Answer:
Explanation:
Let the equation of standing wave be as follows
y = A sinωt cos kx
A = 2.45 mm
y = 2.45 cosωt sin kx
given
[tex]\frac{\omega}{k}[/tex] = velocity = 14.5
Position of first antinode = 37.5 cm
kx = π / 2
k x 37.5 = π / 2
k = π / 75
ω / k = 14.5
ω = 14.5 x π / 75
= .607 rad /s
Maximum transverse speed
= ω A
= .607 x 2.45
= 1.49 mm / s
y = A sinωt cos kx
Transverse velocity
v = dy / dt
= ω A cosωt cos kx
Maximum transverse velocity at any x = ω A .
The characteristics of standing waves allows find the results for the questions about the speed of the rope are:
The transverse oscillatory velocity is: vy = 0.298 m / sGiven parameters
The amplitude of the wave A = 2.45 mm = 2.45 10-3 m Chord length L = 2.25 m Wave velocity v = 14.5 m / d The first antinode x = 37.5 cmTo find
Maximum rope swing speed.
The movement in a string is formed by two movements, a movement in the direction of the string with constant speed and a transverse movement where the speed varies as in a simple harmonic movement.
The standing wave is formed from the sum of the incident wave and the reflected wave.
y = A cos (kx- wt)
y = A cos (kx + wt)
resulting
y = A sin wt cos kx
the speed that the wave is given by
v = w / k
They indicate the position of the first antinode at this point the cosine function must be maximum.
kx = π
k = π/x
k = [tex]\frac{\pi }{0.375}[/tex]
k = 8.38 m⁻¹
let's find the angular velocity.
w = v k
w = 14.5 8.38
w = 121.5 rad / s
The expression for displacement in simple harmonic motion is:
x = A cos wt
The speed is defined by the variation of the position with respect to time.
v = [tex]\frac{dx}{dt}[/tex] =
v = - A w sin wt
To calculate the maximum speed we make the sine equal to 1.
[tex]v_{y \ max}[/tex] = w A
[tex]v_{y \ max}[/tex] = 121.5 2.45 10⁻³
[tex]v_{y \ max}[/tex] = 0.298 m / s
For point x = 75 cm = 0.750 m
We seek the value of
kx = 8.38 0.750
kx = 6.285 = 2π
therefore this point is also an antinode and the results do not change.
In conclusion, using the characteristics of standing waves, we can find the results for the questions about the speed of the rope are:
The transverse oscillatory velocity is: [tex]v_y[/tex] = 0.298 m / s
Learn more here: https://brainly.com/question/12536719
A student applies a constant horizontal 20 N force to a 12 kg box that is initially at rest. The student moves the box a distance of 3.0 m. What is the speed of the box at the end of the motion
Answer:
u = 10.02m/s
Explanation:
a = f/m
a = 20/12 = 1.67m/s²
U =2aS
u = 2 x 1.67 x 3
U = 10.02m/s
A hair dryer draws 1200 W, a curling iron draws 800 W, and an electric light fixture draws 500 W. If all three of these appliances are operating in parallel on a 120-V circuit, what is the total current drawn
Answer:
The Total current drawn is 20.83 Ampere.
Explanation:
https://brainly.com/question/15048481
A parallel-plate air capacitor is made from two plates 0.200 m square, spaced 0.900 cm apart. It is connected to a 140 V battery.
A. What is the capacitance?
B. What is the charge on each plate?
C. What is the electric field between the plates?
D. What is the energy stored in the capacitor?
E. If the battery is disconnected and then the plates are pulled apart to a separation of 1.40 cm , what are the answers to parts A, B, C, and D?
Enter your answer as four numbers corresponding to C, Q, E, U. Please enter the answer in the given order and in the same units as in parts A, B, C, and D.
Answer:
See detailed solution below
Explanation:
a) From C= εoεrA/d
Where;
C= capacitance of the capacitor
εo= permittivity of free space
εr= relative permittivity
A= cross sectional area
d= distance between the plates
Since the relative permittivity of air=1 and permittivity of free space = 8.85 × 10^−12 Fm−1
Then;
C= 8.85 × 10^−12 Fm−1 × 0.2m^2/0.009 m
C= 196.67 × 10^-12 F or 1.967 ×10^-10 F
b) Q= CV = 1.967 ×10^-10 F × 140 V = 2.75 × 10^-8 C
c) E= V/d = 140 V/0.009m = 15.56 Vm-1
d) W= 1/2 CV^2 = 1/2 × 1.967 ×10^-10 F × (140)^2 =1.93×10^-6J
Part II
When the distance is now 0.014 m
a) C= 8.85 × 10^−12 Fm−1 × 0.2m^2/0.014 m = 1.26×10^-10 F
b) W= 1/2 Q^2/C = 1/2 × ( 2.75 × 10^-8 C)^2 / 1.26×10^-10= 3×10^-6 J
Note that the voltage changes when the distance is changed but the charge remains the same
The relationship between the Period (T) caused by the oscillation of the mass on the end of a hanging spring and the mass (m) is:
Answer:
T= 2p√m/k
Explanation:
This is because the period of oscillation of the mass of spring system is directly proportional to the square root of the mass and it is inversely proportional to the square root of the spring constant.
The period of a mass on a spring is given by the equation
T=2π√m/k.
Where T is the period,
M is mass
K is spring constant.
An increase in mass in a spring increases the period of oscillation and decrease in mass decrease period of oscillation.
When there is the relationship between the Period (T) caused by the oscillation of the mass should be considered as the T= 2p√m/k.
Oscillation of the mass:The mass of the spring system with respect to period of oscillation should be directly proportional to the square root of the mass and it is inversely proportional to the square root of the spring constant.
So the following equation should be considered
T=2π√m/k.
Here,
T is the period,
M is mass
K is spring constant.
An increase in mass in a spring rises the period of oscillation and reduce in mass decrease period of oscillation.
Learn more about mass here: https://brainly.com/question/21860379
3. A particle of charge +7.5 µC is released from rest at the point x = 60 cm on an x-axis. The particle begins to move due to the presence of a charge ???? that remains fixed at the origin. What is the kinetic energy of the particle at the instant it has moved 40 cm if a) ???? = +20 µC and b) ???? = −20 µC?
Answer:
HSBC keen vs kg get it yyyyyuuy
Explanation:
hgccccxfcffgbbbbbbbbbbghhyhhhgdghcjyddhhyfdghhhfdgbxbbndgnncvbhcxgnjffccggshgdggjhddh
nnnbvvvvvggfxrugdfutdfjhyfggigftffghhjjhhjyhrdffddfvvvvvvvvvvvbbbbbbbbbvvcxccghhyhhhjjjhjnnnnnnnnnnnnnbhbfgjgfhhccccccvvjjfdbngxvncnccbnxcvbchvxxghfdgvvhhihbvhbbhhvxcgbbbcxzxvbjhcxvvbnnxvnn
Match each term to the best description.
1. Composed of numerous narrowly spaced parallel slits or grooves
2. Having the same wavelength, frequency, and in-phase Interaction of waves where they meet in space
3. The bending of waves near a boundary or as a wave passes through an opening
4. The zeroth order direct reflection fringe
a. Coherent
b. Diffraction
c. Grating
d. Specular dot
e. Interference
Answer:
1. Grating
2. Interference
3. Diffraction
4. Specular dot
Explanation:
1. Composed of numerous narrowly spaced slits and grooves ........ Grating
2. Having the same wavelength, frequency, and in-phase Interaction of waves where they meet in space ....... Interference
3. The bending of waves near a boundary or as a wave passes through an opening ...... Diffraction
4. The zeroth order direct reflection fringe ...... Specular dot
You have a 160-Ω resistor and a 0.430-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 30.0 V and an angular frequency of 220 rad/s .
Part A: What is the impedance of the circuit? ( Answer: Z = ? Ω )
Part B: What is the current amplitude? ( Answer: I = ? A )
Part C: What is the voltage amplitude across the resistor? ( Answer: VR = ? V )
Part D: What is the voltage amplitudes across the inductor? ( Answer: VL = ? V )
Part E: What is the phase angle ϕ of the source voltage with respect to the current? ( Answer: ϕ = ? degrees )
Part F: Does the source voltage lag or lead the current? ( Answer: the voltage lags the current OR the voltage leads the current )
Answer:
A. Z = 185.87Ω
B. I = 0.16A
C. V = 1mV
D. VL = 68.8V
E. Ф = 30.59°
Explanation:
A. The impedance of a RL circuit is given by the following formula:
[tex]Z=\sqrt{R^2+\omega^2L^2}[/tex] (1)
R: resistance of the circuit = 160-Ω
w: angular frequency = 220 rad/s
L: inductance of the circuit = 0.430H
You replace in the equation (1):
[tex]Z=\sqrt{(160\Omega)^2+(220rad/s)^2(0.430H)^2}=185.87\Omega[/tex]
The impedance of the circuit is 185.87Ω
B. The current amplitude is:
[tex]I=\frac{V}{Z}[/tex] (2)
V: voltage amplitude = 30.0V
[tex]I=\frac{30.0V}{185.87\Omega}=0.16A[/tex]
The current amplitude is 0.16A
C. The current I is the same for each component of the circuit. Then, the voltage in the resistor is:
[tex]V=\frac{I}{R}=\frac{0.16A}{160\Omega}=1*10^{-3}V=1mV[/tex] (3)
D. The voltage across the inductor is:
[tex]V_L=L\frac{dI}{dt}=L\frac{d(Icos(\omega t))}{dt}=-LIsin(\omega t)\\\\V_L=-(0.430H)(160\Omega)sin(220 t)=68.8sin(220t)\\\\V_L_{max}=68.8V[/tex]
E. The phase difference is given by:
[tex]\phi=tan^{-1}(\frac{\omega L}{R})=tan^{-1}(\frac{(220rad/s)(0.430H)}{160\Omega})\\\\\phi=30.59\°[/tex]
The gravitational energy of a swimmer on a driving board at different heights is shown in the table below. What is the driver's gravitational energy at 5m high? (A) 5500 J (B) 2750 J (C) 8800 J (D) 3300 J
Answer:
E = 2750 J at h = 5 m
Explanation:
The gravitational potential energy is given by :
[tex]E=mgh[/tex]
In this case, m is the mass of swimmer is constant at every heights. So,
At h = 1 m, E = 550 J
[tex]550=m\times 10\times 1\\\\m=55\ kg[/tex]
So, at h = 5 m, gravitational potential energy is given by :
[tex]E=55\times 10\times 5\\\\E=2750\ J[/tex]
So, the correct option is (B).
A 0.20-kg block rests on a frictionless level surface and is attached to a horizontally aligned spring with a spring constant of 40 N/m. The block is initially displaced 4.0 cm from the equilibrium point and then released to set up a simple harmonic motion. A frictional force of 0.3 N exists between the block and surface. What is the speed of the block when it passes through the equilibrium point after being released from the 4.0-cm displacement point
Answer:
Approximately [tex]0.45\; \rm m \cdot s^{-1}[/tex].
Explanation:
The mechanical energy of an object is the sum of its potential energy and kinetic energy. Consider this question from the energy point of view:
Mechanical energy of the block [tex]0.04\; \rm m[/tex] away from the equilibrium position:
Elastic potential energy: [tex]\displaystyle \frac{1}{2} \, k\, x^2 = \frac{1}{2}\times \left(0.04\; \rm m\right)^2 \times 40\; \rm N \cdot m^{-1} = 0.032\; \rm J[/tex].Kinetic energy: [tex]0\; \rm J[/tex].While the block moves back to the equilibrium position, it keeps losing (mechanical) energy due to friction:
[tex]\begin{aligned}& \text{Work done by friction} = (-0.3\; \rm N) \times (0.04 \; \rm m) = -0.012\; \rm J\end{aligned}[/tex].
The opposite ([tex]0.012\; \rm N[/tex]) of that value would be the amount of energy lost to friction. Since there's no other form of energy loss, the mechanical energy of the block at the equilibrium position would be [tex]0.032\; \rm N - 0.012\; \rm N = 0.020\; \rm N[/tex].
The elastic potential energy of the block at the equilibrium position is zero. As a result, all that [tex]0.020\; \rm N[/tex] of mechanical energy would all be in the form of the kinetic energy of that block.
Elastic potential energy: [tex]0\; \rm J[/tex].Kinetic energy: [tex]0.020\; \rm J[/tex].Given that the mass of this block is [tex]0.020\; \rm kg[/tex], calculate its speed:
[tex]\begin{aligned}v &= \sqrt{\frac{2\, \mathrm{KE}}{m}} \\ &= \sqrt{\frac{2 \times 0.020\; \rm J}{0.20\; \rm kg}} \approx 0.45\; \rm m\cdot s^{-1}\end{aligned}[/tex].
Which characteristic gives the most information about what kind of element an atom is ?
Answer:
The atomic number
Explanation:
Two blocks of masses m1 and m2 are placed in contact with each other on a smooth, horizontal surface. Block m1 is on the left of block m2 . A constant horizontal force F to the right is applied to m1 . What is the horizontal force acting on m2?
Answer:
The horizontal force acting on m2 is F + 9.8m1
Explanation:
Given;
Block m1 on left of block m2
Make a sketch of this problem;
F →→→→→→→→→→→-------m1--------m2
Apply Newton's second law of motion;
F = ma
where;
m is the total mass of the body
a is the acceleration of the body
The horizontal force acting on block m2 is the force applied to block m1 and force due to weight of block m1
F₂ = F + W1
F₂ = F + m1g
F₂ = F + 9.8m1
Therefore, the horizontal force acting on m2 is F + 9.8m1
The force acting on the block of mass m₂ is [tex]\frac{m_2F}{m_1+m_2}[/tex]
Force acting on the block:Given that there are two blocks of mass m₁ and m₂.
m₁ is on the left of block m₂. They are in contact with each other.
A force F is applied on m₁ to the right.
According to Newton's laws of motion:
The equation of motion of the blocks can be written as:
F = (m₁ + m₂)a
here, a is the acceleration.
so, acceleration:
a = F / (m₁ + m₂)
Now, the force acting on the block of mass m₂ is:
f = m₂a
[tex]f = \frac{m_2F}{m_1+m_2}[/tex]
Learn more about laws of motion:
https://brainly.com/question/26083484?referrer=searchResults
A square copper plate, with sides of 50 cm, has no net charge and is placed in a region where there is a uniform 80 kN / C electric field directed perpendicular to the plate. Find a) the charge density of each side of the plate and b) the total load on each side.
Answer:
a) ±7.08×10⁻⁷ C/m²
b) 1.77×10⁻⁷ C
Explanation:
For a conductor,
σ = ±Eε₀,
where σ is the charge density,
E is the electric field,
and ε₀ is the permittivity of space.
a)
σ = ±Eε₀
σ = ±(8×10⁴ N/C) (8.85×10⁻¹² F/m)
σ = ±7.08×10⁻⁷ C/m²
b)
σ = q/A
7.08×10⁻⁷ C/m² = q / (0.5 m)²
q = 1.77×10⁻⁷ C
A pendulum that has a period of 2.67000 s and that is located where the acceleration due to gravity is 9.77 m/s2 is moved to a location where it the acceleration due to gravity is 9.81 m/s2. What is its new period? (Enter your answer in seconds and to at least 5 decimal places.)
Answer:
Explanation:
Expression for time period of pendulum is given as follows
[tex]T=2\pi\sqrt{\frac{l}{g} }[/tex]
where l is length of pendulum and g is acceleration due to gravity .
Putting the given values for first place
[tex]2.67=2\pi\sqrt{\frac{l}{9.77} }[/tex]
Putting the values for second place
[tex]T=2\pi\sqrt{\frac{l}{9.81} }[/tex]
Dividing these two equation
[tex]\frac{T}{2.67} =\sqrt{\frac{9.77}{9.81} }[/tex]
T = 2.66455 s.
A 54.0 kg ice skater is moving at 3.98 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole. She then moves in a circle of radius 0.802 m around the pole.
(a) Determine the force exerted by the horizontal rope on her arms.N
(b) What is the ratio of this force to her weight?(force from part a / her weight)
Answer:
(a) force is 1066.56N
Explanation:
(a) MV²/R
What value of D is required to make vt = 42.7 m/s the terminal velocity of a skydiver of mass 85.0 kg . Express your answer using two significant figures.
Complete Question
For a human body falling through air in a spread edge position , the numerical value of the constant D is about [tex]D = 0.2500 kg/m[/tex]
What value of D is required to make vt = 42.7 m/s the terminal velocity of a skydiver of mass 85.0 kg . Express your answer using two significant figures?
Answer:
The value of D is [tex]D = 0.457 \ kg/m[/tex]
Explanation:
From the question we are told that
The terminal velocity is [tex]v_t = 42.7 \ m/s[/tex]
The mass of the skydiver is [tex]m = 85.0 \ kg[/tex]
The numerical value of D is [tex]D = 0.2500 kg/m[/tex]
From the unit of D in the question we can evaluate D as
[tex]D = \frac{m * g }{v^2}[/tex]
substituting values
[tex]D = \frac{85 * 9.8 }{(42.7)^2}[/tex]
[tex]D = 0.457 \ kg/m[/tex]
Which force does not operate at a distance of 1 m?
O A. Strong nuclear
B. Electric
O C. Gravitational
O D. Magnetic
SUBMI
Answer: A. Strong nuclear
The max effective range of strong nuclear force is about 1.2 femtometers ( which is 1.2*10^(-15) meters). This is well below 1 meter. Strong nuclear forces are the forces that hold together a nucleus. Specifically it holds together the protons that would otherwise repel one another due to similar charge.
distributed uniformly over the surface of a metal sphere with a radius 24.0 cm. If the potential is zero at a point at infinity, find the value of the pote my jobntA total electric charge of 3.50 nC is distributed uniformly over the surface of a metal sphere with a radius 24.0 cm. If the potential is zero at a point at infinity, find the value of the potential at the following distances from the center of the sphere: (a) 48.0 cm (b) 2ial at the following distances from the center of the sphere: (a) 48.0 cm (b) 24.0 cm (c) 12.0 cm
Answer:
(a) V = 65.625 Volts
(b) V = 131.25 Volts
(c) V = 131.25 Volts
Explanation:
Recall that:
1) in a metal sphere the charges distribute uniformly around the surface, and the electric field inside the sphere is zero, and the potential is constant equal to:
[tex]V=k\frac{Q}{R}[/tex]
2) the electric potential outside of a charged metal sphere is the same as that of a charge of the same value located at the sphere's center:
[tex]V=k\frac{Q}{r}[/tex]
where k is the Coulomb constant ( [tex]9\,\,10^9\,\,\frac{N\,m^2}{C^2}[/tex] ), Q is the total charge of the sphere, R is the sphere's radius (0.24 m), and r is the distance at which the potential is calculated measured from the sphere's center.
Then, at a distance of:
(a) 48 cm = 0.48 m, the electric potential is:
[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.48} =65.625\,\,V[/tex]
(b) 24 cm = 0.24 m, - notice we are exactly at the sphere's surface - the electric potential is:
[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]
(c) 12 cm (notice we are inside the sphere, and therefore the potential is constant and the same as we calculated for the sphere's surface:
[tex]V=k\frac{Q}{R}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]
Answer:
c) a difference in electric potential
Explanation:
my insta: priscillamarquezz
In an experiment to measure the acceleration due to gravity, g two values, 9.96 m/s2 and 9.72 m/s2 , are determined. Find (1) the percent difference of the measurements, (2) the percent error of each measurement, and (3) the percent error of their mean. (Accepted value: g 5 9.80 m/s2 .)
Answer:
(1) Percent Difference = 2.47%
(2) Percent Error (9.96 m/s²) = 1.63 %
Percent Error (9.72 m/s²) = 0.82 %
(3) Percent Error (Mean) = 0.41 %
Explanation:
(1)
Percent Difference = [(9.96 m/s² - 9.72 m/s²)/(9.72 m/s²)]*100 %
Percent Difference = 2.47%
(2)
Percent Error = (|Measured Value - Original Value|/Original Value)*100%
Therefore,
Percent Error (9.96 m/s²) = (|9.96 m/s² - 9.8 m/s²|/9.8 m/s²)*100%
Percent Error (9.96 m/s²) = 1.63 %
Now,
Percent Error (9.72 m/s²) = (|9.72 m/s² - 9.8 m/s²|/9.8 m/s²)*100%
Percent Error (9.72 m/s²) = 0.82 %
(3)
First we need to find the mean of values:
Mean = (9.96 m/s² + 9.72 m/s²)/2
Mean = 9.84 m/s²
Therefore,
Percent Error (Mean) = (|9.84 m/s² - 9.8 m/s²|/9.8 m/s²)*100%
Percent Error (Mean) = 0.41 %
A scientist claims to be a solid-state physicist. She is working on electromagnetics and trying to see if she can create an electromagnetic field by causing different solutions to flow through a tube. Is this scientist a solid-state physicist?
no, because she is working in electromagnetics, which is not a solid-state field
no, because she is not working on the atomic structures of a solid
yes, because she is working in electromagnetics, which is a solid-state field
yes, because she is causing solutions to flow through a tube
The correct answer is B. No, because she is not working on the atomic structures of a solid
Explanation:
Solid-state physics is a sub-discipline of physics that focuses on studying solids, this includes analyzing solids structures, features, and other phenomena that occur in substances in this state of the matter. This means a solid-state physics will not study or gases.
In this context, the fact the scientist is trying to create an electromagnetic field by using solutions and the flow of these show the scientists is not working with solids but with liquids or gases as solids do not flow. Also, her focus is not solids, and therefore she is not a solid-state physicist. Thus, it can be concluded she is not a solid-state physicists because she is not working on the structures of solids.
An object of mass 2 kg has a speed of 6 m/s and moves a distance of 8 m. What is its kinetic energy in joules?
Answer:
36 JoulesExplanation:
Mass ( m ) = 2 kg
Speed of the object (v) = 6 metre per second
Kinetic energy =?
Now,
We have,
Kinetic Energy = [tex] \frac{1}{2} \times m \times {v}^{2} [/tex]
Plugging the values,
[tex] = \frac{1}{2} \times 2 \times {(6)}^{2} [/tex]
Reduce the numbers with Greatest Common Factor 2
[tex] = {(6)}^{2} [/tex]
Calculate
[tex] = 36 \: joule[/tex]
Hope this helps...
Good luck on your assignment...
The Kinetic energy of the object will be "36 joules".
Kinetic energyThe excess energy of moving can be observed as that of the movement of an object, component, as well as the group of components. There would never be a negative (-) amount of kinetic energy.
According to the question,
Mass of object, m = 2 kg
Speed of object, v = 6 m/s
As we know the formula,
→ Kinetic energy (K.E),
= [tex]\frac{1}{2}[/tex] × m × v²
By substituting the values, we get
= [tex]\frac{1}{2}[/tex] × 2 × (6)²
= [tex]\frac{1}{2}[/tex] × 2 × 36
= 36 joule
Thus the above answer is appropriate.
Find out more information about Kinetic energy here:
https://brainly.com/question/25959744
A cyclotron operates with a given magnetic field and at a given frequency. If R denotes the radius of the final orbit, then the final particle energy is proportional to which of the following?
A. 1/RB. RC. R^2D. R^3E. R^4
Answer:
C. R^2
Explanation:
A cyclotron is a particle accelerator which employs the use of electric and magnetic fields for its functioning. It consists of two D shaped region called dees and the magnetic field present in the dee is responsible for making sure the charges follow the half-circle and then to a gap in between the dees.
R is denoted as the radius of the final orbit then the final particle energy is proportional to the radius of the two dees. This however translates to the energy being proportional to R^2.
A whistle is often used in dog-‐‑training exercises and is an integral part of field-‐‑marking competitions, where signals and commands are relayed to the dog via whistle. Suppose the whistle produces a sound wave with a frequency of 25,100 Hz (outside the range of human hearing) and the propagation speed of sound in air is 343 m/s.
1) What is the wavelength and wave number of this sound from the whistle?
2) Write the wave function for the longitudinal sound wave described above, assuming the amplitude of the sound wave is Smax = 1.57 x 10-‐‑6 m and it is moving to the right (in the positive x direction).
Answer:
The wavelength is [tex]\lambda = 0.01367 m[/tex]
The wave number is [tex]N = 73.18\ m^{-1}[/tex]
The wave function is [tex]y= 1.57 *10^{-6} sin 2 \pi ( 73.178 x -25100t)[/tex]
Explanation:
From the question we are told that
The frequency of the sound wave is [tex]f = 25,100 Hz[/tex]
The speed of the wave is [tex]v = 343 m/s[/tex]
The wavelength of the wave is mathematically evaluated as
[tex]\lambda = \frac{v}{f}[/tex]
substituting values
[tex]\lambda = \frac{343}{25100}[/tex]
[tex]\lambda = 0.01367 m[/tex]
The wave number is mathematically represented as
[tex]N= \frac{1}{\lambda }[/tex]
substituting values
[tex]N = \frac{1}{ 0.01367 }[/tex]
[tex]N = 73.18\ m^{-1}[/tex]
The general form of wave function is
[tex]y= A sin (kx -wt)[/tex]
given that the amplitude is [tex]A = 1.57*10^{-6} \ m[/tex]
While [tex]w[/tex] which is the angular velocity is represented as [tex]w = 2 \pi f[/tex]
and k which is the angular wave number is mathematically represented as [tex]k = \frac{2 \pi }{\lambda }[/tex]
The wave function becomes
[tex]y= A sin 2 \pi (\frac{1}{\lambda} x -ft)[/tex]
substituting values
[tex]y= 1.57 *10^{-6} sin 2 \pi ( 73.178 x -25100t)[/tex]
A horizontal spring with spring constant 290 N/m is compressed by 10 cm and then used to launch a 300 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23. What is the box's launch speed?
Answer:
Explanation:
check it out and rate me
A student slides her 80.0-kg desk across the level floor of her dormitory room a distance 4.40 m at constant speed. If the coefficient of kinetic friction between the desk and the floor is 0.400, how much work did she do
Answer:
F = umg where u is coefficient of dynamic friction
Explanation:
F = 0.4 x 80 x 9.81 = 313.92 N
A child is sitting on the seat of a swing with ropes 10 m long. Their father pulls the swing back until the ropes make a 37o angle with the vertical and then releases the swing. If air resistance is neglected, what is the speed of the child at the bottom of the arc of the swing when the ropes are vertical
Answer:
Explanation:
We shall apply conservation of mechanical energy law to solve the problem .
loss of height = L ( 1 - cos 37 ) where L is length of rope
loss of potential energy at the bottom = gain of kinetic energy .
mg L ( 1 - cos 37 ) = 1/2 m v² where v is velocity at the bottom
v² = 2 L g ( 1 - cos 37 )
= 2 x 10 x 9.8 ( 1 - cos 37 )
= 39.46
v = 6.28 m /s
What is the length of the shadow cast on the vertical screen by your 10.0 cm hand if it is held at an angle of θ=30.0∘ above horizontal? Express your answer in centimeters to three significant figures. View Available Hint(s)
Answer:
The length is [tex]D = 5 \ cm[/tex]
Explanation:
From the question we are told that
The length of the hand is [tex]l = 10.0 \ cm[/tex]
The angle at the hand is held is [tex]\theta = 30 ^o[/tex]
Generally resolving the length the length of the hand to it vertical component we obtain that the length of the shadow on the vertical wall is mathematically evaluated as
[tex]D = l * sin(\theta )[/tex]
substituting values
[tex]D = 10 * sin (30)[/tex]
[tex]D = 5 \ cm[/tex]
n electromagnetic wave in vacuum has an electric field amplitude of 611 V/m. Calculate the amplitude of the corresponding magnetic field.
Answer:
The corresponding magnetic field is
Explanation:
From the question we are told that
The electric field amplitude is [tex]E_o = 611\ V/m[/tex]
Generally the magnetic field amplitude is mathematically represented as
[tex]B_o = \frac{E_o }{c }[/tex]
Where c is the speed of light with a constant value
[tex]c = 3.0 *0^{8} \ m/s[/tex]
So
[tex]B_o = \frac{611 }{3.0*10^{8}}[/tex]
[tex]B_o = 2.0 4 *10^{-6} \ Vm^{-2} s[/tex]
Since 1 T is equivalent to [tex]V m^{-2} \cdot s[/tex]
[tex]B_o = 2.0 4 *10^{-6} \ T[/tex]
When you release the mass, what do you observe about the energy?
Explanation:
Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy. For example, after heating an object, its increase in energy could be measured as a small increase in mass, with a sensitive enough scale.
WILL MARK THE BRAINLIEST!!! The diagram shows a carrier wave that is used to transmit information. Which best illustrates how the carrier wave would likely appear after pulse modulation?
Answer:
Second image in your list of possible answers
Explanation:
The second option is what you would expect from modulating a sinusoidal carrier wave of higher frequency after being modulated by a square pulse of lower frequency that allows part of the carrier signal to travel during the time the square signal is constant different from zero, and be absent (flat) during the time the square pulse signal has amplitude zero.
The second line is the best picture of a pulse-modulated carrier.
It would be easy to build a circuit where each pulse ... when it comes along ... just switches the carrier OFF for as long as the pulse lasts.
The time constant of a simple RL circuit is defined as _______. We say that R is the resistance of the circuit and L is the inductance of the circuit.
Answer:
The correct answer will be "[tex]\tau =\frac{L}{R}[/tex]".
Explanation:
The time it would take again for current or electricity flows throughout the circuit including its LR modules can be connected its full steady-state condition is equal to approximately 5[tex]\tau[/tex] as well as five-time constants.
It would be calculated in seconds by:
⇒ [tex]\tau=\frac{L}{R}[/tex]
, where
R seems to be the resistor function in ohms.L seems to be the inductor function in Henries.