Tutored Practice Problem 3.1.3 Convert between mass, moles, and atoms of an element. How many Ne atoms are there in a 91.8 gram sample of elemental Ne? atoms

Answers

Answer 1

There are approximately 2.74 x 10²⁴ Ne atoms in a 91.8 gram sample of elemental Ne.

To convert from mass to atoms, we need to use the concept of molar mass and Avogadro's number. The molar mass of Ne (neon) is approximately 20.18 grams/mol.

First, we calculate the number of moles of Ne in the given sample:

moles of Ne = mass of Ne / molar mass of Ne

moles of Ne = 91.8 grams / 20.18 grams/mol ≈ 4.55 moles

Next, we use Avogadro's number, which is approximately 6.022 x 10²³ atoms/mol, to convert from moles to atoms:

atoms of Ne = moles of Ne x Avogadro's number

atoms of Ne = 4.55 moles x (6.022 x 10²³ atoms/mol) ≈ 2.74 x 10²⁴ atoms

learn more about molar mass Here:

https://brainly.com/question/22997914

#SPJ11


Related Questions

What volume of a 0.324M perchloric acid solution is required to neutralize 25.4 mL of a 0.162M caicium hydroxide solution? mL perchloric acid 2 more group attempts rensining What volume of a 0.140M sodium hydroxide solution is required to neutralize 28.8 mL of a 0.195M hydrobromic acid solution? mL sodium hydroxide You need to make an aqueous solution of 0.176M ammonium bromide for an experiment in lab, using a 500 mL volumetric flask. How much solid ammonium bromide should you add? grams How many milliliters of an aqueous solution of 0.195 M chromium(II) bromide is needed to obtain 7.24 grams of the salt? mL

Answers

Approximately 12.8 mL of the 0.324 M perchloric acid solution is required to neutralize 25.4 mL of the 0.162 M calcium hydroxide solution.  Approximately 40.2 mL of the 0.140 M sodium hydroxide solution is required to neutralize 28.8 mL of the 0.195 M hydrobromic acid solution.

To answer the given questions, we'll use the concept of stoichiometry and the formula:

M1V1 = M2V2

where M1 is the molarity of the first solution, V1 is the volume of the first solution, M2 is the molarity of the second solution, and V2 is the volume of the second solution.

Neutralization of perchloric acid and calcium hydroxide:

Given:

Molarity of perchloric acid (HClO₄⇄) solution (M1) = 0.324 M

Volume of calcium hydroxide (Ca(OH)₂) solution (V1) = 25.4 mL = 0.0254 L

Molarity of calcium hydroxide (Ca(OH)₂) solution (M2) = 0.162 M

Using the formula:

M1V1 = M2V2

0.324 M × V1 = 0.162 M × 0.0254 L

V1 = (0.162 M × 0.0254 L) / 0.324 M

V1 ≈ 0.0128 L = 12.8 mL

Therefore, approximately 12.8 mL of the 0.324 M perchloric acid solution is required to neutralize 25.4 mL of the 0.162 M calcium hydroxide solution.

Neutralization of sodium hydroxide and hydrobromic acid:

Given:

Molarity of sodium hydroxide (NaOH) solution (M1) = 0.140 M

Volume of hydrobromic acid (HBr) solution (V1) = 28.8 mL = 0.0288 L

Molarity of hydrobromic acid (HBr) solution (M2) = 0.195 M

Using the formula:

M1V1 = M2V2

0.140 M × V1 = 0.195 M × 0.0288 L

V1 = (0.195 M × 0.0288 L) / 0.140 M

V1 ≈ 0.0402 L = 40.2 mL

Therefore, approximately 40.2 mL of the 0.140 M sodium hydroxide solution is required to neutralize 28.8 mL of the 0.195 M hydrobromic acid solution.

Preparation of 0.176 M ammonium bromide solution:

Given:

Molarity of ammonium bromide (NH₄Br) solution (M1) = 0.176 M

Volume of volumetric flask (V1) = 500 mL = 0.5 L

Using the formula:

M1V1 = M2V2

0.176 M × 0.5 L = M2 × 0.5 L

M2 = 0.176 M

Therefore, to prepare a 0.176 M ammonium bromide solution, you need to add an concentration amount of solid ammonium bromide that will completely dissolve in 500 mL of water.

Obtaining 7.24 grams of chromium(II) bromide solution:

Given:

Mass of chromium(II) bromide (CrBr₂) = 7.24 g

Molarity of chromium(II) bromide (CrBr₂) solution (M2) = 0.195 M

Using the formula:

M1V1 = M2V2

M1 × V1 = 7.24 g / M2

V1 = (7.24 g / M2) / M1

V1 ≈ (7.24 g / 0.195 M) / 0.195 M

Therefore, to obtain 7.24 grams of chromium(II) bromide, you need to measure the calculated volume of the 0.195 M chromium(II) bromide solution.

To know more about concentration:

https://brainly.com/question/29054756

#SPJ4

Draw structures according to the following
names.
a. 4-methyl-1,5-octadiyne
b. 4,4-dimethyl-2-pentyne
c. 3,4,6-triethyl-5,7-dimethyl-1-nonyne

Answers

The three molecules shown below are 4-methyl-1,5-octadiyne, 4,4-dimethyl-2-pentyne, and 3,4,6-triethyl-5,7-dimethyl-1-nonyne. They are all alkynes, which means that they have a triple bond between two carbon atoms.

a) 4-methyl-1,5-octadiyne:

   H     H

    |     |

H₃C-C-C-C-C-C≡C-CH₃

       |

      CH₃

b) 4,4-dimethyl-2-pentyne:

  H  H

   \/

H₃C-C-C≡C-CH₂-CH₃

   |

  CH₃

c) 3,4,6-triethyl-5,7-dimethyl-1-nonyne:

       H

        |

H₃C-C-C-C-C-C-C-C≡C-CH₂-CH₂-CH₂-CH₃

   |  |  |     |

  CH₃ CH₃ CH₃ CH₃

To know more about alkynes refer here :    

https://brainly.com/question/32574086#

#SPJ11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

How many grams of Cu are there in a sample of Cu that contains 4.62×10 23
atoms? grams A sample of Se weighs 11.3 grams. Will a sample of Al that contains the same number of atoms weigh more or less than 11.3 grams? A sample of Al weighs less than 11.3 grams. A sample of Al weighs more than 11.3 grams. Calculate the mass of a sample of Al that contains the same number of atoms. Mass =

Answers

The mass of a sample of Al that contains the same number of atoms as that of Se is 3.87 grams. Given that the number of atoms in the Cu sample is 4.62×1023 atoms.

We need to find the mass of Cu in grams. Therefore, we can use the relation between number of atoms and mass of the element, which is given as follows,

Mass of element = Number of atoms × Molar mass / Avogadro's number

The molar mass of Cu is 63.55 g/mol.

The Avogadro's number is 6.022 x 1023 atoms/mol.

Substituting these values in the above equation, Mass of Cu = 4.62×1023 × 63.55 / 6.022 x 1023= 4.89 grams

Approximately 4.89 grams of Cu are there in a sample of Cu that contains 4.62×1023 atoms.

Next, the mass of a sample of Al that contains the same number of atoms can be calculated using the relation,

Moles = Mass / Molar mass

Number of moles of Se can be calculated as follows,

Number of moles of Se = Mass / Molar mass

= 11.3 g / 78.96 g/mol

= 0.143 moles

The number of atoms in 0.143 moles of Se can be calculated using Avogadro's number,

Number of atoms of Se = 0.143 mol × 6.022 × 1023 atoms/mol

= 8.62 × 1022 atoms

Now, we need to calculate the mass of Al containing the same number of atoms as Se.

Number of atoms of Al = Number of atoms of Se

= 8.62 × 1022 atoms

The molar mass of Al is 26.98 g/mol.

Moles of Al = Number of atoms of Al / Avogadro's number

= 8.62 × 1022 atoms / 6.022 × 1023 atoms/mol

= 0.143 moles

Mass of Al = Moles × Molar mass

= 0.143 moles × 26.98 g/mol

= 3.87 grams

Therefore, the mass of a sample of Al that contains the same number of atoms as that of Se is 3.87 grams.

To know more about atoms visit :

https://brainly.com/question/1566330

#SPJ11

T/F: prochirality center desrcibes an sp3 hybridized atom that can become a chirality center by changing one of its attached groups

Answers

False. A prochiral center does not describe an sp_3 hybridized atom that can become a chirality center by changing one of its attached groups.

A prochiral center is an atom that possesses chirality, meaning it can become a chirality center by changing its stereochemistry. However, the statement in question is incorrect because a prochiral center does not require changing one of its attached groups to become a chirality center.

In contrast, a prochiral center is a type of stereocenter that exhibits chirality due to the presence of two different groups attached to it. It becomes a chirality center when one of the groups is replaced by another group, resulting in the formation of two distinct stereoisomers.

An example of a prochiral center is a carbon atom with three different groups attached to it. Upon substitution of one of the groups, the prochiral center becomes a chirality center, giving rise to enantiomers.

Therefore, the statement that a prochiral center can become a chirality center by changing one of its attached groups is false.

Learn more about prochiral from this link:

https://brainly.com/question/31486480

#SPJ11

Calculate the molar mass of a compound if 0.289 mole of it has a mass of 348.0 g. Round your answer to 3 significant digits. Calculate the molar mass of a compound if 0.289 mole of it has a mass of 348.0 g. Round your answer to 3 aignificant digits.

Answers

The molar mass of the compound is 120.472 g/mol.

To calculate the molar mass of a compound, we need to divide the mass of the compound by the number of moles present. In this case, we are given that 0.289 moles of the compound has a mass of 348.0 g.

Step 1: Calculate the molar mass.

Molar mass = Mass of compound / Number of moles

Molar mass = 348.0 g / 0.289 mol

Molar mass ≈ 120.472 g/mol

In simpler terms, the molar mass represents the mass of one mole of a substance. By dividing the given mass of the compound by the number of moles, we obtain the molar mass. The molar mass is expressed in grams per mole (g/mol) and provides valuable information for various chemical calculations and reactions.

Molar mass is an essential concept in chemistry, as it allows us to relate the mass of a substance to its atomic or molecular structure. It is calculated by summing up the atomic masses of all the elements present in a compound. Each element's atomic mass can be found on the periodic table.

By knowing the molar mass of a compound, we can determine the number of moles present in a given mass of the substance or vice versa. This information is crucial for stoichiometric calculations, such as determining the amount of reactants required or the yield of a chemical reaction.

Furthermore, molar mass is also used to convert between mass and moles in chemical equations. It serves as a conversion factor when balancing equations or scaling up/down reactions.

In summary, the molar mass is the mass of one mole of a substance and is calculated by dividing the mass of the compound by the number of moles. It is an essential quantity in chemistry, enabling various calculations and conversions involving mass and moles.

Learn more about molar mass

brainly.com/question/31545539

#SPJ11

The Strongest Attractive Force Between Water Molecules Involves Hydrogen Bonding.

Answers

The strongest attractive force between water molecules involves hydrogen bonding. This statement is True.

Hydrogen bonding occurs when a hydrogen atom covalently bonded to an electronegative atom (such as oxygen or nitrogen) interacts with another electronegative atom in a different molecule.

In the case of water (H₂O), the hydrogen bonding occurs between the hydrogen atom of one water molecule and the oxygen atom of another water molecule. These hydrogen bonds are relatively strong compared to other intermolecular forces, such as van der Waals forces, and contribute to the unique properties of water, including its high boiling point, surface tension, and ability to dissolve many substances.

Learn more about Hydrogen bonding, here:

https://brainly.com/question/30885458

#SPJ4

The complete question is -

The Strongest Attractive Force Between Water Molecules Involves Hydrogen Bonding. State whether True or False.

The Decomposition of potassium chlorate, KClO3, into KCl and O2 is used as a source of oxygen in the laboratory. How many moles of potassium chloride are needed to produce 15mol of 02, kclo3= kcl 02?

Answers

To produce 15 moles of O2, you would need 15 moles of potassium chloride (KCl).

To determine the number of moles of potassium chloride (KCl) needed to produce 15 moles of oxygen (O2) in the decomposition of potassium chlorate (KClO3), we need to consider the balanced chemical equation for the reaction:

2 KClO3 -> 2 KCl + 3 O2

According to the stoichiometry of the reaction, for every 2 moles of KClO3, we obtain 2 moles of KCl. Therefore, the mole ratio of KCl to KClO3 is 1:1.

Since the molar ratio is 1:1, the number of moles of KCl required will be the same as the number of moles of O2 produced. Thus, if we have 15 moles of O2, we will also need 15 moles of KCl.

Therefore, to produce 15 moles of O2, you would need 15 moles of potassium chloride (KCl).

learn more about potassium chloride here

https://brainly.com/question/31104976

#SPJ11

Complete the following problems. Credit will only be given if you show your work. All answers should contain the correct number of significant figures. 1. An average person contains 12 pints of blood. The density of blood is 1.060 g/cm3. How much does your blood weigh in pounds? 2. At a pet store 1 notice that an aquarium has an advertised size of 0.50ft3. How many gallons of water will this aquarium hold? 3. One bag of Frito's corn chips contains 84 grams of corn. In the state of Arkansas, one bushel of corn is 56lbs. There are 170 bushels of corn produced per acre. One acre of corn has 30,000 ears of com. How many bags of Frito's can be produced from one ear of corn? 4. Codeine, a powerful narcotic, is often given after a surgical procedure. The codeine you obtain from the drug cabinet is 2.5mg/mL. How many mL would you administer to a patient if they needed to receive only 1.75mg of codeine?

Answers

1. The weight of an average person's blood, which is 12 pints, is approximately 13.274 pounds.

2. An aquarium with a size of 0.50 cubic feet can hold approximately 3.74 gallons of water.

3. From one ear of corn, approximately 4.94 × 10³ bags of Frito's corn chips can be produced.

4. To administer 1.75mg of codeine, approximately 0.70 mL of the drug is required.

1. There are 16 ounces in a pound and 2.54 cm in an inch. The blood weighs 12 x 16 = <<12*16=192>>192 ounces. Density equals mass/volume. We need to find the mass.

1.060 g/cm³ = mass in grams / volume in cm³

Let’s turn the density into pounds per cubic inch using the conversion factors that we know:

Volume of blood in cm³ = 12 pints × 0.473176473 liters/pint × 1000 cm³/liter = 5678.117 cm³

Weight of blood = 5678.117 cm³ × 1.060 g/cm³ = 6022.196 g

Weight of blood in pounds = 6022.196 g / 453.59237 = 13.274 pounds

Therefore, your blood weighs approximately 13.274 pounds.

2. The conversion factor is 1 cubic foot = 7.48 US gallons. So:

0.5 ft³ × 7.48 US gallons/ft³ = 3.74 US gallons (rounded to three significant figures)

3. One acre produces 170 bushels/acre × 56 lbs/bushel = 9,520 lbs/acre corn

9,520 lbs/acre corn ÷ 2,000 lbs/ton = 4.76 tons/acre corn

30,000 ears/acre × 0.4 g/ear × 1 lb/453.59 g = 2.98 lbs/acre corn

There are 2.98 lbs/acre corn × 1 bag/84 g = 4.94 × 10³ bags/acre corn

4. For this we can use the concentration formula, C = M/V (where C is the concentration, M is the mass, and V is the volume).

Rearrange to solve for V and plug in the values:

V = M/C = 1.75 mg / 2.5 mg/mL = 0.70 mL (rounded to two significant figures)

Learn more about weight at: https://brainly.com/question/86444

#SPJ11

What should be discussed in the statement of purpose? A. Experimental procedure B. All chemicals used C. Chemical reaction for the given experiment D. How will the results be evaluated E. Detailed steps involved in the experiment F. All of the listed G. None of the listed

Answers

The statement of purpose in an experiment should include koto f- all of the listed elements, including the experimental procedure, chemicals used, chemical reaction, evaluation of results, and detailed steps of the experiment.

The statement of purpose in an experiment typically includes all of the listed elements: the experimental procedure, the chemicals used, the chemical reaction involved, how the results will be evaluated, and the detailed steps of the experiment.

A well-written statement of purpose provides a clear overview of the experiment, including the objectives, methodology, and expected outcomes. It outlines the experimental procedure, including any specific techniques or instruments used, as well as the chemicals and materials involved in the experiment. It may also include the chemical reaction(s) taking place and their significance in the context of the experiment.

Furthermore, the statement of purpose should address how the results will be evaluated, whether through data analysis, statistical methods, or comparison to expected outcomes. Lastly, it should provide a detailed description of the steps involved in conducting the experiment, allowing others to replicate the study and verify the results. Therefore option f is the correct option.

learn more about chemical reaction here:

https://brainly.com/question/29762834

#SPJ11

Part IV. Preparation of 100 {~mL} 25 % Solution X Materials: Solution X, measuring cylinder, distilled water, and parafilm. Show calculation steps. (1) Calculate the volume of

Answers

In Part IV of the experiment, we are preparing a 100 mL 25% solution X using Solution X, a measuring cylinder, distilled water, and parafilm. The calculation steps for this preparation are as follows:

Calculation of the volume of Solution X:

We know that we need 25 mL of Solution X to make 100 mL of a 25% solution X. The volume of Solution X needed can be calculated using the following formula:

Volume of Solution X = (25 mL/100 mL) x 100 mL = 25 mL

Therefore, 25 mL of Solution X is needed to prepare 100 mL of a 25% solution X.

Calculation of the volume of distilled water:

To calculate the volume of distilled water needed, we can use the following formula:

Volume of distilled water = Total volume - Volume of Solution X

= 100 mL - 25 mL

= 75 mL

Therefore, 75 mL of distilled water is needed to prepare 100 mL of a 25% solution X.

Mixing of Solution X and distilled water:

Now that we have calculated the volume of Solution X and distilled water needed, we can mix them together to prepare the 25% solution X. We can use a measuring cylinder to measure 25 mL of Solution X and pour it into a clean, dry beaker. Next, we can measure 75 mL of distilled water using the same measuring cylinder and add it to the beaker containing Solution X. We can then thoroughly mix the contents of the beaker using a stirring rod to ensure that the Solution X is well dissolved in the distilled water.

Finally, we can use parafilm to cover the beaker and label it with the name of the solution, concentration, and date of preparation. This will help prevent contamination and ensure that the solution can be easily identified if needed.

Hence, by following the above-mentioned steps, we have successfully prepared 100 mL of a 25% solution X.

To know more about parafilm visit:

https://brainly.com/question/30891988

#SPJ11

for a given reaction, the rate constant k was measured as a function of temperature t. from the data, a ln(k) versus \frac{1}{t} plot was generated, and the data was fit to a straight line. if the activation energy for the reaction is 42.04 \frac{kj}{mol} , then what is the slope (in joules) of the ln(k) versus \frac{1}{t} plot? (r

Answers

The slope of the ln(k) versus 1/t plot is -42,040 J/mol.

What is the value of the slope in joules/mol for the ln(k) versus 1/t plot?

The slope of the ln(k) versus 1/t plot provides valuable information about the activation energy of a reaction. In this case, the given activation energy is 42.04 kJ/mol.

To determine the slope in joules, we need to convert the activation energy to joules by multiplying it by 1000 (1 kJ = 1000 J). Therefore, the activation energy is 42,040 J/mol.

Since the slope of the ln(k) versus 1/t plot represents the negative activation energy divided by the gas constant (R), the slope can be calculated as -42,040 J/mol.

Learn more about chemical kinetics.

brainly.com/question/31146511

#SPJ11

the results of a separation using two-dimension gel electrophoresis are shown here.

Answers

The results of the separation using two-dimensional gel electrophoresis reveal the distribution and abundance of proteins in a sample.

Two-dimensional gel electrophoresis is a powerful technique used to separate complex mixtures of proteins based on their isoelectric point (pI) and molecular weight. The first dimension of this technique involves isoelectric focusing (IEF), where proteins are separated based on their charge. A pH gradient is established across the gel, and when an electric field is applied, proteins migrate towards the pH region where their net charge is zero, resulting in their separation according to their pI.

In the second dimension, the proteins from the first dimension gel are placed on top of a polyacrylamide gel, which is then subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In SDS-PAGE, proteins are separated based on their molecular weight. The proteins from the first dimension gel are now distributed along a single axis according to their pI and separated further by size during electrophoresis.

The resulting gel displays a complex pattern of spots, each representing a specific protein in the sample. By comparing the protein patterns obtained from different samples or conditions, researchers can identify changes in protein expression, post-translational modifications, or protein interactions. These results can provide insights into cellular processes, disease mechanisms, and biomarker discovery.

Learn more about electrophoresis

brainly.com/question/14440067

#SPJ11

which generic substance has a 120 degree bond angle? in the generic structure, x represents the central atom, y represents the outer atoms, and z represents lone pairs of electrons on the central atom.

Answers

The generic substance that has a 120-degree bond angle is called a trigonal planar molecule. In this molecule, the central atom, represented by X, is surrounded by three outer atoms, represented by Y. The central atom, X, does not have any lone pairs of electrons, so Z is not present in this case.

One example of a molecule with a trigonal planar geometry is boron trifluoride (BF₃). In this molecule, boron (B) is the central atom, and it is surrounded by three fluorine (F) atoms. The bond angles between the B-F bonds in BF₃ are all approximately 120 degrees.

Another example is ozone (O₃). In this molecule, one oxygen (O) atom is the central atom, and it is bonded to two other oxygen atoms. The bond angle between the O-O bonds in ozone are approximately 120 degrees.

It's important to note that the 120-degree bond angle is characteristic of a trigonal planar geometry, but not all molecules with a trigonal planar geometry will have exactly 120-degree bond angles. The actual bond angles can vary slightly depending on the specific molecule and its electronic and steric effects.

You can learn more about trigonal planar molecules at: brainly.com/question/32224049

#SPJ11

the total pressure above the water in the sealed container was 800 mm hg at stp conditions. what was the pressure exerted by the water vapor?

Answers

The total pressure above the water in the sealed container was 800 mmHg at STP conditions.

At STP conditions, the temperature is 0 °C and the pressure is 1 atm or 760 mmHg. Therefore, we must first convert 800 mmHg to atm, which is 800/760 = 1.05 atm. The total pressure exerted by the gases in the container is therefore 1.05 atm. If we assume that the only gas present in the container is water vapor, we can calculate the partial pressure exerted by the water vapor using Dalton's Law of Partial Pressures, which states that the total pressure exerted by a mixture of gases is equal to the sum of the partial pressures of each gas. Partial pressure of water vapor = Total pressure - Partial pressure of other gases

Since there are no other gases present, the partial pressure of water vapor is simply the total pressure. Partial pressure of water vapor = 1.05 atm or 795 mmHg (at STP)

Therefore, the pressure exerted by the water vapor in the sealed container at STP conditions is 795 mmHg or 1.05 atm. This indicates that the pressure exerted by the water vapor is equal to the total pressure since there are no other gases present in the sealed container.

Learn more about Dalton's Law of Partial Pressures

https://brainly.com/question/14119417

#SPJ11

If the proper dose of a medication is 5μg/kg of body weight, how many milligrams would a 200−lb individual need? (Round down to the correct significant figures to avoid overdosing)

Answers

A 200-lb individual requires a medication dose of 0.4 mg. The proper dose of medication is 5 μg/kg of body weight. We have to determine the number of milligrams that a 200-lb individual would require.

We first need to convert pounds to kilograms.

We can do this by dividing by 2.205.200 lb = 90.718 kg

The individual’s weight in kg is 90.718.

Now, multiply the body weight of the individual with the dose of medication per kg of body weight to get the total dose.

5 μg/kg × 90.718 kg = 453.59 μg

The number of micrograms can be converted to milligrams (mg) by dividing by 1,000.

453.59 μg = 0.45359 mg

Therefore, a 200-lb individual requires a medication dose of 0.45359 mg.

The answer is approximately 0.45 mg.

Rounding down to the appropriate number of significant figures to avoid overdosing, the correct dose is 0.4 mg.

To know more about medication visit :

https://brainly.com/question/28335307

#SPJ11

1. Compound X has a solubility in toluene of 20mg per 100ml at 20C, and a solubility of 0.60 g per 100ml at 75C. You are given 0.52 g sample of compound X that is contaminated with 35mg of compound Y. Use this infoation to answer questions A&B. A. If compound Y is completely soluble in toluene at all temperatures, describe the steps to purify X to obtain the maximum % recovery. Calculate the % recovery. (4 pts) B. If compound X has a solubility in toluene of 20mg per 100ml at 20C, and a solubility of 0.60 g per 100ml at 75C, what can be done to purify compound Y by recrystallization?

Answers

Recrystallization allows for the purification of compounds based on differences in solubility between the desired compound and impurities. By choosing an appropriate solvent system, compound Y can be selectively recrystallized, resulting in a purer sample.

A. To purify compound X and obtain the maximum % recovery, you can follow these steps:

1. Determine the solubility of compound Y in toluene at the given temperatures (20°C and 75°C). Since it is stated that compound Y is completely soluble in toluene at all temperatures, its solubility is not a limiting factor.

2. Dissolve the 0.52 g sample of compound X, contaminated with 35 mg of compound Y, in the minimum amount of toluene required to fully dissolve compound X at the higher temperature (75°C). This ensures that both compound X and Y are in the solution.

3. Slowly cool the solution to room temperature (20°C). As the temperature decreases, compound X's solubility in toluene decreases, resulting in the crystallization of compound X. Compound Y, being completely soluble, remains in the solution.

4. Filter the solution to separate the solid crystals of compound X from the liquid solution containing compound Y.

5. Wash the solid crystals of compound X with a cold solvent (such as cold toluene) to remove any impurities or residual compound Y.

6. Allow the washed solid crystals of compound X to dry, either by air-drying or under vacuum, to remove any remaining solvent.

7. Weigh the purified compound X obtained from the solid crystals. Calculate the % recovery using the formula:

% recovery = (mass of purified compound X / initial mass of compound X) * 100

B. To purify compound Y by recrystallization, you need to consider its solubility characteristics. Since compound Y is completely soluble in toluene at all temperatures, recrystallization using toluene alone may not be effective.

However, you can explore recrystallization using a different solvent system that has a selective solubility for compound Y. The general steps for recrystallization are as follows:

1. Choose a suitable solvent or solvent mixture that exhibits a temperature-dependent solubility behavior for compound Y. The solvent should have a low solubility for compound Y at low temperatures and a higher solubility at elevated temperatures.

2. Dissolve the impure sample of compound Y in the minimum amount of hot solvent required to fully dissolve it. If necessary, you can use gentle heating to aid dissolution.

3. Filter the hot solution to remove any insoluble impurities or undissolved material.

4. Cool the filtered solution slowly to room temperature or lower temperatures, allowing compound Y to crystallize out. The slower the cooling rate, the larger and purer the crystals obtained.

5. Collect the crystals of compound Y by filtration and wash them with a cold portion of the recrystallization solvent to remove any remaining impurities.

6. Dry the purified crystals of compound Y, either by air-drying or under vacuum, to remove any residual solvent.

Recrystallization allows for the purification of compounds based on differences in solubility between the desired compound and impurities. By choosing an appropriate solvent system, compound Y can be selectively recrystallized, resulting in a purer sample.

To know more about Recrystallization  visit :

https://brainly.com/question/32928097

#SPJ11

please help
1. How many significant figures do the following numbers have? a. 0.00345 b. 9.8 × 10^{-23} c. 340 d. 456.00 e. 3009

Answers

The significant figures in the given numbers are as follows:

a. 0.00345 :  3

b. 9.8 × 10^-23 : 2

c. 340:  2

d. 456.00: 5

e. 3009: 4

Significant figures are the digits in a number that carries meaning in terms of the accuracy or precision of the measurement. In a number, all the digits that are not zeros are significant, whereas trailing zeros are only significant if there is a decimal in the number. There are different rules for determining significant figures depending on the type of number.

Here are the rules for each type of number:

Rule for Non-zero numbers: All the non-zero digits are significant.Rule for leading zeros: All the leading zeros are not significant. Rule for Trailing zeros: The trailing zeros are significant only if there is a decimal in the number.Rule for exact numbers: The exact numbers have an infinite number of significant digits.

Learn more about "significant figures" :

https://brainly.com/question/24491627

#SPJ11

A chemist prepares a solution of mercury(I) chloride Hg2Cl2 by
measuring out 0.00000283μmol of mercury(I) chloride into a 200.mL
volumetric flask and filling the flask to the mark with water.
Calcula

Answers

The given information is as follows: Amount of mercury(I) chloride = 0.00000283 μmolVolume of the volumetric flask = 200 mLWe have to calculate the concentration of the solution, which is measured in molarity (M).Molarity is the number of moles of solute present in one litre (1 L) of the solution.

Therefore, molarity (M) can be calculated using the formula as follows: Molarity (M) = Number of moles of solute/ Volume of solution (in litres)Given, the volume of solution is 200 mL, which is equal to 0.2 L. The number of moles of solute can be calculated as follows: Number of moles of

Hg2Cl2 = mass of Hg2Cl2/Molar mass of Hg2Cl2Molar mass of Hg2Cl2 = Atomic mass of mercury (Hg) × 2 + Atomic mass of Chlorine (Cl) × 2 = (200.59 g/mol × 2) + (35.45 g/mol × 2) = 401.18 g/mol + 70.90 g/mol = 472.08 g/mol Mass of Hg2Cl2 = 0.00000283 μmol × 472.08 g/mol = 0.001336 g = 1.336 mg Now, the number of moles of Hg2Cl2 = 1.336 mg/ 472.08 g/mol = 0.00000282 moles Therefore, the molarity (M) of the solution is: Molarity (M) = 0.00000282 moles/ 0.2 L = 0.0000141 M. Hence, the concentration of mercury(I) chloride Hg2Cl2 in the solution is 0.0000141 M.

To know more about   concentration visit:

brainly.com/question/19221273

#SPJ11

Calculate E∘cell for each of the following balanced redox reactions.Part A: O2(g)+2H2O(l)+4Ag(s) → 4OH−(aq)+4Ag+(aq)

Answers

The value of E°cell for the given balanced redox reaction is -1.23 V.

What is the standard cell potential (E°cell) for the reaction?

To calculate the standard cell potential (E°cell) for the given balanced redox reaction, we need to use the standard reduction potentials (E°red) of the half-reactions involved.

The balanced redox reaction provided is:

O2(g) + 2H2O(l) + 4Ag(s) → [tex]4OH^-[/tex](aq) + [tex]4Ag^+[/tex](aq)

We can split this reaction into two half-reactions:

Half-reaction 1: O2(g) + 2H2O(l) + [tex]4e^-[/tex]→ [tex]4OH^-[/tex](aq)

Half-reaction 2: 4Ag(s) → 4[tex]Ag^+[/tex](aq) + [tex]4e^-[/tex]

The standard reduction potential (E°red) for half-reaction 1 is 0.40 V (from tables).

The standard reduction potential (E°red) for half-reaction 2 is 0.80 V (from tables).

To calculate E°cell, we subtract the reduction potential of the anode (where oxidation occurs) from the reduction potential of the cathode (where reduction occurs):

E°cell = E°red(cathode) - E°red(anode)

E°cell = 0.80 V - 0.40 V

E°cell = 0.40 V

However, since the reaction is written in the opposite direction (reverse of the cell notation), the sign of E°cell is flipped:

E°cell = -0.40 V

Rounding to two decimal places, the value of E°cell for the given balanced redox reaction is -1.23 V.

Learn more about redox reaction

brainly.com/question/28300253

#SPJ11

When myoglobin is in contact with air (at sea level), how many parts per million of carbon monoxide ( μmol CO per mol of air) are required to tie up 5% of the myoglobin? The partial pressure of oxygen required to half-saturate myoglobin at 25∘C is 3.7kPa. The partial pressure of carbon monoxide required to half-saturate myoglobin in the absence of oxygen is 0.009kPa. Air is 21% oxygen and 79% nitrogen.

Answers

When myoglobin is in contact with air (at sea level), 8.4 μmol CO per mol of air is required to tie up 5% of the myoglobin.

How to solve this?We know that air contains 21% oxygen and 79% nitrogen, so the partial pressure of oxygen is given by;Partial pressure of oxygen = 21/100 x 101.3 kPa= 21.213 kPa.

The partial pressure of carbon monoxide required to half-saturate myoglobin is 0.009 kPa. This means that if the partial pressure of CO is 0.009 kPa, half of the myoglobin will have carbon monoxide (CO) bound to it.

Now let's calculate the partial pressure of oxygen needed to saturate myoglobin;The partial pressure of oxygen required to half-saturate myoglobin at 25∘C is 3.7 kPa.

Therefore, the partial pressure of oxygen required to saturate myoglobin completely is given by;Partial pressure of oxygen (P02) required to saturate myoglobin completely = 3.7 x 2 = 7.4 kPa.

Now we can calculate the amount of CO required to tie up 5% of myoglobin using the Hill equation.

The Hill equation is given by;θ=[P02]^n / ([P02]^n + [P50]^n), where;θ = fractional saturation[P02] = partial pressure of oxygen at 50% saturationn = Hill coefficient, and[P50] = partial pressure of oxygen required for 50% saturation.

Here, n = 1 because myoglobin binds oxygen cooperatively and P50 = 3.7 kPa.θ=0.5[7.4]^1 / ([7.4]^1 + [3.7]^1)θ=0.5[7.4] / ([7.4] + [3.7])θ=0.5[7.4] / 11.1θ= 0.249.

The fractional saturation of myoglobin is 0.249 when the partial pressure of oxygen is 3.7 kPa.

To calculate the partial pressure of CO required to tie up 5% of the myoglobin, we will use the same Hill equation, but this time we will substitute P02 with Pco because we want to find the partial pressure of CO required for 5% saturation.θ=[Pco]^n / ([Pco]^n + [P50]^n)Here, n = 1 because myoglobin binds CO cooperatively and P50 = 0.009 kPa.θ=0.05[7.4]^1 / ([Pco]^1 + [0.009]^1)θ= 0.37 / ([Pco] + 0.009)

We are looking for [Pco] such that θ=0.05 and [Pco] is in μmol CO per mol of air. This means that;θ=0.05= [CO bound to myoglobin] / [myoglobin].

Since we want to tie up 5% of the myoglobin, we can assume that all the CO is bound to the myoglobin. So;[CO bound to myoglobin] = 0.05 x [myoglobin]

Now, the number of moles of myoglobin in a given volume can be calculated using the ideal gas law;PV = nRT, where;P = pressureV = volume of the gasR = ideal gas constant T = temperature n = number of moles and n = PV/RT

We can assume that the volume of air is 1 mol since we are looking for the concentration of CO in μmol CO per mol of air. Also, the temperature is 25°C = 298K and R = 8.31 J/mol.K, so;n = 101.3 kPa x 1 mol / (8.31 J/mol.K x 298K)n = 40.7 mol. So the number of moles of myoglobin is;n = PV/RT = (7.4 kPa x 1 mol) / (8.31 J/mol.K x 298K) = 0.0029 mol

Now we can find the total number of μmol of myoglobin;Total μmol of myoglobin = 0.0029 mol x 6.02 x 1023 molecules/mol x 150 g/mol = 2.62 x 1019 μmol

Now we can calculate the number of μmol of CO required to tie up 5% of myoglobin;[CO bound to myoglobin] = 0.05 x [myoglobin]0.05 x 2.62 x 1019 μmol = 1.31 x 1018 μmol CO

We can now calculate the concentration of CO in μmol CO per mol of air;θ=0.05 = [1.31 x 1018 μmol CO] / [μmol CO per mol of air x 2.62 x 1019 μmol]μmol CO per mol of air = [1.31 x 1018 μmol CO] / [0.05 x 2.62 x 1019 μmol] = 8.4 μmol CO per mol of air.

Therefore, when myoglobin is in contact with air (at sea level), 8.4 μmol CO per mol of air is required to tie up 5% of the myoglobin.

To learn more about Myoglobin here:

https://brainly.com/question/14978252

#SPJ11

write a mechanism for the acid crystallized esterification of acetic acid with isopentyl alcohol you may need to consult the chapter on carboxylic acids in your lecture textbook

Answers

The mechanism for acid-catalyzed esterification of acetic acid with isopentyl alcohol involves the formation of carbocation intermediate.

The acid-catalyzed esterification of acetic acid with isopentyl alcohol proceeds through the following mechanism:

Step 1 - Protonation of the carboxylic acid:

CH₃COOH + H⁺ ⇌ CH₃COOH₂⁺

Step 2 -Nucleophilic attack of the alcohol on the protonated acid:

CH₃COOH₂⁺ + (CH₃)₂CHCH₂OH ⇌ CH₃COO(CH₂)₂CH(CH₃)₂⁺ + H₂O

Step 3 -Rearrangement of the carbocation intermediate:

CH₃COO(CH₂)₂CH(CH₃)₂⁺ ⇌ CH₃COOCH₂CH(CH₃)₂ + H⁺

Step 4 -Deprotonation to form the ester product:

CH₃COOCH₂CH(CH₃)₂ + H⁺ ⇌ CH₃COOCH₂CH(CH₃)₂ + H₂O

Overall reaction:

CH₃COOH + (CH₃)₂CHCH₂OH ⇌ CH₃COOCH₂CH(CH₃)₂ + H₂O

In this mechanism, the acid catalyst (H⁺) facilitates the protonation of the carboxylic acid, making it more reactive towards the alcohol. The protonated acid then undergoes a nucleophilic attack by the alcohol, forming an intermediate carbocation. The carbocation undergoes a rearrangement to stabilize the positive charge. Finally, deprotonation occurs, resulting in the formation of the ester product.

Learn more about acid-catalyzed esterification, here:

https://brainly.com/question/31735009

#SPJ4

Q2. What is the concentration of a solution, in {ppb} & {~g} / {m}^{3} , if 1.2 gram of {NaCl} is dissolved in 1000 grams of water?

Answers

The concentration of a solution in ppb and µg/m³ when 1.2 g NaCl is dissolved in 1000 g of water can be calculated as follows:

First, we need to calculate the molarity of the NaCl solution.

Molar mass of NaCl = 58.44 g/mol

Number of moles of NaCl = mass/molar mass= 1.2/58.44 = 0.0205 moles

Volume of the solution = 1000 g or 1 L

Concentration in terms of molarity = Number of moles of solute/volume of solution= 0.0205/1 = 0.0205 M

To calculate the concentration in terms of parts per billion (ppb), we need to convert the molarity to mass per volume of the solution.

Mass of NaCl in 1 L of solution = molarity x molar mass= 0.0205 x 58.44 = 1.19902 g/L

Concentration in terms of ppb = (mass of solute/volume of solution) x 109= (1.19902/1000) x 109= 1199.02 ppb

To calculate the concentration in terms of micrograms per cubic meter (µg/m³),

we need to use the following conversion:

1 g/m³ = 1000 µg/m³

Concentration in terms of µg/m³ = (mass of solute/volume of solution) x 106 x (1/1000)= (1.19902/1000) x 106 x (1/1000)= 1.19902 µg/m³

The concentration of the NaCl solution in terms of ppb is 1199.02 ppb, and in terms of µg/m³ is 1.19902 µg/m³.

To know more about Molar mass visit:

https://brainly.com/question/31545539

#SPJ11

The freezing point of water: A. is 500^{\circ} \mathrm{C} B. does not exist C. decreases with increasing pressure D. decreases with decreasing pressure

Answers

The freezing point of water decreases with decreasing pressure. Thus, option D is correct.

The freezing point of water decreases with decreasing pressure. This phenomenon is known as the "freezing point depression." When the pressure on water decreases, such as at high altitudes or in a vacuum, the freezing point of water is lower than the standard freezing point at atmospheric pressure (0 °C or 32 °F).

As pressure decreases, the molecules in the water have less force pushing them together, making it more difficult for them to arrange themselves into a solid crystal lattice. Therefore, the freezing point of water decreases. This is why water can remain in a liquid state at temperatures below 0 °C (32 °F) in high-altitude regions or under low-pressure conditions, such as in certain laboratory experiments.

It's worth noting that while decreasing pressure lowers the freezing point of water, increasing pressure generally has the opposite effect, raising the freezing point.

Learn more about freezing point

https://brainly.com/question/31357864

#SPJ11

salts that dissociate into ions are called ________. a. electrolytes b. angiotensinogens c. antidiuretics d. diuretics e. osmolytes

Answers

Answer:

a. electrolytes

Explanation:

Electrolytes are substances that, when dissolved in water or in a solvent, dissociate into ions. In other words, they break apart into positively and negatively charged particles called ions. These ions are responsible for the conductivity of the solution, as they can move and carry electric charge.

When an electrolyte dissolves in water, the positive and negative ions become surrounded by water molecules through a process called hydration. This hydration allows the ions to move freely in the solution and carry electric charge, enabling the solution to conduct electricity.

Common examples of electrolytes include salts like sodium chloride (NaCl), potassium sulfate (K2SO4), and calcium nitrate (Ca(NO3)2). These substances, when dissolved in water, readily dissociate into their respective ions: Na+ and Cl-, K+ and SO42-, Ca2+ and 2NO3-. Other examples of electrolytes include acids, bases, and some other ionic compounds.

Show transcribed data
Calcium ions are important for many cellular processes including muscle contraction and signaling cascades. Which type of transport is most likely used to import Ca2+ into the cell?
O A Simple diffusion
o B Facilitated diffusion
O C Osmosis

Answers

Facilitated diffusion can be involved in the transport of calcium ions into the cell. Hence option B is right.

Calcium ions have a positive charge, and their hydrophobic nature prevents them from freely diffusing through the hydrophobic region of the phospholipid bilayer.

To overcome this barrier, calcium ions utilize specific transport proteins called calcium channels or calcium ionophores.

These transport proteins create pathways within the cell membrane that allow calcium ions to passively diffuse down their concentration gradient. Facilitated diffusion does not require the expenditure of energy by the cell.

These calcium channels or ionophores provide a selective pathway for the entry of calcium ions into the cell.

They recognize and bind to calcium ions, undergoing conformational changes that allow the ions to move across the membrane.

This process is crucial for calcium signaling and various cellular processes that rely on calcium ions.

Therefore, facilitated diffusion via calcium channels or ionophores is a mechanism by which calcium ions are imported into the cell.

Learn more about Facilitated diffusion at: https://brainly.com/question/28021053

#SPJ11

It is desired to prepare 600 mL of 0.100 noal NaOH for use in the reaction: HBr+NaOH⟶NaBr+H 2

O How many grams of NaOH are needed? 2 2 more group attempts remaining It is desired to prepare 800 mL of 0.300 noal NaOH for use in the reaction: HNO 3

+NaOH⟶NaNO 3

+H 2

O How many grams of NaOH are needed? g 2 more group attempts remaining The noality of an aqueous solution of perchloric acid is deteined by titration with a 4.04×10 −2
N barium hydroxide solution. If 34.3 mL of barium hydroxide are required to neutralize 19.8 mL of the acid, what is the noality of the perchloric acid solution? 2 more group attempts remalning The noality of an aqueous solution of hydrobromic acid is deteined by titration with a 0.310 N sodium hydroxide solution. If 31.0 mL of sodium hydroxide are required to neutralize 25.2 mL of the acid, what is the noality of the hydrobromic acid solution? N 2 mere oroup attempts remaining

Answers

We can see that 2.3994 grams of NaOH are needed to prepare 600 mL of 0.100 M NaOH

How many grams of NaOH are needed?

To determine the mass of NaOH needed, we can use the formula:

Mass = Volume × Concentration × Molar Mass

Given:

Volume (V) = 600 mL = 600 cm³Concentration (C) = 0.100 mol/LMolar Mass of NaOH (M) = 22.99 g/mol + 16.00 g/mol + 1.01 g/mol = 39.99 g/mol

Substituting the values into the formula, we have:

Mass = 600 cm³ × 0.100 mol/L × 39.99 g/mol

To cancel out the units, we can convert mL to L:

Mass = 0.600 L × 0.100 mol/L × 39.99 g/mol

Mass = 2.3994 g

Which means that approximately 2.3994 grams of NaOH are needed to prepare 600 mL of 0.100 M NaOH solution for the given reaction.

Learn more about chemical reactions at:

https://brainly.com/question/11231920

#SPJ4

Use equation(s) to show how you would synthesize the
following and use curved arrows
to outline the mechanism of each.
a) Bromocyclopentane from an alkene
b) 2-butanol from an alkene

Answers

a) Bromocyclopentane can be synthesized from an alkene through a radical bromination mechanism, involving the addition of bromine radicals (Br·) to the alkene.

b) 2-Butanol can be synthesized from an alkene through acid-catalyzed hydration, where the alkene undergoes addition of water (H₂O) and subsequent proton transfer reactions.

a) To synthesize bromocyclopentane from an alkene, the reaction can be carried out using a radical bromination mechanism. The overall reaction equation is as follows:

Alkene + Br₂ → Bromocyclopentane

The mechanism involves three steps: initiation, propagation, and termination.

Initiation: The bromine molecule (Br₂) is homolytically cleaved by UV light or heat, forming two bromine radicals (Br·).

Br₂ → 2Br·

Propagation:

A bromine radical (Br·) abstracts a hydrogen atom from the alkene, generating an alkyl radical.

Br· + Alkene → Alkyl Radical

The alkyl radical reacts with a bromine molecule (Br₂), resulting in the formation of a bromoalkane and a new bromine radical.

Alkyl Radical + Br₂ → Bromoalkane + Br·

Termination: The bromine radicals (Br·) can undergo various termination reactions, such as recombination or reaction with impurities or solvent molecules, to form stable products and stop the radical chain reaction.

Overall, these steps outline the mechanism of the radical bromination reaction that converts an alkene into bromocyclopentane.

b) To synthesize 2-butanol from an alkene, the reaction can be carried out using acid-catalyzed hydration. The overall reaction equation is as follows:

Alkene + H₂O + H⁺ → 2-Butanol

The mechanism involves the addition of water to the alkene under acidic conditions, leading to the formation of an intermediate carbocation, followed by nucleophilic attack and subsequent proton transfer.

Protonation of the alkene:

The alkene reacts with the acid catalyst (H⁺), resulting in the protonation of the double bond.

Alkene + H⁺ → Carbocation

Nucleophilic attack by water:

Water (H₂O) acts as a nucleophile and attacks the carbocation, leading to the formation of an oxonium ion.

Carbocation + H₂O → Oxonium Ion

Proton transfer:

A proton is transferred from the oxonium ion to a water molecule, resulting in the formation of 2-butanol and regeneration of the acid catalyst.

Oxonium Ion + H₂O → 2-Butanol + H⁺

This mechanism demonstrates how an alkene can be converted to 2-butanol through acid-catalyzed hydration, involving the addition of water and subsequent proton transfer reactions.

Learn more about acid-catalyzed hydration

brainly.com/question/30639561

#SPJ11

The freezing point of 44.20 g of a pure solvent is measured to
be 47.10 ºC. When 2.38 g of an unknown solute (Van't Hoff factor =
1.0000) is added to the solvent the freezing point is measured to
be

Answers

We can rearrange the above formula to calculate the molality of the solution as:

m = ΔTf / Kf

The cryoscopic constant for water is 1.86 K kg/mol.

For every 1 kg of solvent (water) there are 1000 / 18 = 55.56 moles.

Hence, the cryoscopic constant for water per mole of solvent is:1.86 / 55.56 = 0.0335 K mol/g

We can now calculate the molality of the solution as:m = ΔTf / Kf = 3.10 / 0.0335 = 92.54 mol/kg

Since 2.38 g of the solute was added to 44.20 g of solvent (pure), the total mass of the solution is:44.20 + 2.38 = 46.58 g

The molality of the solution is:92.54 mol/kg = (x / 46.58 g) * 1000x = 4.31 g

Therefore, the mass of the solvent is 44.20 g, and the mass of the solute is 2.38 g.

When the solute is added, the mass of the solution becomes 46.58 g. We can now use the formula:

ΔTf = Kf . mΔTf = (1.86 K kg/mol) . (2.38 g / 58.08 g/mol) . 1 / (46.58 g / 1000)ΔTf = 3.10 K

The freezing point is measured to be 47.10 - 3.10 = 44.00 ºC.

Therefore, the answer is: The freezing point of the solution is 44.00 ºC.

Answer: The freezing point of the solution is 44.00 ºC.

To know more about freezing point visit:

https://brainly.com/question/31357864

#SPJ11

a solution with a density of 1.01 g/mL that is 1.10% HCl by mass Express your answer to three decimal places

Answers

The solution in question has a density of 1.01 g/mL and is 1.10% HCl by mass. This means that for every 100 grams of the solution, 1.10 grams of it is HCl.

The concentration of a solution can be expressed in different ways, such as molarity or percentage by mass. In this case, we are given the concentration of the solution as 1.10% HCl by mass. This means that for every 100 grams of the solution, 1.10 grams of it is HCl.

To determine the density of the solution, we are given that it is 1.01 g/mL. This means that for every milliliter of the solution, it weighs 1.01 grams.

By combining these two pieces of information, we can calculate the concentration of the solution in grams per milliliter. Since the solution is 1.10% HCl by mass, we can assume that the remaining 98.90% of the solution is composed of a solvent or other components.

To find the mass of the HCl in the solution, we can multiply the mass of the solution (1.01 g/mL) by the percentage of HCl (1.10%):

Mass of HCl = 1.01 g/mL * 1.10% = 0.0111 g/mL

Therefore, the solution has a mass of 0.0111 grams of HCl per milliliter.

Learn more about Mass of HCl in the solution

brainly.com/question/30233723

#SPJ11

which of the following should have the lowest boiling point? group of answer choices n2 na2s nh3 hf

Answers

Answer:

Nitrogen gas (N2) should have the lowest boiling point among the given options. This is because N2 is a nonpolar molecule with weak London dispersion forces between its molecules, which results in a relatively low boiling point. Sodium sulfide (Na2S) is an ionic compound, so it has a very high boiling point due to strong electrostatic forces between its ions. Ammonia (NH3) and hydrogen fluoride (HF) are polar molecules that can form hydrogen bonds between their molecules, which results in higher boiling points than N2.

Explanation:

Nitrogen gas (N2) should have the lowest boiling point among the given options. This is because N2 is a nonpolar molecule with weak London dispersion forces between its molecules, which results in a relatively low boiling point. Sodium sulfide (Na2S) is an ionic compound, so it has a very high boiling point due to strong electrostatic forces between its ions. Ammonia (NH3) and hydrogen fluoride (HF) are polar molecules that can form hydrogen bonds between their molecules, which results in higher boiling points than N2.

Other Questions
A recent study of 15 shoppers showed that the correlation between the time spent in the store and the dollars spent was 0.235. Using a significance level equal to 0.05, which of the following is the appropriate null hypothesis to test whether the population correlation is zero? a. H0 : rho 0.0 b. H0 : r = 0.0 c. H0 : rho = 0.0 d. H0 : = 0.0 Through an organization can produce a product fusually of a wellknown brand produced by someone else) under contract and then sell that product and pay back some of the profits to the company that produced the original brand. exporting licensing contract manufacturing franchising Question 6 ( 1 point) involves a foreign company's production of privrate-label goods to which a domestic company then attaches its own brand name or trademark. Importing Contract manufacturing Franchising Licensing A tank is full of oil weighing 20 lb/ft^3. The tank is a right rectangular prism with a width of 2 feel, a depth of 2 feet, and a height of 3 feat. Find the work required to pump the water to a height of 2 feet above the top of the tank Call and response style is common in African and Native American cultures.A) trueB) false given that the assumptions slr.1 through slr.4 hold, and the error term exhibits homoskedasticity with var(ux) A breastfeeding postpartum client experiencing breast engorgement tells the nurse that she has applied cabbage leaves to decrease her breast discomfort. What is the nurse's best response?a. "Using cabbage leaves to relieve engorgement is considered a folk remedy."b. "I'm concerned that the cabbage leaves may harm your nursing baby."c. "I need to notify your health care provider immediately that you're using cabbage leaves."d. "Let me know if you get relief using the cabbage leaves." what are the differences between imperative programming languages and declarative programming languages. explain and provide examples. Please show the graph with correct points in x and y. Please specify if its a hollow dot or solid dot for each point. Ill give good rating! Thank you! QS 14-15 (Algo) Preparing a schedule of cost of goods manufactured LOP2 Prepare the schedule of cost of goods manufactured for Barton Company using the following information for the year ended Decembe a user runs the fsck command with the -f option on an ext4 filesystem that is showing signs of corruption. how would that user locate any files the system was unable to repair? Please round your answers to three decimal places. YouSolve the equation 2(4(x-1)+3)= 5(2(x-2)+5).Enter your solution x = Are some differences to great to overcome? add a claim, evidence from Romeo and Juliet or the wave also include analysis, organization, and make sure spelling is correct If the nominal interest rate is 7.2 percent, and the expected inflation is 1.0 percent, then using the Fisher Equation, the real interest rate must be ________. (Round to 4 decimal places; for example, 0.0268. Do NOT write your answers as percentage. For example, if you answer is 2.68%, you should write 0.0268 in the box). When the price of guns increased by 55%, the demand for body armour fell (decreased) by 45%, based on this information what is the cross elasticity of demand A designer needs to generate an 63017-Hz square wave of 50% duty cycle using one ofthe Timers in ATmega32, which is connected to 1MHz crystal oscillator.What choices does the designer have to generate the square wave? Which choicewill give the best solution? 25. Considering the following information, what is the NPV if the borrower refinances the loan? Expected holding period: 15 years, Current loan balance: $100,000, Current loan interest: 9%, New loan interest: 7.5%, Cost of refinancing: $4,250 A. $5,003 B. $1,014 C. $5,163 D. $9,413 Stock A has a beta of 0. 9 and an expected return of 7. 94%. Stock B has a beta of 1. 2 and an expected return of 9. 92%. If the CAPM holds, what is the slope of the Capital Market Line? Solve the following differential equation with condition y(0) =-1/3 y' + y = y On March 1. Year 1. ABC Company received $40,000 cash from the issue of a two-year. 6% note. Vhat is the journal entry to record Interest Expense for Year 1? Question 5 ABC Company sells products in a state where the sales tax rate is 10 percent. ABC began Year 2 with $100,000 in Inventory ABC Company sells products in a state where the 2. 1. Cash sales, not including sales tax, for Year 2 amounted to $30,000 cash. 2. Cost of goods sold was $18,000 for the year. 3. Paid $3,600 in operating expenses for the year. 4. Paid $2,250 in sales tax collected to the state agency. What is ABC Company's Sales Tax Payable balance at the end of Year 2? $750 $2.250 50 $3,000 A researcher studying public opinion of proposed Social Security changes obtains a simple random sample of 35 adult Americans and asks them whether or not they support the proposed changes. To say that the distribution of the sample proportion of adults who respond yes, is approximately normal, how many more adult Americans does the researcher need to sample in the following cases?(a) 10% of all adult Americans support the changes (b) 15% of all adult Americans support the changes