v₁ = 3.92 m / s
b) they ask us for the pressure difference, for this we use Bernoulli's equation
P₁ + ½ ρ v₁² + m g y₁ = P₂ + ½ ρ v₂² + mg y2
as the hose is horizontal y₁ = y₂
P₁ - P₂ = ½ ρ (v₂² - v₁²)
ΔP = ½ 1000 (14² - 3.92²)
ΔP = 90316.8 Pa = 9.0 10⁴ Pa
c) how long does a tub take to flat
the continuity equation is equal to the system flow
Q = A₁v₁
Q = V t
where V is the volume, let's equalize the equations
V t = A₁ v₁
t = A₁ v₁ / V
A₁ = π d₁² / 4
let's reduce it to SI units
V = 120 l (1 m³ / 1000 l) = 0.120 m³
d1 = 3.4 cm (1 m / 100cm) = 3.4 10⁻² m
let's substitute and calculate
t = π d₁²/4 v1 / V
t = π (3.4 10⁻²)²/4 3.92 / 0.120
t = 0.0297 s
If electrons are ejected from a given metal when irradiated with a 10-W red laser pointer, what will happen when the same metal is irradiated with a 5-W green laser pointer? (a) Electrons will be ejected, (b) electrons will not be ejected, (c) more information is needed to answer this question. Group of answer choices
Answer:
(b) electrons will not be ejected
Explanation:
Determine the number of photons ejected by 10 W red laser pointer.
The wavelength (λ) of red light is 700 nm = 700 x 10⁻⁹ m
Energy of a photon is given as;
[tex]E = \frac{hc}{\lambda}[/tex]
where;
h is Planck's constant, = 6.626 x 10⁻³⁴ J/s
c is speed of light, = 3 x 10⁸ m/s
[tex]E = \frac{6.626*10^{-34} *3*10^8}{700 X 10^{-9}} \\\\E = 2.8397 *10^{-19} \ J/photon[/tex]
The number of photons emitted by 10 W red laser pointer
10 W = 10 J/s
[tex]Number \ of \ photons = 10(\frac{ J}{s}) * \frac{1}{2.8397*10^{-19}} (\frac{photon}{J} ) = 3.522 *10^{19} \ photons/s[/tex]
Determine the number of photons ejected by 5 W red green pointer
The wavelength (λ) of green light is 500 nm = 500 x 10⁻⁹ m
[tex]E = \frac{hc}{\lambda} = \frac{6.626*10^{-34} *3*10^8}{500*10^{-9}} = 3.9756 *10^{-19} \ J/photon[/tex]
The number of photons emitted by 5 W green laser pointer
5 W = 5 J/s
[tex]Number \ of \ photons = \frac{5J}{s} *\frac{photon}{3.9756*10^{-19}J} = 1.258 *10^{19} \ Photons/s[/tex]
The number of photons emitted by 10 W red laser pointer is greater than the number of photons emitted by 5 W green laser pointer.
Thus, 5 W green laser pointer will not be able to eject electron from the same metal.
The correct option is "(b) electrons will not be ejected"
As particle motion decreases, thermal energy does what?
Answer:
Changes of state. The kinetic theory of matter can be used to explain how solids, liquids and gases are interchangeable as a result of increase or decrease in heat energy. ... If it is cooled the motion of the particles decreases as they lose energy.13 Nov 2000
Explanation:
The Bohr radius a0 is the most probable distance between the proton and the electron in the Hydrogen atom, when the Hydrogen atom is in the ground state. The value of the Bohr Radius is: 1 a0 = 0.529 angstrom. One angstrom is 10-10 m. What is the magnitude of the electric force between a proton and an electron when they are at a distance of 2.63 Bohr radius away from each other?
Answer:
The electric force is [tex]F = 11.9 *10^{-9} \ N[/tex]
Explanation:
From the question we are told that
The Bohr radius at ground state is [tex]a_o = 0.529 A = 0.529 ^10^{-10} \ m[/tex]
The values of the distance between the proton and an electron [tex]z = 2.63a_o[/tex]
The electric force is mathematically represented as
[tex]F = \frac{k * n * p }{r^2}[/tex]
Where n and p are charges on a single electron and on a single proton which is mathematically represented as
[tex]n = p = 1.60 * 10^{-19} \ C[/tex]
and k is the coulomb's constant with a value
[tex]k =9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.[/tex]
substituting values
[tex]F = \frac{9*10^{9} * [(1.60*10^{-19} ]^2)}{(2.63 * 0.529 * 10^{-10})^2}[/tex]
[tex]F = 11.9 *10^{-9} \ N[/tex]
A 300-W computer (including the monitor) is turned on for 8.0 hours per day. If electricity costs 15¢ per kWh, how much does it cost to run the computer annually for a typical 365-day year? (Choose the closest answer)
Answer:
Cost per year = $131.4
Explanation:
We are given;
Power rating of computer with monitor;P = 300 W = 0.3 KW
Cost of power per KWh = 15 cents = $0.15
Time used per day by the computer with monitor = 8 hours
Thus; amount of power consumed per 8 hours each day = 0.3 × 8 = 2.4 KWh per day
Thus, for 365 days in a year, total amount amount of power = 2.4 × 365 = 876 KWh
Now, since cost of power per KWh is $0.15, then cost for 365 days would be;
876 × 0.15 = $131.4
Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Given the satellite specifications listed in the problem introduction, what is the amplitude E0 of the electric field vector of the satellite broadcast as measured at the surface of the earth? Use ϵ0=8.85×10−12C/(V⋅m) for the permittivity of space and c=3.00×108m/s for the speed of light.
Complete Question
A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is at a height of 35,000 km above the surface of the earth, and we assume it has an isotropic power output of 1 kW (although, in practice, satellite antennas transmit signals that are less powerful but more directional).
Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Given the satellite specifications listed in the problem introduction, what is the amplitude E0 of the electric field vector of the satellite broadcast as measured at the surface of the earth? Use ϵ0=8.85×10^−12C/(V⋅m) for the permittivity of space and c=3.00×10^8m/s for the speed of light.
Answer:
The electric field vector of the satellite broadcast as measured at the surface of the earth is [tex]E_o = 6.995 *10^{-6} \ V/m[/tex]
Explanation:
From the question we are told that
The height of the satellite is [tex]r = 35000 \ km = 3.5*10^{7} \ m[/tex]
The power output of the satellite is [tex]P = 1 \ KW = 1000 \ W[/tex]
Generally the intensity of the electromagnetic radiation of the satellite at the surface of the earth is mathematically represented as
[tex]I = \frac{P}{4 \pi r^2}[/tex]
substituting values
[tex]I = \frac{1000}{4 * 3.142 (3.5*10^{7})^2}[/tex]
[tex]I = 6.495*10^{-14} \ W/m^2[/tex]
This intensity of the electromagnetic radiation of the satellite at the surface of the earth can also be mathematically represented as
[tex]I = c * \epsilon_o * E_o^2[/tex]
Where [tex]E_o[/tex] is the amplitude of the electric field vector of the satellite broadcast so
[tex]E_o = \sqrt{\frac{2 * I}{c * \epsilon _o} }[/tex]
substituting values
[tex]E_o = \sqrt{\frac{2 * 6.495 *10^{-14}}{3.0 *10^{8} * 8.85*10^{-12}} }[/tex]
[tex]E_o = 6.995 *10^{-6} \ V/m[/tex]
A coil is connected to a galvanometer, which can measure the current flowing through the coil. You are not allowed to connect a battery to this coil. Given a magnet, a battery and a long piece of wire, can you induce a steady current in that coil?
Answer:
Yes we can induce current in the coil by moving the magnet in and out of the coil steadily.
Explanation:
A current can be induced there using the magnetic field and the coil of wire. Moving the bar magnet around the coil can induce a current and this is called electromagnetic induction.
What is electromagnetic induction ?The generation of an electromotive force across an electrical conductor in a fluctuating magnetic field is known as electromagnetic or magnetic induction.
Induction was first observed in 1831 by Michael Faraday, and James Clerk Maxwell mathematically named it Faraday's law of induction. The induced field's direction is described by Lenz's law.
Electrical equipment like electric motors and generators as well as parts like inductors and transformers have all found uses for electromagnetic induction.
Here, moving the bar magnet around the coil generates the electronic movement followed by a generation of electric current.
Find more on electromagnetic induction :
https://brainly.com/question/13369951
#SPJ6
The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
The distance is [tex]d = 1.5 *10^{15} \ km[/tex]
Explanation:
From the question we are told that
The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]
Generally a grid unit is [tex]\frac{1}{10}[/tex] of an arcsec
This implies that 0.2 grid unit is [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]
The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as
[tex]d = \frac{1}{k}[/tex]
substituting values
[tex]d = \frac{1}{0.02}[/tex]
[tex]d = 50 \ parsec[/tex]
Note [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]
So [tex]d = 50 * 3.08 *10^{13}[/tex]
[tex]d = 1.5 *10^{15} \ km[/tex]
A 56.0 g ball of copper has a net charge of 2.10 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)
Answer:
The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].
Explanation:
An electron has a mass of [tex]9.1 \times 10^{-31}\,kg[/tex] and a charge of [tex]-1.6 \times 10^{-19}\,C[/tex]. Based on the Principle of Charge Conservation, [tex]-2.10\times 10^{-6}\,C[/tex] in electrons must be removed in order to create a positive net charge. The amount of removed electrons is found after dividing remove charge by the charge of a electron:
[tex]n_{R} = \frac{-2.10\times 10^{-6}\,C}{-1.6 \times 10^{-19}\,C}[/tex]
[tex]n_{R} = 1.3125 \times 10^{13}\,electrons[/tex]
The number of atoms in 56 gram cooper ball is determined by the Avogadro's Law:
[tex]n_A = \frac{m_{ball}}{M_{Cu}}\cdot N_{A}[/tex]
Where:
[tex]m_{ball}[/tex] - Mass of the ball, measured in kilograms.
[tex]M_{Cu}[/tex] - Atomic mass of cooper, measured in grams per mole.
[tex]N_{A}[/tex] - Avogradro's Number, measured in atoms per mole.
If [tex]m_{ball} = 56\,g[/tex], [tex]M_{Cu} = 63.5\,\frac{g}{mol}[/tex] and [tex]N_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex], the number of atoms is:
[tex]n_{A} = \left(\frac{56\,g}{63.5\,\frac{g}{mol} } \right)\cdot \left(6.022\times 10^{23}\,\frac{atoms}{mol} \right)[/tex]
[tex]n_{A} = 5.3107\times 10^{23}\,atoms[/tex]
As there are 29 protons per each atom of cooper, there are 29 electrons per atom. Hence, the number of electrons in cooper is:
[tex]n_{E} = \left(29\,\frac{electrons}{atom} \right)\cdot (5.3107\times 10^{23}\,atoms)[/tex]
[tex]n_{E} = 1.5401\times 10^{23}\,electrons[/tex]
The fraction of the cooper's electrons that is removed is the ratio of removed electrons to total amount of electrons when net charge is zero:
[tex]x = \frac{n_{R}}{n_{E}}[/tex]
[tex]x = \frac{1.3125\times 10^{13}\,electrons}{1.5401\times 10^{23}\,electrons}[/tex]
[tex]x = 8.5222 \times 10^{-11}[/tex]
The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].
Suppose you are chatting with your friend, who lives on the moon. He tells you he has just won a Newton of gold in a contest. Excitedly, you tell him that you entered the Earth version of the same contest and also won a Newton of gold. Who is richer
Answer:
The friend on moon is richer.
Explanation:
The value of acceleration due to gravity changes from planet to planet. So the weight of 1 Newton of gold carries different mass on different places. So we need to calculate the mass of gold that both persons have.
FRIEND ON MOON:
W₁ = m₁g₁
where,
W₁ = Weight of Gold won by friend on moon = 1 N
m₁ = mass of gold won by friend on moon = ?
g₁ = acceleration due to gravity on moon = 1.625 m/s²
Therefore,
1 N = m₁(1.625 m/s²)
m₁ = 0.62 kg
ON EARTH:
W₂ = m₂g₂
where,
W₂ = Weight of Gold won by me on Earth = 1 N
m₂ = mass of gold won by me on Earth = ?
g₂ = acceleration due to gravity on Earth = 9.8 m/s²
Therefore,
1 N = m₁(9.8 m/s²)
m₁ = 0.1 kg
Since, the friend on moon has greater mass of gold than me.
Therefore, the friend on moon is richer.
The electric potential of a charge distribution is given by the equation V(x) = 3x2y2 + yz3 - 2z3x, where x, y, z are measured in meters and V is measured in volts. Calculate the magnitude of the electric field vector at the position (x,y,z) = (1.0, 1.0, 1.0)
Answer:
The magnitude of the electric field is [tex]|E| = 8.602 \ V/m[/tex]
Explanation:
From the question we are told that
The electric potential is [tex]V = 3x^2y^2 + yz^3 - 2z^3x[/tex]
Generally electric filed is mathematically represented as
[tex]E = - [\frac{dV }{dx} i + \frac{dV}{dy} j + \frac{dV}{dz} \ k][/tex]
So
[tex]E =- ( [6xy^2 - 2z^3] i + [6x^2y+ z^3]j + [3yz^2 -6xz^2])[/tex]
at (x,y,z) = (1.0, 1.0, 1.0)
[tex]E = [6(1)(1)^2 - 2(1)^3] i + [6(1)^2(1)+ (1)^3]j + [6(1)(1)^2 -6(1)(1)^2][/tex]
[tex]E =- ([4] i + [7]j + [-3])[/tex]
[tex]E =-4i -7j + 3 k[/tex]
The magnitude of the electric field is
[tex]|E| = \sqrt{(-4)^2 + (-7)^2 + (3^2)}[/tex]
[tex]|E| = 8.602 \ V/m[/tex]
What do behaviorism and cognitive psychology have in common?
O Both rely on the scientific method.
Both attempt to explain human behavior.
Both note the differences between human and animal behavior
Behaviorism focuses on actions only.
Answer:
Both attempt to explain human behavior
Explanation:
Psychology is generally regarded as the science of human behavior. Behaviourism is the psychological theory which holds that behaviour can be fully understood in terms of conditioning, without actually considering thoughts or feelings. The theory holds that psychological disorders can be aptly handled by simply altering the behavioural patterns of the individual. It involves the study of stimulus and responses.
Cognitive psychology attempts to decipher what is going on in people's minds. That is, it looks at the mind as a processor of information. Hence we can define cognitive psychology as the study of the internal mental processes. This according to behaviorists, cannot be studied in measurable terms as in behaviourism (stimulus response approach) even though mental processes are known to influence human behavior significantly.
Hence, both behaviourism and cognitive psychology attempt to study human behavior from different perspectives.
A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline
Answer:
x = 46.54m
Explanation:
In order to find the length of the incline you use the following formula:
[tex]x=v_ot+\frac{1}{2}at^2[/tex] (1)
vo: initial speed of the soccer ball = 0 m/s
t: time
a: acceleration
You first use the the fact that the ball traveled 22 m in 2.2 s. Whit this information you can calculate the acceleration a from the equation (1):
[tex]22m=\frac{1}{2}a(2.2s)^2\\\\a=9.09\frac{m}{s^2}[/tex] (2)
Next, you calculate the distance traveled by the ball for t = 3.2 s (one second later respect to t = 2.2s). The values of the distance calculated is the lenght of the incline:
[tex]x=\frac{1}{2}(9.09m/s^2)(3.2s)^2=46.54m[/tex] (3)
The length of the incline is 46.54 m
The magnet has an unchanging magnetic field: very strong near the magnet, and weak far from the magnet. How did the magnetic field through the coil change as the magnet fell toward it? How did the magnetic flux through the coil change as the magnet fell toward it?
Answer:
The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.
Explanation:
At first, the magnet fall towards the coils; inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.
This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.
Oh football player kicks a football from the height of 4 feet with an initial vertical velocity of 64 ft./s use the vertical motion model H equals -16 tea to the power of 2+ VT plus S where V is initial velocity and feet per second and S is the height and feet to calculate the amount of time the football is in the air before it hits the ground round your answer to the nearest 10th if necessary.
Answer:
4.1 seconds
Explanation:
The height of the football is given by the equation:
[tex]H = -16t^2 + V*t + S[/tex]
Using the inicial position S = 4 and the inicial velocity V = 64, we can find the time when the football hits the ground (H = 0):
[tex]0 = -16t^2 + 64*t + 4[/tex]
[tex]4t^2 - 16t - 1 = 0[/tex]
Using Bhaskara's formula, we have:
[tex]\Delta = b^2 - 4ac = (-16)^2 - 4*4*(-1) = 272[/tex]
[tex]t_1 = (-b + \sqrt{\Delta})/2a[/tex]
[tex]t_1 = (16 + 16.49)/8 = 4.06\ seconds[/tex]
[tex]t_2 = (-b - \sqrt{\Delta})/2a[/tex]
[tex]t_2 = (16 - 16.49)/8 = -0.06\ seconds[/tex]
A negative time is not a valid result for this problem, so the amount of time the football is in the air before hitting the ground is 4.1 seconds.
The amount of time the football spent in air before it hits the ground is 4.1 s.
The given parameters;
initial velocity of the ball, V = 64 ft/sthe height, S = 4 ftTo find:
the amount of time the football spent in air before it hits the groundUsing the vertical model equation given as;
[tex]H = -16t^2 + Vt + S\\\\[/tex]
the final height when the ball hits the ground, H = 0
[tex]0 = -16t^2 + 64t + 4\\\\16t^2 - 64t - 4 = 0\\\\divide \ through \ by\ 4\\\\4t^2 - 16t - 1= 0\\\\solve \ the \ quadratic \ equation \ using \ the \ formula \ method;\\\\\\a = 4, \ b = -16, \ c = - 1\\\\t = \frac{-b \ \ + /- \ \ \ \sqrt{b^2 - 4ac} }{2a} \\\\[/tex]
[tex]t = \frac{-(-16) \ \ + /- \ \ \ \sqrt{(-16^2 )- 4(4\times -1)} }{2\times 4}\\\\t = \frac{16 \ \ + /- \ \ \sqrt{272} }{8} \\\\t = \frac{16 \ \ +/- \ \ 16.49}{8} \\\\t = \frac{16 - 16.49}{8} \ \ \ \ or \ \ \ \frac{16 + 16.49}{8} \\\\t = -0.61 \ s \ \ or \ \ \ 4.06 \ s\\\\t\approx 4.1 \ s[/tex]
Thus, the amount of time the football spent in air before it hits the ground is 4.1 s.
Learn more here: https://brainly.com/question/2018532
A charged Adam or particle is called a
Answer:
A charged atom or particle is called an ion :)
You throw a ball straight up into the air from the top of a building. The building has a height of 15.0 m. The ball reaches a height (measured from the ground) of 25.0 m and then it starts to fall back down.
a) Determine the initial velocity of the ball.
b) What is the velocity of the ball when it comes back down and is at the same height from which it was thrown?
c) How long will it take the ball to come back down to this height from the time at which it was first thrown?
d) Let’s say that you missed catching the ball on the way back down and it fell to the ground. How long did it take to hit the ground from the moment you threw it up?
e) What was the ball’s final velocity the moment before it hit the ground?
Answer:
a) vo = 14m/s
b) v = 14m/s
c) t = 2.85s
d) t = 0.829s
e) v = 22.12 m/s
Explanation:
a) To find the initial velocity of the ball yo use the following formula:
[tex]h_{max}=\frac{v_o^2}{2g}[/tex] (1)
hmax: maximum height reached by the ball but measured from the point at which the ball is thrown = 25.0m - 15.0m = 10.0m
vo: initial velocity of the ball = ?
g: gravitational acceleration = 9.8m/s^2
You solve the equation (1) for vo and replace the values of the other parameters:
[tex]v_o=\sqrt{2gh_{max}}}=\sqrt{2(9.8m/s^2)(10.0m)}=14\frac{m}{s}[/tex]
The initial velocity of the ball is 14m/s
b) To find the velocity of the ball when it is at the same position as the initial point where it was thrown, you can use the following formula:
[tex]v^2=2gh_{max}\\\\v=\sqrt{2gh_{max}}[/tex]
as you can notice, v = vo = 14m/s
The velocity of the ball is 14 m/s
c) The flight time of the ball is given by twice the time the ball takes to reach the maximum height. You use the following formula:
[tex]t=2\frac{v_o}{g}=2\frac{14m/s}{9.8m/s^2}=2.85s[/tex] (3)
The time is 2.85s
d) To find the time the ball takes to arrive to the ground after the ball passes the same height at which is was thrown, you can use the following formula:
[tex]y=y_o-v_ot-\frac{1}{2}gt^2[/tex] (4)
y: 0 m (ball just after it impact the ground)
yo: initial position = 15.0 m
vo: in)itial velocity of the ball = 14m/s
t: time
You replace the values of the parameters in the equation (4) and obtain a quadratic formula:
[tex]0=15.0-14t-\frac{1}{2}(9.8)t^2\\\\[/tex]
You use the quadratic formula to find the roots t:
[tex]t_{1,2}=\frac{-(-14)\pm\sqrt{(-14)^2-4(4.9)(15)}}{2(-4.9)}\\\\t_{1,2}=\frac{14\pm22.13}{-9.8}\\\\t_1=0.829s\\\\t_2=-2.19s[/tex]
you choose the positive values because is has physical meaning
The time the ball takes to arrive to the ground is 0.829s
e) The final velocity is:
[tex]v=v_o+gt[/tex]
[tex]v=14m/s+(9.8m/s^2)(0.829s)=22.12\frac{m}{s}[/tex]
The final velocity is 22.14 m/s
The Pauli exclusion principle states that Question 1 options: the wavelength of a photon of light times its frequency is equal to the speed of light. no two electrons in the same atom can have the same set of four quantum numbers. both the position of an electron and its momentum cannot be known simultaneously very accurately. the wavelength and mass of a subatomic particle are related by . an electron can have either particle character or wave character.
Answer:
no two electrons in the same atom can have the same set of four quantum numbers
Explanation:
Pauli 's Theory of Exclusion specifies that for all four of its quantum numbers, neither two electrons in the same atom can have similar value.
In a different way, we can say that no more than two electrons can take up the identical orbital, and two electrons must have adversely spin in the identical orbital
Therefore the second option is correct
Which best describes friction?
Answer:
It is the force that opposes motion between two surfaces touching each other. ( OR ) The force between two surfaces that are sliding or trying to slide across each other.
Explanation:
Answer:
a constant force that acts on objects that rub together
Explanation:
a constant force that acts on objects that rub together