The price of the popular soft drink is more in 0.500 L container than in 24 oz. container.
The correct answer is option B. 0.500 L container.
The price of a popular soft drink is $0.98 for 24.0 fl. oz (fluid ounces) or $0.78 for 0.500 L.
Given that 1 qt. is equal to 32 fl.oz, 1 L is equal to 33.814 fl.oz, and 1 qt is equal to 0.94635 L.
In this case, the quantity of a particular soft drink in a 24 oz. container and a 0.500 L container is to be determined.
Let x be the amount of soft drink in the 24 oz container.
Then, the amount of soft drink in 0.500 L container can be given by 0.500 L * (33.814 fl.oz/1 L) = 16.907 fl.oz.
Thus, we have 32 fl.oz is equal to 0.94635 L or 1 qt.
Therefore, we can say 24.0 fl. oz is equal to (24/32) qt = 0.75 qt.
Hence, the amount of soft drink in the 24 oz. container is 0.75 qt.
Now we can calculate the price per qt as follows:Price of 24 oz. container = $0.98Price per qt. = $0.98/0.75 qt= $1.307/ qt.
Similarly, let y be the amount of soft drink in the 0.500 L container.
Then, the amount of soft drink in 0.500 L container is 0.500 L.
Now, we can calculate the price per qt for 0.500 L container as follows:Price of 0.500 L container = $0.78Price per qt. = $0.78/(0.500 L/0.94635 L/qt)= $1.483/qt.
The correct answer is option B. 0.500 L container.
For more such questions on soft drink
https://brainly.com/question/29992680
#SPJ8
A compound consisting of carbon and hydrogen consists of 67.90%
carbon by mass. If the compound is measure to have a mass of 37.897
Mg, how many grams of hydrogen are present in the compound?
Given that the compound consists of 67.90% carbon by mass and has a total mass of 37.897 Mg, we can calculate the mass of hydrogen in the compound.
Let's assume the mass percentage of hydrogen in the compound is denoted by "y." According to the law of constant composition, the sum of the mass percentages of carbon and hydrogen is equal to 100.
Mass% of Carbon + Mass% of Hydrogen = 100
Since the mass percentage of carbon is 67.90%, we can calculate the mass percentage of hydrogen as follows:
Mass% of Hydrogen = 100 - 67.9
Mass% of Hydrogen = 32.1
Therefore, the compound contains 32.1% of hydrogen by mass.
Next, we can calculate the mass of hydrogen present in the compound using the following formula:
Mass of hydrogen = Percentage of hydrogen x Total mass of the compound / 100
Substituting the given values, we find:
Mass of hydrogen = 32.1 x 37.897 Mg / 100
Now, we need to convert the mass from megagrams (Mg) to grams:
Mass of hydrogen = 32.1 x 37.897 Mg x 10^6 g / 100
Calculating this expression, we find:
Mass of hydrogen = 12.159 grams
There are 12.159 grams of hydrogen present in the compound.
To know more about hydrogen visit:
https://brainly.com/question/30623765
#SPJ11
The density of titanium is 4.51g/cm^3. What is the volume (in
cubic inches) of 3.5lb of Titanium? this could be helpful D=M/V
The volume of 3.5 lb of titanium is 21.47 in³.
The density of titanium is 4.51 g/cm³.The weight of titanium is 3.5 lb.
Formula used:
Density, D = M/V, where D is density, M is mass, and V is volume.
The conversion factor of 1 inch³ = 16.39 cm³.1 lb = 453.592 g.
First, we will calculate the mass of titanium.
3.5 lb = 3.5 × 453.592 g
= 1587.772 g
Next, we will calculate the volume of titanium.
Volume of titanium = Mass of titanium / Density of titanium
= 1587.772 g / 4.51 g/cm³
= 352.044 cm³
Next, we will convert the volume from cm³ to in³.
1 inch³ = 16.39 cm³.
Volume of titanium in in³ = Volume of titanium / 16.39
= 352.044 cm³ / 16.39
= 21.47 in³
To know more about the titanium, visit:
https://brainly.com/question/8028003
#SPJ11
a piece of magnesium metal gradually forms an outside layer of magnesium oxide when exposed to the air. the class of this reaction is
The class of the reaction between magnesium metal and oxygen in the air, which results in the formation of magnesium oxide, is oxidation.
Oxidation is a chemical reaction that involves the loss of electrons or an increase in oxidation state. In this case, magnesium metal (Mg) undergoes oxidation as it reacts with oxygen (O_2) in the air. The magnesium atoms lose electrons, transferring them to the oxygen atoms, resulting in the formation of magnesium oxide (MgO).
Magnesium metal is highly reactive and readily oxidizes in the presence of oxygen. The outer layer of magnesium metal reacts with oxygen molecules to form magnesium oxide. This process occurs gradually over time as magnesium atoms on the surface of the metal react with oxygen.
The formation of magnesium oxide is a classic example of an oxidation reaction, where magnesium undergoes oxidation by losing electrons, and oxygen undergoes reduction by gaining electrons. This type of reaction is commonly observed in the corrosion of metals when they are exposed to air or other oxidizing agents.
Learn more about oxidation from this link:
https://brainly.com/question/13182308
#SPJ11
{V}_2 {O}_5
Express your answer using one decimal place and include the appropriate unit.the molar mass =
Vanadium pentoxide is a solid that is commonly used as a catalyst in chemical reactions and is utilized in the production of sulfuric acid, vanadium metal, ceramics, and glass. Its molar mass is 181.88 g/mol, and it is hazardous to both humans and the environment if not handled correctly.
Vanadium (V) pentoxide is a chemical compound that has the chemical formula Vanadium pentoxide . The molar mass of Vanadium pentoxide is 181.88 g/mol. [tex]V_{2} O_{5}[/tex] is a solid that appears as a dark grey or brown powder, and it is insoluble in water. It is frequently employed as a catalyst in chemical reactions.
Vanadium pentoxide, also known as vanadic acid, is used as a reagent in analytical chemistry to detect arsenic, lead, and phosphorus in biological specimens. Vanadium pentoxide is utilized as a catalyst in the production of sulfuric acid and as a raw material for the production of vanadium metal.
Vanadium pentoxide is employed in the manufacturing of ceramics, glass, and other materials. It is also used in the formulation of paint pigments and coatings. Vanadium pentoxide, according to some studies, has anti-inflammatory and anticancer properties.
Vanadium pentoxide can cause respiratory irritation and lung inflammation in humans. It is considered hazardous to the environment, and its disposal should be handled with care.
Know more about Vanadium here:
https://brainly.com/question/25237156
#SPJ11