The gravitational potential has a zero value gravitational field in the same place is? Maximum or null indeterminate

Answers

Answer 1

Answer:maximum

Explanation:


Related Questions

A 0.410 cm diameter plastic sphere, used in a static electricity demonstration, has a uniformly distributed 35.0 pC charge on its surface. What is the potential (in V) near its surface

Answers

Answer:

The  potential is  [tex]V = 153.659 \ V[/tex]

Explanation:

From the question we are told that

     The diameter of the plastic sphere is  [tex]d = 0.410 \ cm = 0.0041 \ m[/tex]

      The magnitude of the charge is  [tex]q = 35.0 pC = 35.0 *10^{-12} \ C[/tex]

The radius of the plastic sphere is  mathematically evaluated as

          [tex]r = \frac{d}{2}[/tex]

=>     [tex]r = \frac{0.0041}{2}[/tex]

       [tex]r = 0.00205 \ m[/tex]

The  potential near the surface is mathematically represented as

         [tex]V = \frac{k * q}{r }[/tex]

Where k is the Coulombs constant with value [tex]9 *10^{9} \ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}.[/tex]

substituting values  

       [tex]V = \frac{9*10^9 * 35 *10^{-12}}{0.00205}[/tex]

       [tex]V = 153.659 \ V[/tex]

       

A 0.140-kg baseball is dropped from rest. It has a speed of 1.20 m/s just before it hits the ground, and it rebounds with an upward speed of 1.00 m/s. The ball is in contact with the ground for 0.0140 s.

Required:
What is the average force exerted by the ground on the ball during this time? Also explain whether it's upwards or downwards.

Answers

Answer:

22 N upward

Explanation:

From the question,

Applying newton's second law of motion

F = m(v-u)/t....................... Equation 1

Where F = Average force exerted by the ground on the ball, m = mass of the baseball, v = final velocity, u = initial velocity, t = time of contact

Note: Let upward be negative and downward be positive

Given: m = 0.14 kg, v = -1.00 m/s, u = 1.2 m/s, t = 0.014 s

Substitute into equation 1

F = 0.14(-1-1.2)/0.014

F = 0.14(-2.2)/0.014

F = 10(-2.2)

F = -22 N

Note the negative sign shows that the force act upward

what is quantic fisic

Answers

Answer:

it is the physics that explains how everything works. The best description we have of the. nature of the particles that make up matters and the forces with which they interact. It underlines how atoms work, and so why chemistry and biology work as they do

Calculate the change in internal energy of the following system: A balloon is cooled by removing 0.652 kJkJ of heat. It shrinks on cooling, and the atmosphere does 389 JJ of work on the balloon. Express your an

Answers

Question:

Calculate the change in internal energy of the following system: A balloon is cooled by removing 0.652 kJ of heat. It shrinks on cooling, and the atmosphere does 389 J of work on the balloon. Express your answer in Joules (J)

Answer:

-263J

Explanation:

Though its difficult and infact impossible to measure the internal energy of a system, the change in internal energy ΔE, can however be determined. This change when it is accompanied by work(W) and transfer of heat(Q) in or out of the system, can be calculated as follows;

ΔE = Q + W       ----------------(i)

Q is negative if heat is lost. It is positive otherwise

W is negative if work is done by the system. It is positive otherwise.

From the question;

Q = -0.652kJ = -652J    {the negative sign shows heat loss}

W = +389J                      {the positive sign shows work done on the system(balloon)}

Substitute these values into equation (i) as follows;

ΔE = -652 + 389

ΔE = -263J

Therefore the change in internal energy is -263J

PS: The negative sign shows that the process is exothermic. This means that the system (balloon) lost some energy to the environment.

A 300-foot cable weighing 5 pounds per foot is hanging from a winch 300 feet above ground level. Find the work (in ft-lb) done in winding up the cable when there is a 300-pound load attached to the end of the cable.

Answers

Answer:

  315,000 ft·lb

Explanation:

At 300 ft and 5 lb/ft, the weight of the cable is (300 f)(5 lb/ft) = 1500 lb. The work done to raise it is equivalent to the work done to raise the cable's center of mass. Since the cable is of uniform density, its center of mass is half the cable length below the winch.

  total work done = work to raise cable + work to raise load

  = (1500 lb)(150 ft) +(300 lb)(300 ft) = 315,000 ft·lb

A quartz crystal vibrates with a frequency of 35,621 Hz. What is the period of the crystal's motion?

Answers

Period = 1 / frequency

Period = 1 / (35,621 /s)

Period = 2.8073... x 10⁻⁵ sec

Period = 28.07 microseconds

or

Period = 0.0281 millisecond

The period (T) of the crystal's motion is equal to [tex]2.81 \times 10^{-5}\;seconds[/tex].

Given the following data:

Frequency of quartz crystal = 35,621 Hertz.

To calculate the period of the crystal's motion:

The formula for the period of oscillation.

Mathematically, the period of oscillation of an object is given by this formula:

[tex]T=\frac{1}{F}[/tex]

Where:

T is the period of oscillation.F is the frequency.

Substituting the given parameters into the formula, we have;

[tex]T=\frac{1}{35621} \\\\T=2.81 \times 10^{-5}\;seconds[/tex]

Therefore, the period (T) of the crystal's motion is equal to [tex]2.81 \times 10^{-5}\;seconds[/tex].

Read more on period here: https://brainly.com/question/14024265

Which jovian planet should have the most extreme seasonal changes? a. Saturn b. Neptune c. Jupiter d. Uranus

Answers

Answer:

D). Uranus.

Explanation:

Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.

As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, option D is the correct answer.

Two charged particles of equal magnitude (+Q and +Q) are fixed at opposite corners of a square that lies in a plane. A test charge +q is placed at the third corner of the square. What is the direction of force on the test charge due to other two charges?

Answers

Answer:

The test charge will take the south-west direction indicated in option 6.

Explanation:

The image is shown below.

Since all the charges are positively charged, they will all repel each other. If we consider the force on +q due to +Q and +Q, then we can proceed as follows

The +Q particle at the top left corner of the cube will exert a vertical downward force on +q in the -ve y-axis.

The +Q particle at the bottom right corner of the cube will exert a force on +q towards the horizontal left on the -ve x-axis.

Both of these forces will act at angle of 90°, and therefore, the resultant force will act at an angle of 45° to horizontal and vertical forces.

The result is that the +q charge will move in a south-west direction of the cube.

If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will Group of answer choices

Answers

Answer:

P' = 4 P

Therefore, the power dissipated by the circuit will becomes four times of its initial value.

Explanation:

The power dissipation by an electrical circuit is given by the following formula:

Power Dissipation = (Voltage)(Current)

P = VI

but, from Ohm's Law, we know that:

Voltage = (Current)(Resistance)

V = IR

Substituting this in formula of power:

P = (IR)(I)

P = I²R   ---------------- equation 1

Now, if we double the current , then the power dissipated by that circuit will be:

P' = I'²R

where,

I' = 2 I

Therefore,

P' = (2 I)²R

P' = 4 I²R

using equation 1

P' = 4 P

Therefore, the power dissipated by the circuit will becomes four times of its initial value.

An elevator filled with passengers has a mass of 1,700 kilograms and accelerates upward from rest at a rate of 1 meters/seconds 2 for 1.8 seconds. Calculate the tension in the cable (in Newtons) supporting the elevator during this time.

Answers

Answer:

The tension in the cable is 18371.9 newtons.

Explanation:

Physically speaking, the tension can be calculated with the help of the Second Newton's Law. The upward acceleration means that magnitude of tension must be greater than weight of elevator, whose equation of equilibrium is described below:

[tex]\Sigma F = T - m\cdot g = m \cdot a[/tex]

Where:

[tex]T[/tex] - Tension in the cable, measured in newtons.

[tex]m[/tex] - Mass of the elevator, measured in kilograms.

[tex]g[/tex] - Gravity constant, measured in meters per square second.

[tex]a[/tex] - Net acceleration of the elevator, measured in meters in square second.

Now, tension is cleared and resultant expression is also simplified:

[tex]T = m \cdot (a + g)[/tex]

If [tex]m = 1700\,kg[/tex], [tex]a = 1\,\frac{m}{s^{2}}[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], the tension in the cable is:

[tex]T = (1700\,kg)\cdot \left(1\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}} \right)[/tex]

[tex]T = 18371.9\,N[/tex]

The tension in the cable is 18371.9 newtons.

Red light from three separate sources passes through a diffraction grating with 5.60×105 slits/m. The wavelengths of the three lines are 6.56 ×10−7m (hydrogen), 6.50 ×10−7m (neon), and 6.97 ×10−7m (argon).
Part A
Calculate the angle for the first-order diffraction line of first source (hydrogen).
Express your answer using three significant figures.
θH = ∘
Part B
Calculate the angle for the first-order diffraction line of second source (neon).
Express your answer using three significant figures.
θNe = ∘
Part C
Calculate the angle for the first-order diffraction line of third source (argon).
Express your answer using three significant figures.
θAr = ∘

Answers

Answer:

I can help

Explanation:

An electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. What is the direction of the magnetic force on the electron?

Answers

Answer: the direction of the magnetic force on the electron will be moving out of the screen, perpendicular to the magnetic field.

Explanation:

The magnetic force F on a moving electron at right angle to a magnetic field is given by the formula:

F = BqVSinØ

If an electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. Then, the direction of the magnetic force on the electron will be perpendicular to the magnetic field

According to the Fleming's left - hand rule, the direction of the magnetic force on the electron will be moving out of the plane of the screen.

What would be the Roche limit (in units of Earth radii) if the Earth had the same mass, but its radius was increased to 1.5 Earth radii?
First calculate the density of this new, larger, Earth. Now use this new density and the new radius in the calculator above to determine the Roche limit for this new larger 'Earth.

Answers

Answer:

Roche limit = 1.89 of earth radius

Explanation:

We know that,

Mass of earth = 5.972 × 10²⁷ g

New radius = 1.5(old radius) = 1.5(6.371 × 10⁸) = 9.5565 × 10⁸

Density of earth = 5.5132 g/cm³

New density of earth = Mass of earth / (4/3)πr³

New density of earth = 5.972 × 10²⁷ kg / (4/3)(22/7)( 9.5565 × 10⁸)³

New density of earth = 1.634 g/cm³

Roche limit = [2(Density of earth)/(New density of earth)]¹/³r

Roche limit = 1.89 of earth radius

Two 2.0-cm-diameter insulating spheres have a 6.70 cm space between them. One sphere is charged to +70.0 nC, the other to -40.0 nC. What is the electric field strength at the midpoint between the two spheres?

Answers

Answer:

Explanation:

The distance of middle point from centres of spheres will be as follows

From each of 2 cm diameter sphere

R  = 1 + 6.7 / 2 = 4.35 cm = 4.35 x 10⁻² m

Expression for electric field = Q / 4πε R²

Electric field due to positive charge

E₁ = 70  x 10⁻⁹ x 9 x 10⁹ / 4.35² x 10⁻⁴

= 33.3 x 10⁴ N/C

Electric field due to negative  charge

E₂ = 40  x 10⁻⁹ x 9 x 10⁹ / 4.35² x 10⁻⁴

= 19.02 x 10⁴ N/C

E₁ and E₂ act in the same direction so

Total field = (33.3 + 19.02 ) x 10⁴

= 52.32 x 10⁴ N/C .

Find the pressure difference (in kPa) on an airplane wing if air flows over the upper surface with a speed of 125 m/s, and along the bottom surface with a speed of 109 m/s. [Express answer in TWO decimal places]

Answers

Answer:

P= 2414.9 Pa

Explanation:

given

density of air , p = 1.29 kg/m³

speed of air over the upper surface , v₁ = 125 m/s

speed of air over the lower surface , v₂ = 109 m/s

the pressure difference on an airplane wing , P = 0.5 × p × ( v₁² - v₂²)

P = 0.5 × 1.29 × ( 125² - 109²)

P= 0.645(3744)

P = 2414.9 Pa

the pressure difference on an airplane wing is 2414.9 Pa

A crate resting on a horizontal floor (\muμs = 0.75, \muμk = 0.24 ) has a horizontal force F = 93 Newtons applied to the right. This applied force is the maximum possible force for which the crate does not begin to slide. If you applied this same force after the crate is already sliding, what would be the resulting acceleration (in meters/second2) ?

Answers

Answer:

The  acceleration is [tex]a = 5 \ m/s^2[/tex]  

Explanation:

From the  question we are told that

      The  coefficient of kinetic friction is  [tex]\mu_k = 0.24[/tex]

       The coefficient of static friction is  [tex]\mu_s = 0.75[/tex]

       The horizontal force is [tex]F_h = 93 \ N[/tex]

Generally the static frictional force is  mathematically represented as

         [tex]F_F = \mu_s * (m * g )[/tex]

The  static frictional force is the equivalent to the maximum possible force for which the crate does not begin to slide So

       [tex]F_h = F_F = \mu_s * (m * g )[/tex]

=>      [tex]93 = \mu_s * (m * g )[/tex]

=>        [tex]m = \frac{93}{\mu_s * g }[/tex]

substituting values  

          [tex]m = \frac{93}{0.75 * 9.8 }[/tex]

        [tex]m = 12.65 \ kg[/tex]

When the crate is already sliding the frictional force is

      [tex]F_s = \mu_k *(m * g )[/tex]

substituting values  

     [tex]F_s = 0.24 * 12.65 * 9.8[/tex]

     [tex]F_s = 29.82 \ N[/tex]

Now the net force when the horizontal force is applied during sliding is  

      [tex]F_{net} = F_h - F_s[/tex]

substituting values  

     [tex]F_{net} = 93 - 29.8[/tex]

     [tex]F_{net} = 63.2 \ N[/tex]

This  net force is mathematically represented as

     [tex]F_{net } = m * a[/tex]

Where a is the acceleration of the crate

So  

      [tex]a = \frac{F_{net}}{m }[/tex]

      [tex]a = \frac{ 63.2}{12.65 }[/tex]

      [tex]a = 5 \ m/s^2[/tex]

Two cars start moving from the same point. One travels south at 28 mi/h and the other travels west at 21 mi/h. At what rate is the distance between the cars increasin

Answers

Complete question:

Two cars start moving from the same point. One travels south at 28 mi/h and the other travels west at 21 mi/h. At what rate is the distance between the cars increasing four hours later.

Answer:

The rate at which the distance between the cars is increasing four hours later is 35 mi/h.

Explanation:

Given;

speed of one car, dx/dt = 28 mi/h South

speed of the second car, dy/dt = 21 mi/h West

The distance between the cars is the line joining west to south, which forms a right angled triangle with the two positions.

Apply Pythagoras theorem to evaluate this distance;

let the distance between the cars = z

x² + y² = z² -------- equation (1)

Differentiate with respect to time (t)

[tex]2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt}[/tex] ----- equation (2)

Since the speed of the cars is constant, after 4 hours their different distance will be;

x: 28(4) = 112 mi

y: 21(4) = 84 mi

[tex]z = \sqrt{x^2 + y^2} \\\\z = \sqrt{112^2 + 84^2} \\\\z = 140 \ mi[/tex]

Substitute in the value of x, y, z, dx/dt, dy /dt into equation (2) and solve for dz/dt

[tex]2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt} \\\\2(112)(28) + 2(84)(21) = 2(140)\frac{dz}{dt} \\\\9800 = 280\frac{dz}{dt} \\\\\frac{dz}{dt} = \frac{9800}{280} \\\\\frac{dz}{dt} = 35 \ mi/h[/tex]

Therefore, the rate at which the distance between the cars is increasing four hours later is 35 mi/h

a wave with a high amplitude______?

Answers

. . . is carrying more energy than a wave in the same medium with a lower amplitude.

Let us suppose the magnitude of the original Coulomb force between the two charged spheres is FF. In this scenario, a third sphere touches the grey sphere and the red sphere multiple times, being grounded each touch. If the grey sphere is touched twice, and the red sphere is touched three times, what is the magnitude of the Coulomb force between the spheres now

Answers

Answer:

F ’= 1/32 F

We see that the value of the force is the initial force over 32

Explanation:

In this problem the sphere that is touching the others is connected to ground, after each touch,

Let's analyze the charge of the gray sphere, when you touch it for the first time, the charge is divided between the two spheres each having Q / 2, when the sphere separates and touches ground, its charge passes zero. When I touch the gray dial again, its charge is reduced by half

½ (Q / 2) = ¼ Q

For the red dial repeat the same scheme

with the first touch the charge is reduced to Q / 2

with the second touch e reduce to ½ (Q / 2) = ¼ Q

with the third toce it is reduced to ½ (¼ Q) = ⅛ Q

Now let's analyze what happens to the electric force

if the force is F for when the charge of each sphere is Q

        F = k Q Q / r²

with the remaining charge strength is

        F ’= k (¼ Q) (⅛ Q) / r²

        F ’= 1/32 k Q Q / r²

        F ’= 1/32 F

We see that the value of the force is the initial force over 32

Wanda exerts a constant tension force of 12 N on an essentially massless string to keep a tennis ball (m = 60 g) attached to the end of the string traveling in uniform circular motion above her head at a constant speed of 9.0 m/s. What is the length of the string between her hand and the tennis ball? You may ignore gravity in this problem (assume the motion of the tennis ball and string happen in a purely horizontal plane). A. 41 m B. 0.24 m C. 3.2 cm D. 0.41 m

Answers

Answer:

r = 0.405m = 40.5cm

Explanation:

In order to calculate the length of the string between Wanda and the ball, you take into account that the tension force is equal to the centripetal force over the ball. So, you can use the following formula:

[tex]F_c=ma_c=m\frac{v^2}{r}[/tex]       (1)

Fc: centripetal acceleration (tension force on the string) = 12N

m: mass of the ball = 60g = 0.06kg

r: length of the string = ?

v: linear speed of the ball = 9.0m/s

You solve for r in the equation (1) and replace the values of the other parameters:

[tex]r=\frac{mv^2}{F_c}=\frac{(0.06kg)(9.0m/s)^2}{12N}=0.405m[/tex]

The length of the string between Wanda and the ball is 0.405m = 40.5cm

What is the velocity of a 900-kg car initially moving at 30.0 m/s, just after it hits a 150-kg deer initially running at 18.0 m/s in the same direction

Answers

Question:

What is the velocity of a 900-kg car initially moving at 30.0 m/s, just after it hits a 150-kg deer initially running at 18.0 m/s in the same direction? Assume the deer remains on the car.

Answer:

28.29m/s

Explanation:

In this situation, linear momentum is conserved. And since the deer remains on the car after collision, the linear momentum is given as;

([tex]m_{C}[/tex] x [tex]u_{C}[/tex]) + ([tex]m_{D}[/tex] x [tex]u_{D}[/tex]) = ([tex]m_{C}[/tex] + [tex]m_{D}[/tex]) v            -----------------(i)

Where;

[tex]m_{C}[/tex] = mass of car

[tex]u_{C}[/tex] = initial velocity of car before collision

[tex]m_{D}[/tex] = mass of deer

[tex]u_{D}[/tex] = initial velocity of the deer before collision

v = common velocity with which the car and the deer move after collision

From the question;

[tex]m_{C}[/tex] = 900kg

[tex]u_{C}[/tex] = +30.0m/s    (direction of the motion of the car taken positive)

[tex]m_{D}[/tex] = 150kg

[tex]u_{D}[/tex] = +18.0m/s    (relative to the direction of the car, the velocity of the deer is also positive )

Substitute these values into equation (i) as follows;

(900 x 30.0) + (150 x 18.0) = (900 + 150)v

27000 + 2700 = 1050v

29700 = 1050v

v = [tex]\frac{29700}{1050}[/tex]

v = 28.29m/s

Therefore, the velocity of the car after hitting the deer is 28.29m/s. This is also the velocity of the deer after being hit by the car.

A wet shirt is put on a clothesline to dry on a sunny day. Do water molecules lose heat and condense, gain heat and condense or gain heat and evaporate

Answers

gain heat energy and evaporate

For a wet shirt is put on a clothesline to dry on a sunny day, water molecules gain heat and evaporate.

When a clothe is placed on a line to dry, the idea is to ensure that the water molecules should evaporate.

For the water molecules to evaporate, they must gain more energy that will enable them to transit from liquid to gaseous state.

Recall that he change from liquid to vapor requires energy, this is why water molecules gain energy when they evaporate.

Learn more: https://brainly.com/question/5019199

A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 42.0 cm from its center.

Answers

Answer:

-1.4x10^6N/C

Explanation:

Pls see attached file

The magnitude of the electric field.

Magnitude is the size of the object in properties that is determines the size of the object. It also displays the result of the order of class of the object. The direction of the electric field tells us about the position of the field in four different directions. As per the question, the answer is 1.4x10^6N/C.

The rod of 16cm of total length is given. Has a charge of a total of -25.0uc. The rod's axis is pointed at 42.0 cm from its center and is given in the question. The rod Length will be then 0.16m and the total change will be 25x10 cm and point where the electricity will be calculated is shown by the axis of the rod at the distance of 42 cms.The magnitude and direction will be calculated based on the measure of the formula of E. This answer to the question will be 1.4x10^6N/C.

Learn more about the uniformly charged.

brainly.com/question/12088419.

A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart?

Answers

Answer:

Yes the monkey will get hit and it will not avoid the dart.

Explanation:

Yes, the monkey will be hit anyway because the dart will follow a hyperbolic path and and will thus fall below the branches, so if the monkey jumps it will be hit.

No, the monkey will not avoid the dart because dart velocity doesn't matter. The speed of the bullet doesn’t even matter in this case because a faster bullet will hit the monkey at a higher height and while a slower bullet will simply hit the monkey closer to the ground.

The position of a particle is r(t)= (4.0t'i+ 2.4j- 5.6tk) m. (Express your answers in vector form.) (a) Determine its velocity (in m/s) and acceleration (in m/s2) as functions of time. (Use the following as necessary: t. Assume t is seconds, r is in meters, and v is in m/s, Do not include units in your answer.) v(t)= ________m/s a(t)= ________m/s2 (b) What are its velocity (in m/s) and acceleration (in m/s2) at time t 0? v(0) =_______ m/s a(0)=_______ m/s2

Answers

Corrected Question:

The position of a particle is r(t)= (4.0t²i+ 2.4j- 5.6tk) m. (Express your answers in vector form.)

(a) Determine its velocity (in m/s) and acceleration (in m/s²) as functions of time. (Use the following as necessary: t. Assume t is seconds, r is in meters, and v is in m/s, Do not include units in your answer.)

v(t)= ________m/s

a(t)= ________m/s²

(b) What are its velocity (in m/s) and acceleration (in m/s²) at time t 0?

v(0) =_______ m/s

a(0)=_______ m/s²

Answer:

(a)

v(t)= [tex]8ti - 5.6k[/tex] m/s

a(t)= 8i m/s²

(b)

v(0) = -5.6k m/s

a(0)= 8i m/s²

Explanation:

From the question, the position of the particle is given by;

r(t)= (4.0t²i+ 2.4j- 5.6tk)        -----------------(i)

(a)

(i)To get the velocity, v(t), of the particle, we'll take the first derivative of the position of the particle (given by equation (i)) with respect to time, t, as follows;

v(t) = [tex]\frac{dr(t)}{dt}[/tex] = [tex]\frac{d(4.0t^2i + 2.4j - 5.6tk)}{dt}[/tex]

v(t) = [tex]\frac{dr(t)}{dt}[/tex] = [tex]8ti +0j - 5.6k[/tex]

v(t) = [tex]8ti - 5.6k[/tex]          --------------------(ii)

(ii) To get the acceleration, a(t), of the particle, we'll take the first derivative of the velocity of the particle (given by equation (ii)) with respect to time, t, as follows;

a(t) = [tex]\frac{dv(t)}{dt}[/tex]  = [tex]\frac{d(8ti - 5.6k)}{dt}[/tex]

a(t) = 8i                    --------------------(iii)

(b)

(i) To get the velocity of the particle at time t = 0, substitute the value of t = 0 into equation (ii) as follows;

v(t) = [tex]8ti - 5.6k[/tex]  

v(0) = 8(0)i - 5.6k

v(0) = 0 - 5.6k

v(0) = -5.6k

(ii) To get the acceleration of the particle at time t = 0, substitute the value of t = 0 into equation (iii) as follows;

a(t) = 8i

a(0) = 8i

A current carrying wire is oriented along the y axis It passes through a region 0.45 m long in which there is a magnetic field of 6.1 T in the z direction The wire experiences a force of 15.1 N in the x direction.1. What is the magnitude of the conventional current inthe wire?I = A2. What is the direction of the conventional current in thewire?-y+y

Answers

Answer:

The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.

Explanation:

- To find the direction of the conventional current in the wire you use the following formula:

[tex]\vec{F}=i\vec{l}\ X\ \vec{B}[/tex]       (1)

i: current in the wire = ?

F: magnitude of the magnetic force on the wire = 15.1N

B: magnitude of the magnetic field = 6.1T

l: length of the wire that is affected by the magnetic field = 0.45m

The direction of the magnetic force is in the x direction (+^i) and the direction of the magnetic field is in the +z direction (+^k).

The direction of the current must be in the +y direction (+^j). In fact, you have:

^j X ^k = ^i

The current and the magnetic field are perpendicular between them, then, you solve for i in the equation (1):

[tex]F=ilBsin90\°\\\\i=\frac{F}{lB}=\frac{15.1N}{(0.45m)(6.1T)}=5.5A[/tex]

The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.

At the lowest point in a vertical dive (radius = 0.58 km), an airplane has a speed of 300 km/h which is not changing. Determine the magnitude of the acceleration of the pilot at this lowest point. Group of answer choices

Answers

Answer:

The centripetal acceleration is [tex]a = 11.97 \ m/s^2[/tex]

Explanation:

From the question we are told that

     The radius  is [tex]r = 0.58 \ km = 0.58 * 1000 = 580 \ m[/tex]

      The speed is [tex]v = 300\ km /hr = \frac{300 *1000}{1 * 3600 } = 83.33 \ m/s[/tex]

The centripetal acceleration of the pilot is mathematically represented as

       [tex]a = \frac{v^2 }{r}[/tex]

substituting  values

      [tex]a = \frac{(83.33)^2 }{580}[/tex]

     [tex]a = 11.97 \ m/s^2[/tex]

Two 10-cm-diameter charged rings face each other, 18.0 cmcm apart. Both rings are charged to 30.0 nCnC . What is the electric field strength

Answers

Answer:

E=7453.99 V/m

Explanation:

The electric field on the charged is given by

E= Kqx/(r^2 +x^2)^3/2

Where;

K= constant of Coulomb's law

q= magnitude of charge= 30.0×10^-9 C

r= radius of the rings= 5 cm or 0.05m

x= distance between the rings = 18cm = 0.18 m

Substituting values;

E= 9.0×10^9 × 30.0×10^-9 × 0.18 / [(0.05^2 + (0.18)^2]^3/2

E= 48.6/(2.5×10^-3 + 0.0324)^3/2

E= 48.6/(0.0025 + 0.0324)^3/2

E= 48.6/6.52×10^-3

E=7453.99 V/m

When a spinning bike wheel is placed horizontally, hung from a pivot at one end, the axis of rotation of the wheel will swing in a horizontal circle. In which direction does it turn?a) upwardb) downwardc) horizontally, CWd) horizontally, CCW

Answers

Answer:

answer is D

Explanation:

horizontally, CCW

If a key is pressed on a piano, the frequency of the resulting sound will determine the ________, and the amplitude will determine the ________ of the perceived musical note.

Answers

Answer:

If a key is pressed on a piano, the frequency of the resulting sound will determine the ___PITCH_____, and the amplitude will determine the _____LOUDNESS___ of the perceived musical note.

Explanation:

The frequency of a vibrating string is primarily based on three factors:

The sounding length (longer is lower, shorter is higher)

The tension on the string (more tension is higher, less is lower)

The mass of the string, normally based on a uniform density per unit length (higher mass is lower, lower mass is higher)

To make a shorter string (such as in an upright piano) sound the same fundamental frequency as a longer string (such as in a 9' grand piano), either the thickness of the string must be increased (which increases the density and the mass) or the tension must be decreased, and usually it's a bit of both.

Thicker strings are often stiffer and that creates more inharmonic partials, and lower tension is associated with other problems, so the best way to make a string sound lower is the make it longer, but it is not practical to make a piano from strings that are all the same density and tension, because the lowest strings would have to be ridiculously long. Nine feet is already a great demand on space for a single musical instrument, and of course those pianos are extremely expensive and difficult to move.

And alsoBesides the pitch of a musical note, perhaps the most noticeable feature in how loud the note is. The loudness of a sound wave is determined from its amplitude. While loudness is only associated with sound waves, all types of waves have an amplitude. Waves on a calm ocean may be less than 1 foot high. Good surfing waves might be 10 feet or more in amplitude. During a storm the amplitude might increase to 40 or 50 feet.

Many things can influence the amplitude.

What is producing the sound?

How far are you from the source of the sound? The farther away the smaller the amplitude.

Intervening material. Sound does not travel through walls as well as air.

Depends on what is detecting the wave sound. Ear vs. microphone.

Answer:

The frequency will determine the pitch

the amplitude will determine the loudness

Explanation:

The frequency of a sound refers to the number of vibrations made by the sound wave produced in a unit of time. This usually affects how high or how low a note is perceived in music. High-frequency sounds have higher pitches, while low-frequency sounds have lower pitches.

The amplitude of a sound wave refers to the height between the wave crests and the equilibrium line in a sound wave. It shows how loud a sound will be. High amplitude sounds are loud while low amplitude sounds are quiet.

Other Questions
mutually exclusive.. When did the French begin to settle colonies in North America?1400s1500s1700s1600s which of the following is considered aggression in the preschool years? Which event is an example of sexual reproduction in plants?O A. Pine trees produce seeds in cones.B. A kalanchoe produces plantlets on its leaves.C. Mosses form spores in capsules.D. A potato has buds that can grow into new stems. Please help me, and only provide with the given answers so I am not confused. The curve on the left shows the height of a population of penguins. The curve on the right shows the population five years later. What has happened to this population? (Available answers are in photo) Will mark best answer BRAINLIEST Calculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. (b) The skater with arms extended is approximately a cylinder that is 74.0 kg, has a 0.150 m radius, and has two 0.750 m long arms which are 3.00 kg each and extend straight out from the cylinder like rods rotated about their ends. 1. A point on the ground is 50 feet from my house. The angle of elevation to the top of the house is 48 Find the height of the house to the nearest tenth2. A bird is flying at a height of 2 meters above the sea level. The angle of depression from the bird to the fish it sees on the surface of the ocean is 15^c irc. Find the distance the bird must fly to be directly above the fish. Round to the nearest tenthPlease help me as soon as possible! I have to get this done before tomorrow! Please helpppp Work out the mean for the data set below: 2.2, 2, 8.9, 4.1, 8.2 17. A gardener is installing a fence around his garden. Let x represent the width ofthe garden, in feet. The perimeter of the graden is 8x + 8. Which expressionrepresents the length of the garden?a. 2x + 2b. 3x +4c. 6x + 8d. 8x + 8 - 2x A box experiencing a gravitational force of 600 N. is being pulled to the right with a force of 250 NA 25 N. frictional force acts on the box as it moves to the right what is the net force in the Y direction Read this excerpt from Chapter 1 of / Know Why the Caged Bird Sings by Maya Angelou and answer the question.When I was three and Bailey four, we had arrived in the musty little town, wearing tags on our wrists whichInstructed - 'To Whom It May Concern' - that we were Marguerite and Bailey Johnson Jr. ... Negropassengers, who always traveled with loaded lunch boxes, felt sorry for the poor little motherless darlings'and plied us with cold fried chicken and potato salad.Which of the following best describes the cultural context of this memoir?train travel in 1940s American rural Southlife of African-Americans in rural South of 1940svoting traditions of African-Americans in 1940s American rural Southcotton-picking methods in 1940s American rural South decreasing grades in schoolusing illegal drugsinability to control angersudden mood swingshope of impressing coachdisappointment in not making the team Every noticeable event, transaction, interaction, request and reply, and so on are being expectantly captured and saved in storage appliances and arrays for real-time as well as posterior investigations create something we call it ______________. Hola! Mi nombre es Rosita y vivo en Cartagena, Colombia. Tengo 16 aos y estoy en la escuela superior. Todas las escuelas superiores en Colombia tienen cuatro rutas diferentes, desde un ao a cinco aos de estudios: programas tcnicos, tecnolgicos, docentes y profesionales. Los programas docentes y tecnolgicos son los ms largos. Yo estudio en el programa tcnico. Quiero ser jardinera. Cuando terminas los dos aos del programa tcnico, puedes comenzar a trabajar inmediatamente sin ir a la universidad. En las carreras profesionales necesitas estudiar ms que en las carreras tcnicas y necesitas ir a la universidad. En los Estados Unidos hay carreras tcnicas, pero no en todas las escuelas. En Estados Unidos, despus de terminar los estudios tcnicos o generales en cuatro aos, puedes ir a la universidad para los estudios profesionales. Based on the text and what you learned in the lesson, what is a similarity between high schools in Colombia versus the United States? Both countries offer technical programs in all high schools. Both countries offer general programs in all high schools. Both countries require university studies for technical programs. Both countries require at least two complete years in school. Please help me asapppppp Until the rain stops, business in the restaurant will be slow. a. Simplec. Complex b. Compound d. Compound-Complex Which word best compleates the statement below look at the diagram to help 10) Financial intermediaries can substantially reduce transaction costs per dollar of transactionsbecause their large size allows them to take advantage of PLEASE ANSWER ASAP!! THANKS!! Currently, California has 55 electors, this number equals the number members in the House of Representative and the number of senators in theSenate. How many members do they have in the House?50515253