Answer:
It's harder to melt sodium chloride because of its density and stability.
Explanation:
The bond between Na+ and Cl- is an ionic bond, meaning its an ionic compound. Ionic compounds have more inter molecular forces(forces involving multiple molecules). Chlorine has much less of these forces than NaCl and isn't as dense.
Answer:
It's harder to melt sodium chloride because of its density
Explanation:
Which of the following is an alkali metal?
A. Lithium (LI)
B. Boron (B)
c. Calcium (Ca)
D. Krypton (Kr)
Answer:
lithium is akali metal
Answer:
lithium is an alkali metal as it lies in group 1st in modern perodic table.
Using the determined equivalence point from question 2 and the balanced reaction of acetic acid and sodium hydroxide, calculate the molarity of the acetic acid in your hot sauce packet.
Equivalance point is 3.0 mL NaOH, 0.6 g hot sauce, 0.1 M NaoH.
Answer:
Molarity of the packet is 0.5M
Explanation:
In the reaction of acetic acid with NaOH:
CH₃COOH + NaOH → CH₃COO⁻ + H₂O + Na⁺
1 mole of acetic acid reacts with 1 mole of NaOH.
When you are titrating the acid with NaOH, you reach equivalence point when moles of acid = moles of NaOH.
Moles of NaOH are:
3.0mL = 3.0x10⁻³L ₓ (0.1 mol / L) = 3.0x10⁻⁴ moles of NaOH = moles of CH₃COOH.
Now, you find the moles of acetic acid in the hot sauce packet. But molarity is the ratio between moles of the acid and liters of solution.
As you don't know the volume of your packet, you can assume its density as 1g/mL. Thus, volume of 0.6g of hot sauce is 0.6mL = 6x10⁻⁴L.
And molarity of the packet is:
3.0x10⁻⁴ moles acetic acid / 6x10⁻⁴L =
0.5MConvert 120 degrees F to K.
[?]K
Answer:
322
Explanation:
This is easy
For the reaction 2 A - Products, the concentration of A is monitored over time. A graph of [A] versus time was found to be linear, with a negative slope. Select the true statement regarding this reaction.
A) The reaction is first order with respect to A.
B) The reaction is second order with respect to A.
C) The rate constant has a negative value.
D) In 2 The reaction has a half-life equal to k.
E) None of these statements is true.
Answer:
none of these statements is true
according to the question E) None of these statements is true.
What is a concentration in chemistry?The concentration of a chemical substance expresses the amount of a substance present in a mixture. There are many different ways to express concentration. Chemists use the term solute to describe the substance of interest and the term solvent to describe the material in which the solute is dissolved
What is concentration in chemistry units?
Quantitative units of concentration include molarity, molality, mass percentage, parts per thousand, parts per million, and parts per billion.
Learn more about concentration here
https://brainly.com/question/24595796
#SPJ2
Using the volumes of EDTA solution you just entered and the corresponding dry unknown sample masses entered earlier, calculate the percent mass of calcium carbonate in the unknown sample mixture.
Enter the calculated percent mass of calcium carbonate in the dry unknown sample for each of the 3 acceptable trials.
Be sure to enter your mass percentages to the correct number of significant digits and in the corresponding order that you entered your masses of your dry unknown samples and volumes of your EDTA previously. The dry unknown sample mass you entered for entry #1 below should correspond to the percent mass of calcium carbonate you enter for entry #1 here.
Trial #: Mass (Grams):
#1: 0.015
#2: 0.015
#3: 0.015
Volume (mL)
#1: 16.4
#2: 15.00
#3: 18.70
Molarity of EDTA Solution: 0.0675
Answer:
#1
Explanation:
molarity of EDTA solution 0.0675
no1
g The "Coulomb barrier" is defined to be the electric potential energy of a system of two nuclei when their surfaces barely touch. The probability of a nuclear reaction greatly increases if the energy of the system is above this barrier. What is the Coloumb barrier (in MeV) for the absorption of an alpha particle by a lead-208 nucleus
Answer:
The Coulomb Barrier U is 25.91 MeV
Explanation:
Given that:
Atomic Mass of lead nucleus A = 208
atomic mass of an alpha particle A = 4
Radius of an alpha particle [tex]R_\alpha = R_o A^{^{\dfrac{1}{3}}[/tex]
where;
[tex]R_\alpha = 1.2 \times 10 ^{-15} \ m[/tex]
[tex]R_\alpha = R_o A^{^{\dfrac{1}{3}}[/tex]
[tex]R_\alpha = 1.2 \times 10 ^{-15} \ m \times (4) ^{^{\dfrac{1}{3}}[/tex]
[tex]R_\alpha = 1.905 \times 10^{-15} \ m[/tex]
Radius of the Gold nucleus
[tex]R_{Au}= R_o A^{^{\dfrac{1}{3}}[/tex]
[tex]R_{Au}= 1.2 \times 10 ^{-15} \ m \times (208) ^{^{\dfrac{1}{3}}[/tex]
[tex]R_{Au} = 7.11 \times 10^{-15} \ m[/tex]
[tex]R = R_\alpha + R_{Au}[/tex]
[tex]R = 1.905 \times 10^{-15} \ m + 7.11 \times 10^{-15} \ m[/tex]
[tex]R = 9.105 \times 10 ^{-15} \ m[/tex]
The electric potential energy of the Coulomb barrier [tex]U = \dfrac{Ke \ q_{\alpha} q_{Au}}{R}[/tex]
[tex]U = \dfrac{8.99 \times 10^9 \ N.m \ ^2/C ^2 \ \times 2 ( 82) \times \(1.60 \times 10^{-19} C \ \ e } {9.105 \times 10^{-15} \ m }[/tex]
U = 25908577.7eV
U = 25.908577 × 10⁶ eV
U = 25.91 MeV
The Coulomb Barrier U is 25.91 MeV
How many grams of CO are produced when 41.0 g of C reacts?
Answer:
95.7 g CO to the nearest tenth.
Explanation:
2C + O2 ---> 2CO
Using relative atomic masses:
24 g C produces 2*12 + 2*16 g CO.
So 41 g produces ( (2*12 + 2*16) * 41 ) / 24
= 95.7 g CO,
The substance used by homeowners and municipal workers to melt ice on sidewalks and roadways is usually calcium chloride rather than sodium chloride. Discuss two possible rea-sons for this preference.
Answer:
1. It dissolves much more ice faster than sodium chloride
2. Calcium chloride is more effective in melting ice at lower temperatures.
Explanation:
Salts are used to melt ice on roadways and sidewalks because they help to lower the freezing point of water.
Sodium chloride and calcium chloride are both salts used for this purpose but calcium chloride is usually preferred for the following two reasons:
1. It dissolves much more ice faster than sodium chloride: Calcium chloride dissolves much more ice faster than sodium chloride because when it dissociates, it produces three ions instead of the two produced when sodium chloride. Therefore, the heat of hydration of its ions is greater than that of sodium chloride.
2. Calcium chloride is more effective in melting ice at lower temperatures. It lowers the freezing point of water more than sodium chloride. Calcium chloride is able to lower the freezing point of water to about -52°C while sodium chloride only lowers it to about -6°C.
Organic chemistry too eazy but why 90% students avoid ?
Answer:
because it covers a large area as there are more then 1 lakh compounds of organic chemistry.
Five mol of calcium carbide are combined with 10 mol of water in a closed, rigid, high-pressure vessel of 1800 cm3 internal empty volume. Acetylene gas is produced by the reaction:
Answer:
CaC₂ + 2H₂O → C₂H₂ + Ca(OH)₂
Explanation:
In order to find out the reaction, we must know the reactants.
For this situation, we make acetylene gas from carbide calcium CaC₂ and H₂O (water); therefore the reactants are:
- CaC₂ and H₂O
Acetylene is one of the products made → C₂H₂
So the reaction can be formed as this: CaC₂ + H₂O → C₂H₂
We missed the calcium, and this reaction also makes, Calcium Hydroxide, so the complete equation must be:
CaC₂ + H₂O → C₂H₂ + Ca(OH)₂
This is unbalanced, because we have 1 O in left side and 2 in right side so we add 2 in water so now, we get the complete reaction:
1 mol of calcium carbide reacts to 2 mol of water in order to produce 1 mol of acetylene and 1 mol of calcium hydroxide.
What is a heterogeneous mixture?
Answer:
The type of mixture whose components are seen through our naked eyes is known as heterogeneous mixture. it is a mixture of small constituent parts of substances.
for eg, mixture of sand and sugar.
hope it helps..
Sort the resources into the correct categories.
are replaced by natural processes
Renewable Resources
Nonrenewable Resources
cannot be replaced in a short time
are used more quickly than replaced
have fixed amounts
are considered unlimited
are replaced faster than used
Intro
✓ Done
Answer:
Renewable Resources: are considered unlimited, are replaced faster than used.
Nonrenewable Resources: are used more quickly than replaced, have fixed amounts, cannot be replaced in a short time.
Explanation:
Renewable resources are natural resources that are able to naturally regenerate themselves, hence, they are considered to be unlimited. They are usually replaced faster than they are used because they have a short regeneration time. A good example is the solar energy.
Nonrenewable resources are those natural resources that cannot naturally regenerate and when they do, it takes a very long time (usually millions of years). They are therefore used at a much faster rate than they are being replaced and their natural deposits are more or less fixed due to the long regeneration time. A good example is the crude oil deposit.
Hence:
Renewable Resources: are considered unlimited, are replaced faster than used.
Nonrenewable Resources: are used more quickly than replaced, have fixed amounts, cannot be replaced in a short time.
Answer: !
Explanation:
Which products are formed when aluminum is added to a silver chlorine solution?
Answer:
Alcl3 and Cl2
Explanation:
the product above will be formed
Answer:
silver (Ag) and aluminum chloride (AlCl₃)
Explanation:
The reaction between aluminum and silver chloride is a single replacement reaction. A single replacement reaction is when one element switches places with another.
Al + 3AgCl ➔︎ 3Ag + AlCl₃
In the reaction, the cations (positively charged ions) switch places. Aluminum (Al) switches places with Silver (Ag). So, the products of the reaction are silver and aluminum chloride.
Hope this helps.
A sample of an unknown substance has a mass of 0.158kg. If 2,520.0 j of heat is required to heat the substance from 32.0C to 61.0C what is the specific heat of the substance
For the reaction Ca(s)+Cl2(g)→CaCl2(s) calculate how many grams of the product form when 14.4 g of Ca completely reacts. Assume that there is more than enough of the other reactant.
Answer:
[tex]m_{CaCl_2}=39.96gCaCl_2[/tex]
Explanation:
Hello,
In this case, for the undergoing reaction, we can compute the grams of the formed calcium chloride by noticing the 1:1 molar ratio between calcium and it (stoichiometric coefficients) and using their molar mass of 40 g/mol and 111 g/mol by using the following stoichiometric process:
[tex]m_{CaCl_2}=14.4gCa*\frac{1molCa}{40gCa} *\frac{1molCaCl_2}{1molCa} *\frac{111gCaCl_2}{1molCaCl_2}\\ \\m_{CaCl_2}=39.96gCaCl_2[/tex]
Clearly, chlorine is not used since it is said there is enough for the reaction to go to completion.
Best regards.
g what would happen to the solubility of a gas in a solution if the pressure above the solution is increased
Answer: The solubility of gas increases in a solution if the pressure above the solution is increased
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:
[tex]C=K_H\times p[/tex]
where,
C = solubility
[tex]K_H[/tex] = Henry's constant
p = partial pressure
As the solubility is directly proportional to the pressure, thus increasing the pressure increases the solubility.
Why does a new period start on the periodic table, instead of the row continuing? A. A new period starts when a new energy shell starts. B. A new period starts when a new neutron cycle starts. C. None of these D. It is based on how many protons it has.
Answer:
B
Explanation:
All the elements in a period have valence electrons in the same shell. The number of valence electrons increases from left to right in the period. When the shell is full, a new row is started and the process repeats.
A new period starts when a new neutron cycle starts. Hence, option B is correct.
What is the period in the periodic table?A period in the periodic table is a row of chemical elements. All elements in a row have the same number of electron shells.
All the elements in a period have valence electrons in the same shell.
The number of valence electrons increases from left to right in the period.
When the shell is full, a new row is started and the process repeats.
Hence, option B is correct.
Learn more about the period in the periodic table here:
https://brainly.com/question/3433177
#SPJ2
https://brainly.com/question/16061498?referrer=searchResults
By what mechanism does cyclohexanol react when treated in sulfuric acid and what compound results?A) E 1; methoxycyclohexane B) E2: methoxycyclohexane C) SN 1; methoxycycloheXafle D) E2; cyclohexene E) E 1: cyclohexene
Answer:
E 1: cyclohexene
Explanation:
This reaction is an example of the dehydration of cyclic alcohols. The reaction proceeds in the following steps;
1) The first step of the process is the protonation of the cyclohexanol by the acid. This now yields H2O^+ attached to the cyclohexane ring.
2) the water molecule, which a good leaving group now leaves yielding a carbocation. This now leaves a cyclohexane carbocation which is highly reactive.
3) A water molecule now abstracts a proton from the carbon adjacent to the carbocation leading to the formation of cyclohexene and the regeneration of the acid catalyst. This is an E1 mechanism because it proceeds via a carbocation intermediate and not a concerted transition state, hence the answer.
Lead can be prepared from galena [lead(II) sulfide] by first heating with oxygen to form lead(II) oxide and sulfur dioxide. Heating the metal oxide with more galena forms the metal and more sulfur dioxide. Write a balanced equation for the overall reaction by adding the balanced equations for the two steps.
Answer:
2 PbS(s) + 1.5 O₂(g) + PbO(s) ⇒ 2 SO₂(g) + 3 Pb(s)
Explanation:
Lead can be prepared from galena [lead(II) sulfide] by first heating with oxygen to form lead(II) oxide and sulfur dioxide. The corresponding chemical equation is:
PbS(s) + 1.5 O₂(g) ⇒ PbO(s) + SO₂(g)
Heating the metal oxide with more galena forms the metal and more sulfur dioxide. The corresponding chemical equation is:
2 PbO(s) + PbS(s) ⇒ 3 Pb(s) + SO₂(g)
We can get the overall reaction by adding both steps and canceling what is repeated on both sides.
2 PbS(s) + 1.5 O₂(g) + 2 PbO(s) ⇒ PbO(s) + 2 SO₂(g) + 3 Pb(s)
2 PbS(s) + 1.5 O₂(g) + PbO(s) ⇒ 2 SO₂(g) + 3 Pb(s)
How much heat is absorbed when 52.39 H2O(l) at 100°C and 101.3 kPa is converted to steam at 100°C? (The molar heat of vaporization of water is
40.7 k/mol.)
2.09 x 1020
O 2.31% 10110
O 1.18 x 102 103
O 1.11% 1021)
Gallium chloride is formed by the reaction of 2.25 L of a 1.50 M solution of HCl according to the following equation: 2Ga 6HCl --> 2GaCl3 3H2 Determine the mass of gallium chloride, in grams, produced. Group of answer choices
Answer:
198.56g of GaCl3
Explanation:
We'll begin by calculating the number of mole HCl in 2.25 L of a 1.50 M solution of HCl. This is illustrated below:
Molarity of HCl = 1.50 M
Volume = 2.25 L
Mole of HCl =..?
Molarity = mole /Volume
1.5 = mole /2.25
Cross multiply
Mole = 1.5 x 2.25
Mole of HCl = 3.375 mole
Next, we shall determine the number of mole Gallium chloride, GaCl3 produced from the reaction. This is shown below:
2Ga + 6HCl —> 2GaCl3 + 3H2
From the balanced equation above,
6 moles of HCl reacted to produce 2 moles of GaCl3.
Therefore, 3.375 mole of HCl will react to produce = (3.375 x 2)/6 = 1.125 mole of GaCl3.
Therefore, 1.125 moles of GaCl3 were produced from the reaction.
Next, we shall convert 1.125 mole of GaCl3 to grams. This is illustrated below:
Molar mass of GaCl3 = 70 + (35.5x3) = 176.5g/mol
Mole of GaCl3 = 1.125 mole
Mass of GaCl3 =..?
Mole = mass /Molar mass
1.125 = mass of GaCl3 /176.5
Cross multiply
Mass of GaCl3 = 1.125 x 176.5
Mass of GaCl3 = 198.56g
Therefore, 198.56g of GaCl3 were produced from the reaction.
What is the mass of 7.68 x 1024 molecules of phosphorus trichloride?
Answer:
THE MASS OF 7.68 *10^24 MOLECULES OF PHOSPHORUS TRICHLORIDE IS 1746.25 g.
Explanation:
Molar mass of PCl3 = ( 31 + 35.5 *3) = 137.5 g/mol
At 7.68 * 10^24 molecules, how many number of mole is present?
6.03 * 10^23 molecules = 1 mole
7.68*10^24 molecules = x mole
x mole = 7.68 *10^24 molecules/ 6.03 *10^23
x mole = 1.27 *10 moles
x mole = 12.7 moles
Using mole = mass / molar mass
mass = mole * molar mass
mass = 12.7 moles * 137.5 g/mol
mass = 1746.25 g
Hence, the mass of 7.68 *10^24 molecules is 1746.25 g
The element nitrogen would be expected to form covalent bond(s) in order to obey the octet rule. Use the octet rule to predict the formula of the compound that would form between nitrogen and hydrogen , if the molecule contains only one nitrogen atom and only single bonds are formed. Formula:
Answer:
The compound formula will be "NF₃". The further explanation is given below.
Explanation:
Nitrogen seems to have an electrical structure consisting of 1S², 2S² as well as 3S² and it requires three electrons to fulfill or conclude the octet. This will, therefore, form three bonds (covalent). Even though only single nitrogen has been present, that can only represent a single bond including fluorine. Therefore the methodology for something like the compound would be NF₃.So that the above would be the right answer.
A mixture of krypton and nitrogen gases, at a total pressure of 711 mm Hg, contains 11.7 grams of krypton and 4.10 grams of nitrogen. What is the partial pressure of each gas in the mixture
Answer:
A. Partial pressure of krypton, Kr is 346.97 mmHg
B. Partial pressure of nitrogen, N2 is 364.03 mmHg.
Explanation:
Step 1:
Data obtained from the question. This include the following:
Total pressure (Pt) = 711 mmHg
Mass of Kr = 11.7 g
Mass of N2 = 4.10 g
Partial pressure of Kr =..?
Partial pressure of N2 =...?
Step 2:
Determination of the number of mole of krypton, Kr and nitrogen, N2. This is illustrated below:
Molar mass of Kr = 84g/mol
Mass of Kr = 11.7g
Mole of Kr =?
Mole = mass /Molar mass
Mole of Kr = 11.7/84 = 0.139 mole
Molar mass of N2 = 2x14 = 28g/mol
Mass of N2 = 4.10g
Mole of N2 =?
Mole = mass /Molar mass
Mole of N2 = 4.1/28 = 0.146 mole
Step 3:
Determination of the mole fraction for each gas. This is illustrated below:
Mole of Kr = 0.139 mole
Mole of N2 = 0.146 mole
Total mole = 0.139 + 0.146 = 0.285 mole
Mole fraction of Kr = mol of Kr/total mol
Mole fraction of Kr = 0.139/0.285
Mole fraction of Kr = 0.488
Mole fraction of N2 = mol of N2/total mol
Mole fraction of N2 = 0.146/0.285
Mole fraction of N2 = 0.512
A. Determination of the partial pressure of krypton, Kr.
This is illustrated below:
Total pressure (Pt) = 711 mmHg
Mole fraction of Kr = 0.488
Partial pressure of Kr =..?
Partial pressure = mole fraction x total pressure
Partial pressure of Kr = 0.488 x 711
Partial pressure of Kr = 346.97 mmHg
B. Determination of the partial pressure of nitrogen, N2
This is illustrated below:
Total pressure (Pt) = 711 mmHg
Mole fraction of N2 = 0.512
Partial pressure of N2 =?
Partial pressure = mole fraction x total pressure
Partial pressure of N2 = 0.512 x 711
Partial pressure of N2 = 364.03 mmHg
Determine the [OH⁻] concentration in a 0.344 M Ca(OH)₂ solution.
Answer:
[tex]0.688M[/tex]
Explanation:
Hello,
In this case, it is widely acknowledged that strong bases usually correspond to those formed with metals in groups IA and IIA which have relatively high activity and reactivity, therefore, when they are dissolved in water the following dissociation reaction occurs (for calcium hydroxide):
[tex]Ca(OH)_2\rightarrow Ca^{2+}+2OH^-[/tex]
In such a way, for the same volume, we can compute the concentration of hydroxyl ions by simple stoichiometry (1:2 molar ratio):
[tex]0.344\frac{molCa(OH)_2}{L}*\frac{2molOH^-}{1molCa(OH)_2} \\\\0.688\frac{mol OH^-}{L}[/tex]
Or simply:
[tex]0.688M[/tex]
Regards.
Average Molarity for HCl is .391
Average Molarity for NaOH is .0962
Volume for HCl is:
Trial 1 Your Answer: 14mL
Trial 2 Your Answer: 14mL
Trial 3 Your Answer: 14mL
Volume for NaOH is:
Trial 1: 34.26mL
Trial 2: 33.48mL
Trial 3: 33.84mL
Entry # mass tablet(g) mass antacid(g) Vol HCl(mL) Vol NaOH(mL)
#1: 1.515 0.9010 14.00 34.26
#2: 1.452 0.8370 14.00 33.48
#3: 1.443 0.8280 14.00 33.84
I need help finding the mmoles HCl/mg please.
Answer:
#1: 0.00144 mmolHCl/mg Sample
#2: 0.00155 mmolHCl/mg Sample
#3: 0.00153 mmolHCl/mg Sample
Explanation:
A antiacid (weak base) will react with the HCl thus:
Antiacid + HCl → Water + Salt.
In the titration of antiacid, the strong acid (HCl) is added in excess, and you're titrating with NaOH moles of HCl that doesn't react.
Moles that react are the difference between mmoles of HCl - mmoles NaOH added (mmoles are Molarity×mL added). Thus:
Trial 1: 0.391M×14.00mL - 0.0962M×34.26mL = 2.178 mmoles HCl
Trial 2: 0.391M×14.00mL - 0.0962M×33.48mL = 2.253 mmoles HCl
Trial 3: 0.391M×14.00mL - 0.0962M×33.84mL = 2.219 mmoles HCl
The mass of tablet in mg in the 3 experiments is 1515mg, 1452mg and 1443mg.
Thus, mmoles HCl /mg OF SAMPLE for each trial is:
#1: 2.178mmol / 1515mg
#2: 2.253mmol / 1452mg
#3: 2.219mmol / 1443mg
#1: 0.00144 mmolHCl/mg Sample#2: 0.00155 mmolHCl/mg Sample#3: 0.00153 mmolHCl/mg SampleWrite a balanced equation for the combustion of liquid methanol in air, assuming H2O(g) as a product.
Answer:
2 CH₃OH + 3 O₂ ⇒ 2 CO₂ + 4 H₂O
Explanation:
Methanol is CH₃OH. Oxygen is O₂. A combustion produces CO₂ and H₂O. Create an equation using this information and balance.
CH₃OH + O₂ ⇒ CO₂ + H₂O
2 CH₃OH + 3 O₂ ⇒ 2 CO₂ + 4 H₂O
The balanced equation for the combustion of liquid methanol in air, assuming H2O(g) as a product is
CH₃OH(l) + O₂(g) → CO₂(g) + H₂O(g)
From the question,
We are to write a balanced equation for the combustion of liquid methanol in air.
The combustion of liquid methanol in air is the reaction between methanol (CH₃OH) and oxygen (O₂). The reaction yields carbon(IV) oxide and water.
Now, for the balanced equation for the combustion of liquid methanol in air
The balanced chemical equation is
CH₃OH(l) + O₂(g) → CO₂(g) + H₂O(g)
Hence, the balanced equation for the combustion of liquid methanol in air, assuming H2O(g) as a product is CH₃OH(l) + O₂(g) → CO₂(g) + H₂O(g)
Learn more here: https://brainly.com/question/2473060
Calculate the volume of 0.500 M C2H3O2H and 0.500 M C2H3O2Na required to prepare 0.100 L of pH 5.00 buffer with a buffer strength of 0.100 M. The pKa of C2H3O2H is 4.75.
Answer:
You require 12.8mL of the 0.500M C₂H₃O₂Na and 7.2mL of the 0.500M C₂H₃O₂H
Explanation:
It is possible to obtain pH of a weak acid using H-H equation:
pH = pKa + log₁₀ [A⁻] / [HA]
For the buffer of acetic acid/acetate, the equation is:
pH = pKa + log₁₀ [C₂H₃O₂Na] / [C₂H₃O₂H]
Replacing:
5.00 = 4.75 + log₁₀ [C₂H₃O₂Na] / [C₂H₃O₂H]
1.7783 = [C₂H₃O₂Na] / [C₂H₃O₂H] (1)
Buffer strength is the concentration of the buffer, that means:
0.1M = [C₂H₃O₂Na] + [C₂H₃O₂H] (2)
Replacing (2) in (1):
1.7783 = 0.1M - [C₂H₃O₂H] / [C₂H₃O₂H]
1.7783 [C₂H₃O₂H] = 0.1M - [C₂H₃O₂H]
2.7783 [C₂H₃O₂H] = 0.1M
[C₂H₃O₂H] = 0.036MAlso:
[C₂H₃O₂Na] = 0.1M - 0.036M
[C₂H₃O₂Na] = 0.064MThe moles of both compounds you require is:
[C₂H₃O₂Na] = 0.1L × (0.064mol / L) = 0.0064moles
[C₂H₃O₂H] = 0.1L × (0.036mol / L) = 0.0036moles
Your stock solutions are 0.500M, thus, volume of both solutions you require is:
[C₂H₃O₂Na] = 0.0064moles × (1L / 0.500M) = 0.0128L = 12.8mL
[C₂H₃O₂H] = 0.0036moles × (1L / 0.500M) = 0.0072mL = 7.2mL
You require 12.8mL of the 0.500M C₂H₃O₂Na and 7.2mL of the 0.500M C₂H₃O₂HPLEASE ANSWER AS SOON AS POSSIBLE REALLY WOULD APPRECIATE IT
Answer:
The answer is option D.
Hope this helps you
➔ Which compound has both ionic and covalent bonds? A. Ammonium chloride B. Carbon dioxide C. Ethyl ethanoate D. Sodium chloride
Answer:
Choice A. Ammonium chloride.
Explanation:
Consider the bonds in each of the four compounds.
Ammonium chlorideAmmonium chloride [tex]\rm NH_4Cl[/tex] is an ionic compound. Each
The [tex]\rm {NH_4}^{+}[/tex] and [tex]\rm Cl^{-}[/tex] ions in [tex]\rm NH_4Cl[/tex] are connected with ionic bonds.
What make [tex]\rm NH_4Cl[/tex] special is that its cation [tex]\rm {NH_4}^{+}[/tex] is polyatomic. In other words, each [tex]\rm {NH_4}^{+}[/tex] ion contains more than one atoms. These atoms (one [tex]\rm N[/tex] atom and four [tex]\rm H[/tex] atoms) are connected with covalent bonds. Therefore, [tex]\rm NH_4Cl[/tex] has both ionic and covalent bonds.
Carbon dioxideCarbon dioxide [tex]\rm CO_2[/tex] is a covalent compound. Each [tex]\rm CO_2[/tex] molecule contains two [tex]\rm C=O[/tex] double bonds in total. [tex]\rm CO_2[/tex] molecules have no ionic bond.
Ethyl ethanoateThe name "ethyl ethanoate" might sound like the name of a salt (think about sodium ethanoate.) However, in reality, ethyl ethanoate [tex]\rm CH_3COOCH_2CH3[/tex] is an ester. The "ethyl" here refers to the [tex]\rm -OCH_2CH3[/tex] part, originating from ethanol. On the other hand, "ethanoate" refers to the [tex]\rm CH_3C(O)-[/tex] part, which can be obtained from ethanoic acid.
These two parts are connected with a covalent [tex]\rm C-O[/tex] single bond. (The [tex]\rm C[/tex] in ethanoic acid is connected to the [tex]\rm O[/tex] in ethanol.) As a result, there's no ionic bond in ethyl ethanoate, either.
Sodium chlorideSodium chloride [tex]\rm NaCl[/tex] is an ionic compound. Both the [tex]\rm Na^{+}[/tex] ion and the [tex]\rm Cl^{-}[/tex] are monoatomic. While the [tex]\rm Na^{+}[/tex] and [tex]\rm Cl^{-}[/tex] in sodium chloride are connected with ionic bonds, neither [tex]\rm Na^{+}[/tex] nor [tex]\rm Cl^{-}[/tex] contains covalent bond.