A box experiencing a gravitational force of 600 N. is being pulled to the right with a force of 250 NA 25 N. frictional force acts on the box as it moves to the right what is the net force in the Y direction

Answers

Answer 1

Answer:

32

Explanation:

Answer 2

Answer:

0

Explanation:.


Related Questions

Problem 2: A 21-W horizontal beam of light of wavelength 430 nm, travelling at speed c, passes through a rectangular opening of width 0.0048 m and height 0.011 m. The light then strikes a screen at a distance 0.36 m behind the opening.

a) E = 4.62E-19 Joules

b) N = 4.543E+19 # of photons emitted

c) If the beam of light emitted by the source has a constant circular cross section whose radius is twice the height of the opening the beam is approaching, find the flow density of photons as the number of photons passing through a square meter of cross-sectional area per second.

d) Calculate the number of photons that pass through the rectangular opening per second.

e) The quantity NO that you found in part (d) gives the rate at which photons enter the region between the opening and the screen. Assuming no reflection from the screen, find the number of photons in that region at any time.

f) How would the number of photons in the region between the opening and the screen change, if the photons traveled more slowly? Assume no change in any other quantity, including the speed of light.

Answers

Answer:

a. E = 4.62 × 10⁻¹⁹J

b. n = 4.54 × 10¹⁹photons

c. 2.99 × 10²²photons/m²

d. 1.58 ×10¹⁸photons/seconds

e.  n = 1.896 × 10 ⁹ photons

f. the number of photons will be more if it travels slowly

Explanation:

Lightbulbs are typically rated by their power dissipation when operated at a given voltage. Which of the following lightbulbs has the largest resistance when operated at the voltage for which it's rated?
A. 0.8 W, 1.5 V
B. 6 W 3 V
C. 4 W, 4.5 V
D. 8 W, 6 V

Answers

Answer:

The arrangement with the greatest resistance is the light bulb of option C. 4 W, 4.5 V

Explanation:

The equation for electric power is

power P = IV

also,  I = V/R,

substituting into the equation, we have

[tex]P = \frac{V^{2} }{R}[/tex]

[tex]R = \frac{V^{2} }{P}[/tex]

a)  [tex]R = \frac{1.5^{2} }{0.8}[/tex] = 2.8 Ω

b) [tex]R = \frac{3^{2} }{6}[/tex] = 1.5 Ω

c) [tex]R = \frac{4.5^{2} }{4}[/tex] 5.06 Ω

d) [tex]R = \frac{6^{2} }{8}[/tex] = 4.5 Ω

from the calculations, one can see that the lightbulb with te greates resistance is

C. 4 W, 4.5 V

what are the rays that come of the sun called? A. Ultraviolent rays B. Gamma rays C. soundwaves D. sonic rays

Answers

Answer:

The answer is ultraviolet rays...

Explanation:

...because the ozone layer protects us from the UV rays of the sun.

The frequency of a physical pendulum comprising a nonuniform rod of mass 1.15 kg pivoted at one end is observed to be 0.658 Hz. The center of mass of the rod is 42.5 cm below the pivot point. What is the rotational inertia of the pendulum around its pivot point

Answers

Answer:

The rotational inertia of the pendulum around its pivot point is [tex]0.280\,kg\cdot m^{2}[/tex].

Explanation:

The angular frequency of a physical pendulum is measured by the following expression:

[tex]\omega = \sqrt{\frac{m\cdot g \cdot d}{I_{o}} }[/tex]

Where:

[tex]\omega[/tex] - Angular frequency, measured in radians per second.

[tex]m[/tex] - Mass of the physical pendulum, measured in kilograms.

[tex]g[/tex] - Gravitational constant, measured in meters per square second.

[tex]d[/tex] - Straight line distance between the center of mass and the pivot point of the pendulum, measured in meters.

[tex]I_{O}[/tex] - Moment of inertia with respect to pivot point, measured in [tex]kg\cdot m^{2}[/tex].

In addition, frequency and angular frequency are both related by the following formula:

[tex]\omega =2\pi\cdot f[/tex]

Where:

[tex]f[/tex] - Frequency, measured in hertz.

If [tex]f = 0.658\,hz[/tex], then angular frequency of the physical pendulum is:

[tex]\omega = 2\pi \cdot (0.658\,hz)[/tex]

[tex]\omega = 4.134\,\frac{rad}{s}[/tex]

From the formula for the physical pendulum's angular frequency, the moment of inertia is therefore cleared:

[tex]\omega^{2} = \frac{m\cdot g \cdot d}{I_{o}}[/tex]

[tex]I_{o} = \frac{m\cdot g \cdot d}{\omega^{2}}[/tex]

Given that [tex]m = 1.15\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]d = 0.425\,m[/tex] and [tex]\omega = 4.134\,\frac{rad}{s}[/tex], the moment of inertia associated with the physical pendulum is:

[tex]I_{o} = \frac{(1.15\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.425\,m)}{\left(4.134\,\frac{rad}{s} \right)^{2}}[/tex]

[tex]I_{o} = 0.280\,kg\cdot m^{2}[/tex]

The rotational inertia of the pendulum around its pivot point is [tex]0.280\,kg\cdot m^{2}[/tex].

200 J of heat is added to two gases, each in a sealed container. Gas 1 is in a rigid container that does not change volume. Gas 2 expands as it is heated, pushing out a piston that lifts a small weight. Which gas has the greater increase in its thermal energy?Which gas has the greater increase in its thermal energy?Gas 1Gas 2Both gases have the same increase in thermal energy.

Answers

Answer:

Gas 1

Explanation:

The reason for this is that for gases attached to both gases or containers, with a heat of 200 J, the change in volume is only observed in gas 2, whereas the volume of gas 1 is the same as that of gas. Therefore, the internal energy (heat) or thermal energy of the system is not utilized for Gas 1 and hence the absorption and transfer of energy is the same, whereas Gas 2 is propagated by the use of additional heat of heat. Thus there is a large increase in the thermal energy of Gas1.

The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)

Answers

Answer:

Increase of volume (F)  = 8.01%

Explanation:

Given:

Density of fish = 1,080 kg/m³

Density of water = 1,000 kg/m³

density of air = 1.28 kg/m³

Find:

Increase of volume (F)

Computation:

1,080 kg/m³  + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³  

1,080 + 1.28 F =1,000 F + 1,000

80 = 998.72 F

F = 0.0801 (Approx)

F = 8.01%  (Approx)

Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z

Answers

The question is not complete, the value of z is not given.

Assuming the value of z = 4.0m

Answer:

the magnitude of the electric field at any point having z(4.0 m)  =

E = 5.65 N/C

Explanation:

given

σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²

z = 4.0 m

Recall

E =F/q (coulumb's law)

E = kQ/r²

σ = Q/A

A = 4πr²

∴ The electric field at point z =

E = σ/zε₀

E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)

E = 5.65 N/C

A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.58 m/s. The pulling force is 110 N parallel to the incline, which makes an angle of 20.2° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.10 m.A) How much work is done by the gravitational force on thecrate?
B) Determine the increase in internal energy of the crate-inclinesystem owing to friction.
C) How much work is done by the 100N force on the crate?
D) What is the change in kinetic energy of the crate?
E) What is the speed of the crate after being pulled 5.00m?

Answers

Given that,

Mass = 9.2 kg

Force = 110 N

Angle = 20.2°

Distance = 5.10 m

Speed = 1.58 m/s

(A). We need to calculate the work done by the gravitational force

Using formula of work done

[tex]W_{g}=mgd\sin\theta[/tex]

Where, w = work

m = mass

g = acceleration due to gravity

d = distance

Put the value into the formula

[tex]W_{g}=9.2\times(-9.8)\times5.10\sin20.2[/tex]

[tex]W_{g}=-158.8\ J[/tex]

(B). We need to calculate the increase in internal energy of the crate-incline system owing to friction

Using formula of potential energy

[tex]\Delta U=-W[/tex]

Put the value into the formula

[tex]\Delta U=-(-158.8)\ J[/tex]

[tex]\Delta U=158.8\ J[/tex]

(C). We need to calculate the work done by 100 N force on the crate

Using formula of work done

[tex]W=F\times d[/tex]

Put the value into the formula

[tex]W=100\times5.10[/tex]

[tex]W=510\ J[/tex]

We need to calculate the work done by frictional force

Using formula of work done

[tex]W=-f\times d[/tex]

[tex]W=-\mu mg\cos\theta\times d[/tex]

Put the value into the formula

[tex]W=-0.4\times9.2\times9.8\cos20.2\times5.10[/tex]

[tex]W=-172.5\ J[/tex]

We need to calculate the change in kinetic energy of the crate

Using formula for change in kinetic energy

[tex]\Delta k=W_{g}+W_{f}+W_{F}[/tex]

Put the value into the formula

[tex]\Delta k=-158.8-172.5+510[/tex]

[tex]\Delta k=178.7\ J[/tex]

(E). We need to calculate the speed of the crate after being pulled 5.00m

Using formula of change in kinetic energy

[tex]\Delta k=\dfrac{1}{2}m(v_{2}^2-v_{1}^{2})[/tex]

[tex]v_{2}^2=\dfrac{2\times\Delta k}{m}+v_{1}^2[/tex]

Put the value into the formula

[tex]v_{2}^2=\dfrac{2\times178.7}{9.2}+1.58[/tex]

[tex]v_{2}=\sqrt{\dfrac{2\times178.7}{9.2}+1.58}[/tex]

[tex]v_{2}=6.35\ m/s[/tex]

Hence, (A). The work done by the gravitational force is -158.8 J.

(B). The increase in internal energy of the crate-incline system owing to friction is 158.8 J.

(C). The work done by 100 N force on the crate is 510 J.

(D). The change in kinetic energy of the crate is 178.7 J.

(E). The speed of the crate after being pulled 5.00m is 6.35 m/s

A 2.5-kg object falls vertically downward in a viscous medium at a constant speed of 2.5 m/s. How much work is done by the force the viscous medium exerts on the object as it falls 80 cm?

Answers

Answer:

The workdone is [tex]W_v = - 20 \ J[/tex]

Explanation:

From the question we are told that

    The mass of the object is [tex]m = 2.5 \ kg[/tex]

     The speed of fall is [tex]v = 2.5 \ m/s[/tex]

     The depth of fall is  [tex]d = 80\ cm = 0.8 \ m[/tex]

Generally according to the work energy theorem

      [tex]W = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2[/tex]

Now here given the that the velocity is  constant  i.e  [tex]v_1 = v_2 = v[/tex] then

We have that

    [tex]W = \frac{1}{2} mv^2 - \frac{1}{2} mv^2 = 0 \ J[/tex]  

So in terms of workdone by the potential energy of the object and that of the viscous liquid we have

       [tex]W = W_v - W_p[/tex]

Where  [tex]W_v[/tex] is workdone by viscous liquid

             [tex]W_p[/tex] is the workdone by the object which is mathematically represented as

            [tex]W_p = mgd[/tex]

So  

       [tex]0 = W_v + mgd[/tex]

=>    [tex]W_v = - m * g * d[/tex]

substituting values

       [tex]W_v = - (2.5 * 9.8 * 0.8)[/tex]

      [tex]W_v = - 20 \ J[/tex]

The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that we can still apply Gauss's law to a Gaussian surface that is entirely within an insulator by replacing the right-hand side of Gauss's law, Qin/eo, with Qin/e, where ε is the permittivity of the material. (Technically, Eo is called the vacuum permittivity.) Suppose that a 70 nC point charge is surrounded by a thin, 32-cm-diameter spherical rubber shell and that the electric field strength inside the rubber shell is 2500 N/C.
What is the permittivity of rubber?

Answers

Answer:

The permittivity of rubber is  [tex]\epsilon = 8.703 *10^{-11}[/tex]

Explanation:

From the question we are told that

     The  magnitude of the point charge is  [tex]q_1 = 70 \ nC = 70 *10^{-9} \ C[/tex]

      The diameter of the rubber shell is  [tex]d = 32 \ cm = 0.32 \ m[/tex]

       The Electric field inside the rubber shell is  [tex]E = 2500 \ N/ C[/tex]

The radius of the rubber is  mathematically evaluated as

              [tex]r = \frac{d}{2} = \frac{0.32}{2} = 0.16 \ m[/tex]

Generally the electric field for a point  is in an insulator(rubber) is mathematically represented as

         [tex]E = \frac{Q}{ \epsilon } * \frac{1}{4 * \pi r^2}[/tex]

Where [tex]\epsilon[/tex] is the permittivity of rubber

    =>     [tex]E * \epsilon * 4 * \pi * r^2 = Q[/tex]

   =>      [tex]\epsilon = \frac{Q}{E * 4 * \pi * r^2}[/tex]

substituting values

            [tex]\epsilon = \frac{70 *10^{-9}}{2500 * 4 * 3.142 * (0.16)^2}[/tex]

            [tex]\epsilon = 8.703 *10^{-11}[/tex]

5) What is the weight of a body in earth. if its weight is 5Newton
in moon?​

Answers

Answer:

8.167

Explanation:

A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T with the plane of the coil making an angle of 30° with the magnetic field. What is the magnetic torque on the coil?

Answers

Answer:

0.087976 Nm

Explanation:

The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;

τ = NIAB sinθ     --------- (i)

Where;

N = number of turns of the loop

I = current in the loop

A = area of each of the turns

B = magnetic field

θ = angle the loop makes with the magnetic field

From the question;

N = 200

I = 4.0A

B = 0.70T

θ = 30°

A = π d² / 4        [d = diameter of the coil = 2.0cm = 0.02m]

A = π x 0.02² / 4 = 0.0003142m²         [taking π = 3.142]

Substitute these values into equation (i) as follows;

τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°

τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5

τ = 200 x 4.0 x 0.0003142 x 0.70      

τ = 0.087976 Nm

Therefore, the torque on the coil is 0.087976 Nm

Calculate the angular momentum of a solid uniform sphere with a radius of 0.150 m and a mass of 13.0 kg if it is rotating at 5.70 rad/s about an axis through its center.

Answers

Answer:

The angular momentum of the solid sphere is 0.667 kgm²/s

Explanation:

Given;

radius of the solid sphere, r = 0.15 m

mass of the sphere, m = 13 kg

angular speed of the sphere, ω = 5.70 rad/s

The angular momentum of the solid sphere is given;

L = Iω

Where;

I is the moment of inertia of the solid sphere

ω is the angular speed of the solid sphere

The moment of inertia of solid sphere is given by;

I = ²/₅mr²

I = ²/₅ x (13 x 0.15²)

I = 0.117 kg.m²

The angular momentum of the solid sphere is calculated as;

L = Iω

L = 0.117 x 5.7

L = 0.667 kgm²/s

Therefore, the angular momentum of the solid sphere is 0.667 kgm²/s

A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?

Answers

Explanation:

KE = q

½ mv² = mCΔT

ΔT = v² / (2C)

ΔT = (200 m/s)² / (2 × 236 J/kg/°C)

ΔT = 84.7°C

This question involves the concepts of the law of conservation of energy.

The temperature change of the bullet is "84.38°C".

What is the Law of Conservation of Energy?

According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.

[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]

where,

ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/s

Therefore,

[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]

ΔT = 84.38°C

Learn more about the law of conservation of energy here:

https://brainly.com/question/20971995

#SPJ2

A Ferris wheel starts at rest and builds up to a final angular speed of 0.70 rad/s while rotating through an angular displacement of 4.9 rad. What is its average angular acceleration

Answers

Answer:

The average angular acceleration is 0.05 radians per square second.

Explanation:

Let suppose that Ferris wheel accelerates at constant rate, the angular acceleration as a function of change in angular position and the squared final and initial angular velocities can be clear from the following expression:

[tex]\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha\cdot (\theta-\theta_{o})[/tex]

Where:

[tex]\omega_{o}[/tex], [tex]\omega[/tex] - Initial and final angular velocities, measured in radians per second.

[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.

[tex]\theta_{o}[/tex], [tex]\theta[/tex] - Initial and final angular position, measured in radians.

Then,

[tex]\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}[/tex]

Given that [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex], [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]\theta-\theta_{o} = 4.9\,rad[/tex], the angular acceleration is:

[tex]\alpha = \frac{\left(0.70\,\frac{rad}{s} \right)^{2}-\left(0\,\frac{rad}{s} \right)^{2}}{2\cdot \left(4.9\,rad\right)}[/tex]

[tex]\alpha = 0.05\,\frac{rad}{s^{2}}[/tex]

Now, the time needed to accelerate the Ferris wheel uniformly is described by this kinematic equation:

[tex]\omega = \omega_{o} + \alpha \cdot t[/tex]

Where [tex]t[/tex] is the time measured in seconds.

The time is cleared and obtain after replacing every value:

[tex]t = \frac{\omega-\omega_{o}}{\alpha}[/tex]

If [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex],  [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]\alpha = 0.05\,\frac{rad}{s^{2}}[/tex], the required time is:

[tex]t = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{0.05\,\frac{rad}{s^{2}} }[/tex]

[tex]t = 14\,s[/tex]

Average angular acceleration is obtained by dividing the difference between final and initial angular velocities by the time found in the previous step. That is:

[tex]\bar \alpha = \frac{\omega-\omega_{o}}{t}[/tex]

If [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex],  [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]t = 14\,s[/tex], the average angular acceleration is:

[tex]\bar \alpha = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{14\,s}[/tex]

[tex]\bar \alpha = 0.05\,\frac{rad}{s^{2}}[/tex]

The average angular acceleration is 0.05 radians per square second.

A parallel-plate capacitor with circular plates of radius R is being discharged. The displacement current through a central circular area, parallel to the plates and with radius R/2, is 9.2 A. What is the discharging current?

Answers

Answer:

The discharging current is [tex]I_d = 36.8 \ A[/tex]

Explanation:

From the question we are told that  

     The radius of each circular plates is  R

     The displacement current is  [tex]I = 9.2 \ A[/tex]

      The radius of the central circular area is  [tex]\frac{R}{2}[/tex]

The discharging current is mathematically represented as

       [tex]I_d = \frac{A}{k} * I[/tex]

where A is the area of each plate which is mathematically represented as

       [tex]A = \pi R ^2[/tex]

and   k is central circular area which is mathematically represented as

     [tex]k = \pi [\frac{R}{2} ]^2[/tex]

So  

     [tex]I_d = \frac{\pi R^2 }{\pi * [ \frac{R}{2}]^2 } * I[/tex]

     [tex]I_d = \frac{\pi R^2 }{\pi * \frac{R^2}{4} } * I[/tex]

     [tex]I_d = 4 * I[/tex]

substituting values

     [tex]I_d = 4 * 9.2[/tex]

     [tex]I_d = 36.8 \ A[/tex]

     

at the temperature at which we live, earth's core is solid or liquid?

Answers

Explanation:

The Earth has a solid inner core

A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.

Answers

Answer:

8.7 m/s^2

82.15°

Explanation:

Given:-

- The initial speed of the car, vi = 25 m/s

- The radius of track, r = 129 m

- Car makes a circular " quarter turn "

- The constant tangential acceleration, at = 1.2 m/s^2

Solution:-

- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:

                          [tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]

- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:

                           at = r*α

                           α = ( 1.2 / 129 )

                           α = 0.00930 rad/s^2

- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).

- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:

                            [tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]

- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:

                            [tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]

- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:

                            [tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]

- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:

                             [tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]

- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:

                          [tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex] 

Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .

Two cannonballs are dropped from a second-floor physics lab at height h above the ground. Ball B has four times the mass of ball A. When the balls pass the bottom of a first-floor window at height above the ground, the relation between their kinetic energies, KA and KB, is

Answers

Answer:

1:4

Explanation:

The formula for calculating kinetic energy is:

[tex]KE=\dfrac{1}{2}mv^2[/tex]

If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!

The relation between the kinetic energies of the freely falling balls A and B is obtained as [tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex].

Kinetic Energy

The kinetic energy of an object depends on the mass and velocity with which it moves.

While under free-fall, the mass of an object does not affect the velocity with which it falls.

So, the velocities of both the balls are the same.

Let the mass of ball A is 'm'

So, the mass of ball B is '4m'

The kinetic energy of ball A is given by;

[tex]KE_{A}=\frac{1}{2} mv^2[/tex]

The kinetic energy of ball B is given by;

[tex]KE_{B}=\frac{1}{2} 4mv^2 = 2mv^2[/tex]

Therefore, the ratio of kinetic energies of A and B is,

[tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex]

Learn more about kinetic energy here:

https://brainly.com/question/11580018

A circle has a radius of 13m Find the length of the arc intercepted by a central angle of .9 radians. Do not round any intermediate computations, and round your answer to the nearest tenth.

Answers

Answer:

11.7 m

Explanation:

The radius of the circle is 13 m.

The central angle of the arc is 0.9 radians

The length of an arc is given as:

L = r θ

where θ = central angle in radians = 0.9

=> L = 0.9 * 13 = 11.7 m

Length of the arc will be 11.7 m ≈ 10 m

What is an arc length?

Arc length refers to the distance between two points along a curve’s section.

Arc length = radius * theta

where

Arc length  = ? to find

given :

radius = 13 m

theta ( central angle) = 0.9 radians

Arc length = 13 m * 0.9 radians

                = 11.7 m ≈ 10 m

length of the arc will be 11.7 m ≈ 10 m

Learn more about Arc length

https://brainly.com/question/16403495?referrer=searchResults

#SPJ2

Use Kepler's third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6 590 km from the Earth's center to the Moon, 385 000 km from the Earth's center.

Answers

Answer:

1.363×10^15 seconds

Explanation:

The spaceship travels an elliptical orbit from a point of 6590km from the earth center to the moon and 38500km from the earth center.

To calculate the time taken from Kepler's third Law :

T^2 = ( 4π^2/GMe ) r^3

Where Me is the mass of the earth

r is the average distance travel

G is the universal gravitational constant. = 6.67×10-11 m3 kg-1 s-2

π = 3.14

Me = mass of earth = 5.972×10^24kg

r =( r minimum + r maximum)/2 ......1

rmin = 6590km

rmax = 385000km

From equation 1

r = (6590+385000)/2

r = 391590/2

r = 195795km

From T^2 = ( 4π^2/GMe ) r^3

T^2 = (4 × 3.14^2/ 6.67×10-11 × 5.972×10^24) × 195795^3

= ( 4×9.8596/ 3.983×10^14 ) × 7.5059×10^15

= 39.4384/ 3.983×10^14 ) × 7.5059×10^15

= (9.901×10^14) × 7.5059×10^15

T^2 = 7.4321× 10^30

T =√7.4321× 10^30

T = 2.726×10^15 seconds

The time for one way trip from Earth to the moon is :

∆T = T/2

= 2.726×10^15 /2

= 1.363×10^15 secs

How much heat does it take to raise the temperature of 7.0 kg of water from
25-C to 46-C? The specific heat of water is 4.18 kJ/(kg.-C).
Use Q = mcTr-T)
A. 148 kJ
B. 176 kJ
C. 610 kJ
D. 320 kJ​

Answers

Answer:

non of the above

Explanation:

Quantity of heat = mass× specific heat× change in temperature

m= 7kg c= 4.18 temp= 46-25=21°

.......H= 7×4.18×21= 614.46kJ

Answer:610 KJ

Explanation:A P E X answers

Three sleds (30kg sled connected by tension rope B to 20kg sled connected by tension rope A to 10kg sled) are being pulled horizontally on frictionless horizontal ice using horizontal ropes. The pull is horizontal and of magnitude 143N . Required:a. Find the acceleration of the system. b. Find the tension in rope A. c. Find the tension in rope B.

Answers

Answer:

a) a = 2.383 m / s², b)   T₂ = 120,617 N , c)   T₃ = 72,957 N

Explanation:

This is an exercise of Newton's second law let's fix a horizontal frame of reference

in this case the mass of the sleds is 30, 20 10 kg from the last to the first, in the first the horizontal force is applied.

a) request the acceleration of the system

we can take the sledges together and write Newton's second law

     T = (m₁ + m₂ + m₃) a

    a = T / (m₁ + m₂ + m₃)

     a = 143 / (10 +20 +30)

     a = 2.383 m / s²

b) the tension of the cables we think through cable A between the sledges of 1 and 20 kg

on the sled of m₁ = 10 kg

          T - T₂ = m₁ a

in this case T₂ is the cable tension

           T₂ = T - m₁ a

            T₂ = 143 - 10 2,383

            T₂ = 120,617 N

c) The cable tension between the masses of 20 and 30 kg

            T₂ - T₃ = m₂ a

             T₃ = T₂ -m₂ a

             T₃ = 120,617 - 20 2,383

             T₃ = 72,957 N

An experimenter finds that standing waves on a string fixed at both ends occur at 24 Hz and 32 Hz , but at no frequencies in between. Part A What is the fundamental frequency

Answers

Answer:

8 Hz

Explanation:

Given that

Standing wave at one end is 24 Hz

Standing wave at the other end is 32 Hz.

Then the frequency of the standing wave mode of a string having a length, l, is usually given as

f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc

Also, another formula is given as

f(m) = m.f(1), where f(1) is the fundamental frequency..

Thus, we could say that

f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)

And as such,

f(1) = 32 - 24

f(1) = 8 Hz

Then, the fundamental frequency needed is 8 Hz

PLS HELP ILL MARK U BRAINLIEST I DONT HAVE MUCH TIME!!


A football player of mass 103 kg running with a velocity of 2.0 m/s [E] collides head-
on with a 110 kg player on the opposing team travelling with a velocity of 3.2 m/s
[W]. Immediately after the collision the two players move in the same direction.
Calculate the final velocity of the two players.

Answers

Answer:

The final velocity of the two players is 0.69 m/s in the direction of the opposing player.

Explanation:

Since the players are moving in opposite directions, from the principle of conservation of linear momentum;

[tex]m_{1} u_{1}[/tex] - [tex]m_{2}u_{2}[/tex] = [tex](m_{1} + m_{2} )[/tex] v

Where: [tex]m_{1}[/tex] is the mass of the first player, [tex]u_{1}[/tex] is the initial velocity of the first player, [tex]m_{2}[/tex] is the mass of the second player, [tex]u_{2}[/tex] is the initial velocity of the second player and v is the final common velocity of the two players after collision.

[tex]m_{1}[/tex] = 103 kg, [tex]u_{1}[/tex] = 2.0 m/s, [tex]m_{2}[/tex] = 110 kg, [tex]u_{2}[/tex] = 3.2 m/s. Thus;

103 × 2.0 - 110 × 3.2 = (103 + 110)v

206 - 352 = 213 v

-146 = 213 v

v = [tex]\frac{-146}{213}[/tex]

v = -0.69 m/s

The final velocity of the two players is 0.69 m/s in the direction of the opposing player.

In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.

Answers

Answer:

Red light

Explanation:

This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)

Consider the Earth and the Moon as a two-particle system.

Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"

Answers

sorry but I don't understand

Given a double slit apparatus with slit distance 1 mm, what is the theoretical maximum number of bright spots that I would see when I shine light with a wavelength 400 nm on the slits

Answers

Answer:

The maximum number of bright spot is [tex]n_{max} =5001[/tex]

Explanation:

From the question we are told that

     The  slit distance is [tex]d = 1 \ mm = 0.001 \ m[/tex]

      The  wavelength is  [tex]\lambda = 400 \ nm = 400*10^{-9 } \ m[/tex]

       

Generally the condition for interference is  

        [tex]n * \lambda = d * sin \theta[/tex]

Where n is the number of fringe(bright spots) for the number of bright spots to be maximum  [tex]\theta = 90[/tex]

=>     [tex]sin( 90 )= 1[/tex]

So

     [tex]n = \frac{d }{\lambda }[/tex]

substituting values

     [tex]n = \frac{ 1 *10^{-3} }{ 400 *10^{-9} }[/tex]

     [tex]n = 2500[/tex]

given there are two sides when it comes to the double slit apparatus which implies that the fringe would appear on two sides so the maximum number of bright spots is mathematically evaluated as

        [tex]n_{max} = 2 * n + 1[/tex]

The  1  here represented the central bright spot

So  

      [tex]n_{max} = 2 * 2500 + 1[/tex]

     [tex]n_{max} =5001[/tex]      

       

An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?

Answers

Answer:

a

 [tex]\theta = 0.0022 rad[/tex]

b

 [tex]I = 0.000304 I_o[/tex]

Explanation:

From the question we are told that  

   The  wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]

    The  distance of the slit separation is  [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]

 

Generally the condition for two slit interference  is  

     [tex]dsin \theta = m \lambda[/tex]

Where m is the order which is given from the question as  m = 2

=>    [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]

 substituting values  

      [tex]\theta = 0.0022 rad[/tex]

Now on the second question  

   The distance of separation of the slit is  

       [tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]

The  intensity at the  the angular position in part "a" is mathematically evaluated as

      [tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]

Where  [tex]\beta[/tex] is mathematically evaluated as

       [tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]

  substituting values

     [tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]

    [tex]\beta = 0.06581[/tex]

So the intensity is  

    [tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]

   [tex]I = 0.000304 I_o[/tex]

How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density

Answers

The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object

Other Questions
I need this question solved with derivatives please:A rectangular piece of cardboard, 100 cm by 40 cm, is going to be used tomake a rectangular box with an open top by cutting congruent squares fromthe corners. Calculate the dimensions (to one decimal place) for a box withthe largest volume. Maureen takes notes in class. Wave Interactions I. With Gases: A. Interference II. With Objects: A. Absorption B. Transmission a. Refraction C. Reflection D. Diffraction Which line of Maureens notes contains an error? I II II B II D Ella makes a smoothie for breakfast every morning. Today, she wants to use melon, apple, orange, and peach. In how many different ways (orders) can she add these fruits to her blender? How does music affect plant growth? To answer this question, Dr. Anderson set up an experimental chamber and exposed a group of 15 bean plants to the same 60-minute rock CD twice a day, at 9:00 A.M. and 9:00 P.M. Another group of 15 bean plants was placed in a different chamber with the same temperature, light, and humidity, but these plants weren't exposed to music. One month later, the heights and masses of all 30 plants were measured and compared. In this example, what's the independent variable? Question 3 options: The light The use of music The temperature The time the experiment was conducted What variable can be changed when using the WEEKDAY function When is Cindy learning to dance? por las maanas a medioda por las noches por las tardes Rice has a bulk of 0.9 g/mL, but an individual grain of rice has a density of 1.1g/mL. Water has a density of 1.0g/mL. what would happen to a cup of rice when poured into a lot of water? The study of how humans impact the environment is? I WILL MAKE BRAINLYWhich description matches the graph of the inequality y In Okin's view, the needs and interests of children must, unfortunately, be set aside in order to eradicate the gendered division of labor and ensure women's equality with men. Journalize the following entries on the books of Winston Co. for August 1, September 1, and November 30. (Assume a 360-day year is used for interest calculations.) Refer to the Chart of Accounts for exact wording of account titles.Aug. 1 Winston Co. purchased merchandise for $75,000 on account from Bagley Co., terms n/30.Sept. 1 Winston Co. issued a 90-day, 6% note for $75,000 on account.Nov. 30 Winston Co. paid the amount due.CHART OF ACCOUNTSWinston Co.General LedgerASSETS110 Cash111 Accounts Receivable112 Interest Receivable113 Notes Receivable115 Inventory116 Supplies118 Prepaid Insurance120 Land123 Building124 Accumulated Depreciation-Building125 Office Equipment126 Accumulated Depreciation-Office EquipmentLIABILITIES210 Accounts Payable213 Interest Payable214 Notes Payable215 Salaries Payable216 Social Security Tax Payable217 Medicare Tax Payable218 Employees Federal Income Tax Payable219 Employees State Income Tax Payable220 Medical Insurance Payable221 Retirement Savings Deductions Payable222 Union Dues Payable224 Federal Unemployment Tax Payable225 State Unemployment Tax Payable226 Vacation Pay Payable228 Product Warranty PayableEQUITY310 Common Stock311 Retained Earnings312 Dividends313 Income Summary REVENUE410 Sales610 Interest RevenueEXPENSES510 Cost of Merchandise Sold520 Salaries Expense525 Delivery Expense526 Repairs Expense531 Rent Expense533 Insurance Expense534 Supplies Expense535 Payroll Tax Expense536 Vacation Pay Expense538 Cash Short and Over539 Product Warranty Expense541 Depreciation Expense-Building542 Depreciation Expense-Office Equipment590 Miscellaneous Expense710 Interest ExpenseJournalize the entries on the books of Winston Co. for August 1, September 1, and November 30. (Assume a 360-day year is used for interest calculations.) Refer to the Chart of Accounts for exact wording of account titles.PAGE 1JOURNALDATE DESCRIPTION POST. REF. DEBIT CREDIT1234567 What trends or movements in modern American culture (art, literature, music, film, fashion, etc.) seem similar to the American Gothic movement of the mid 1800s? Solving absolute value inequalities requires solving compound inequalities.O TrueO False What is the area W. Please help geometry "A new customer opens an account and buys a variable annuity contract, investing $20,000. 90 days later, the client calls and tells the representative that he wants to surrender the contract. The representative explains that this is not a good idea, since there will be a high surrender fee of 8% imposed. The client tells the representative that he does not care about the surrender fee and that he wants the net proceeds wired to an account at a bank in another country. What should the representative do?" describe components of the SPORT Principles According to the second paragraph, how will the u.s contain their enemy, the Soviet Union? A person can eat when hunger is absent because: a.the conscious mind of the cortex can override the body's signals b.the digestive tract sends messages to the hypothalamus c.the hypothalamus signals the availability of food in the environment d.the stomach intensifies its contractions and creates hunger pangs e.the glands start supplying epinephrine to the brain why can a wolf be considered both a secondary consumer and a tertiary consumer Travis invested $9,250 in an account that pays 6 percent simple interest. How much more could he have earned over a 7-year period if the interest had compounded annually