Complete Question:
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups, [tex]31 {\rm {N}/{mm}}[/tex]. What is the difference in maximum stored energy between the sprinters and the nonathlethes?
Answer:
[tex]\triangle E = 12.79 J[/tex]
Explanation:
Sprinters' tendons stretch, [tex]x_s = 43 mm = 0.043 m[/tex]
Non athletes' stretch, [tex]x_n = 32 mm = 0.032 m[/tex]
Spring constant for the two groups, k = 31 N/mm = 3100 N/m
Maximum Energy stored in the sprinter, [tex]E_s = 0.5kx_s^2[/tex]
Maximum energy stored in the non athletes, [tex]E_m = 0.5kx_n^2[/tex]
Difference in maximum stored energy between the sprinters and the non-athlethes:
[tex]\triangle E = E_s - E_n = 0.5k(x_s^2 - x_n^2)\\\triangle E = 0.5*3100* (0.043^2 - 0.032^2)\\\triangle E = 0.5*31000*0.000825\\\triangle E = 12.79 J[/tex]
When mapping the equipotentials on the plates with different electrode configurations you may find that some have significant areas with uniform distribution of the equipotential lines. If the distance between such lines is 0.5 cm, what is the electric field there (in units SI)
Answer:
E = V/5 x10⁻³
Explanation:
if the potential difference is V
then electric field E is given by
E = V/d
d = 0.5cm = 5 x 10⁻³m
E = V/5 x10⁻³
A piston of small cross-sectional area a is used in a hydraulic press to exert a small force f on the enclosed liquid. A connecting pipe leads to a larger piston of cross sectional area A. a) What force F will the larger piston sustain
Answer:
force on larger piston = [tex]\frac{fA}{a}[/tex]
Explanation:
we label the pistons as piston A and piston B
small piston A:
area = a
force = f
large piston B:
area = A
force = ?
Pascal's law of pressure state that the pressure delivered to a liquid is transmitted undiminished to every portion of the fluid.
we know that pressure = force ÷ area
pressure of piston A = [tex]\frac{f}{a}[/tex]
pressure of piston B = [tex]\frac{(force on piston B)}{A}[/tex]
obeying Pascal's law, the system pressures must be equal. Therefore
[tex]\frac{f}{a} = \frac{(force on piston B)}{A}[/tex]
force on large piston (B) = F = [tex]\frac{fA}{a}[/tex]
A glass flask whose volume is 1000 cm^3 at a temperature of 1.00°C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0°C , a volume of 8.50 cm^3 of mercury overflows the flask.Required:If the coefficient of volume expansion of mercury is βHg = 1.80×10^−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.
Answer:
the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Explanation:
Given that:
Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³
temperature of the glass flask and mercury= 1.00° C
After heat is applied ; the final temperature = 52.00° C
Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C
Volume of the mercury overflow = 8.50 cm^3 = 8.50 × 10⁻⁶ m³
the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K
The increase in the volume of the mercury = 10⁻³ m³ × 51.00 × 1.80 × 10⁻⁴
The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]
Increase in volume of the glass = 10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]
Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask
the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]
[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]
[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
During a particular time interval, the displacement of an object is equal to zero. Must the distance traveled by this object also equal to zero during this time interval? Group of answer choices
Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.
Explanation:
Ok, let's write the definitions:
Displacement: The displacement is equal to the difference between the final position and the initial position.
Distance traveled: Total distance that you moved.
So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:
The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.
But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.
So no, we can have a displacement equal to zero, but a distance traveled different than zero.
A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.
Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?
1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.
Answer:
a) The distance from the cornea vertex to the retina is 2.37 cm
b) This distance is shorter than for the normal eye.
Explanation:
a) Let refractive index of air,
n(air) = x = 1
Let refractive index of lens,
n(lens) = y = 1.4
Object distance, s = 36 cm
Radius of curvature, R = 0.65 cm
The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.
Image distance, s' = ?
(x/s) + (y/s') = (y-x)/R
(1/36) + (1.4/s') = (1.4 - 1)/0.65
1.4/s' = 0.62 - 0.028
1.4/s' = 0.592
s' = 1.4/0.592
s' = 2.37 cm
Distance from the cornea vertex to the retina is 2.37 cm
(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.
A circuit contains two elements, but it is not known if they are L, R, or C. The current in this circuit when connected to a 120-V 60 Hz source is 5.3 A and lags the voltage by 65∘.
Part A. What are the two elements?
Part B. What are their values?
Express your answer using two significant figures
Answer:
the two elements are resistor R and inductor L
answers in two significant figures
R = 9.6Ω
L = 54mH
Explanation:
a wall, a 55.6 kg painter is standing on a 3.15 m long homogeneous board that is resting on two saw horses. The board’s mass is 14.5 kg. The saw horse on the right is 1.00 m from the right. How far away can the painter walk from the saw horse on the right until the board begins to tip?
Answer:
0.15 m
Explanation:
First calculating the center of mass from the saw horse
[tex]\frac{3.15}{2} -1=0.575 m[/tex]
from the free body diagram we can write
Taking moment about the saw horse
55.9×9.81×y=14.5×0.575×9.81
y= 0.15 m
So, the painter walk from the saw horse on the right until the board begins to tip is 0.15 m far.
The Sun's energy comes from which nuclear reaction?
A. Nuclear fission
B. Gamma decay
C. Positron emission
D. Nuclear fusion
SUBMIT
Sun's energy comes from the nuclear fusion taking place inside. In nuclear fusion two light nuclei fuses together to form a heavy nuclei with the release of greater amount of energy.
What is nuclear fusion :Nuclear fusion is the process of combining two light nuclei to form a heavy nuclei. In this nuclear process, tremendous energy is released. This is the source of heat and light in stars.
On the other hand, nuclear fission is the process of breaking of a heavy nuclei into two lighter nuclei. Fission also produces massive energy. But in comparison, more energy is produced by nuclear fusion.
Nuclear fission is used in nuclear power generators. The light energy and heat energy comes form the nuclear fusion of hydrogens to form helium nuclei. Hence, option D is correct.
Find more on nuclear fusion:
https://brainly.com/question/12701636
#SPJ2
Three masses are located in the x-y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m, 0 m), and a mass of 2 kg is located at (0 m, 3 m). Where is the center of mass of the system?
A. (1 m, 2 m)
B. (2 m, 1 m)
C. (1 m, 1 m)
D. (1 m, 0.5 m)
E. (0.5 m, 1 m)
D. (1m, 0.5m)
Explanation:
The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;
x = (m₁x₁ + m₂x₂ + m₃x₃) / M ----------------(i)
y = (m₁y₁ + m₂y₂ + m₃y₃) / M ----------------(ii)
Where;
M = sum of the masses
m₁ and x₁ = mass and position of first mass in the x direction.
m₂ and x₂ = mass and position of second mass in the x direction.
m₃ and x₃ = mass and position of third mass in the x direction.
y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.
From the question;
m₁ = 6kg
m₂ = 4kg
m₃ = 2kg
x₁ = 0m
x₂ = 3m
x₃ = 0m
y₁ = 0m
y₂ = 0m
y₃ = 3m
M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg
Substitute these values into equations (i) and (ii) as follows;
x = ((6x0) + (4x3) + (2x0)) / 12
x = 12 / 12
x = 1 m
y = (6x0) + (4x0) + (2x3)) / 12
y = 6 / 12
y = 0.5m
Therefore, the center of mass of the system is at (1m, 0.5m)
Underline your answer for each situation: If you advance the movie one frame, the knot at point A would be a) in the same place b) higher c) lower d) to the right e) to the left If the person generates a new pulse like the first but more quickly, the pulse would be a) same size b) wider c) narrower If the person generates another pulse like the first but he moves his hand further, the pulse would be a) same size b) taller c) shorter If the person generates another pulse like the first but the rope is tightened, the pulse will move a) at the same rate b) faster c) slower Now the person moves his hand back and forth several times to produce several waves. You freeze the movie and get this snapshot. Underline your answer for each situation: If you advance the movie one frame, the knot at point A would be a) in the same place b) higher c) lower d) to the right e) to the left If you advance the movie one frame, the pattern of the waves will be _________relative to the hand. a) in the same place b) shifted right c) shifted left d) shifted up e) shifted down If the person starts over and moves his hand more quickly, the peaks of the waves will be a) the same distance apart b) further apart c) closer together If you lower the frequency of a wave on a string you will lower its speed. b) increase its wavelength. c). lower its amplitude. d) shorten its period.
Answer:
a) correct answer is b higher , b) correct answer is b higher , c) correct answer is b faster , d) traveling wave , e)
Explanation:
A traveling wave is described by the expression
y = A sin (kx - wt)
where k is the wave vector and w is the angular velocity
let's examine every situation presented
a) a new faster pulse is generated
A faster pulse should have a higher angular velocity
equal speed is related to the period and frequency
w = 2π f = 2π / T
therefore in this case the period must decrease so that the angular velocity increases
the correct answer is c narrower
b) Generate a pulse, but move your hand more.
Moving the hand increases the amplitude (A) of the pulse
the correct answer is b higher
c) generates a pulse but the force is tightened
Set means that more tension force is applied to the string, so the velicate changes
v = √ (T /μ)
the correct answer is b faster
d) move your hand back and forth
in this case you would see a pulse series whose sum corresponds to a traveling wave
e) Advance a frame the movie
in this case the wave will be displaced a whole period to the right
the correct answer is b
f) move your hand faster
the waves will have a maximum fast, so they are closer
answer C
g) decrease wave frequency
Since the speed of the wave is a constant m ak, decreasing the frequency must increase the wavelength to keep the velocity constant.
the correct answer is b increases its wavelength
Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.
Answer:
The two value of the wavelength for the out of tune guitar is
[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]
Explanation:
From the question we are told that
The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]
The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]
Generally the frequency of the note played by the guitar that is in tune is
[tex]f_1 = \frac{v_s}{\lambda}[/tex]
Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]
[tex]f_1 = \frac{343}{0.0065}[/tex]
[tex]f_1 = 5276.9 \ Hz[/tex]
The difference in beat is mathematically represented as
[tex]\Delta f = |f_1 - f_2|[/tex]
Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar
[tex]f_2 =f_1 \pm \Delta f[/tex]
substituting values
[tex]f_2 =f_1 + \Delta f[/tex]
[tex]f_2 = 5276.9 + 17.0[/tex]
[tex]f_2 = 5293.9 \ Hz[/tex]
The wavelength for this frequency is
[tex]\lambda_2 = \frac{343 }{5293.9}[/tex]
[tex]\lambda_2 = 0.0648 \ m[/tex]
[tex]\lambda_2 = 6.48 \ cm[/tex]
For the second value of the second frequency
[tex]f_2 = f_1 - \Delta f[/tex]
[tex]f_2 = 5276.9 -17[/tex]
[tex]f_2 = 5259.9 Hz[/tex]
The wavelength for this frequency is
[tex]\lambda _2 = \frac{343}{5259.9}[/tex]
[tex]\lambda _2 = 0.0652 \ m[/tex]
[tex]\lambda _2 = 6.52 \ cm[/tex]
This question involves the concepts of beat frequency and wavelength.
The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".
The beat frequency is given by the following formula:
[tex]f_b=|f_1-f_2|\\\\[/tex]
f₂ = [tex]f_b[/tex] ± f₁
where,
f₂ = frequency of the out-of-tune guitar = ?
[tex]f_b[/tex] = beat frequency = 17 Hz
f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]
Therefore,
f₂ = 5276.9 Hz ± 17 HZ
f₂ = 5293.9 Hz (OR) 5259.9 Hz
Now, calculating the possible wavelengths:
[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]
λ₂ = 6.48 cm (OR) 6.52 cm
Learn more about beat frequency here:
https://brainly.com/question/10703578?referrer=searchResults
Two narrow slits, illuminated by light consisting of two distinct wavelengths, produce two overlapping colored interference patterns on a distant screen. The center of the eighth bright fringe in one pattern coincides with the center of the third bright fringe in the other pattern. What is the ratio of the two wavelengths?
Answer:
The ration of the two wavelength is [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]
Explanation:
Generally two slit constructive interference can be mathematically represented as
[tex]\frac{y}{L} = \frac{m * \lambda}{d}[/tex]
Where y is the distance between fringe
d is the distance between the two slit
L is the distance between the slit and the wall
m is the order of the fringe
given that y , L , d are constant we have that
[tex]\frac{m }{\lambda } = constant[/tex]
So
[tex]\frac{m_1 }{\lambda_1 } = \frac{m_2 }{\lambda_2 }[/tex]
So [tex]m_1 = 8[/tex]
and [tex]m_2 = 3[/tex]
=> [tex]\frac{m_2}{m_1} = \frac{\lambda_1}{\lambda_2}[/tex]
=> [tex]\frac{8}{3} = \frac{\lambda_1}{\lambda_2}[/tex]
So
[tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]
The barricade at the end of a subway line has a large spring designed to compress 2.00 m when stopping a 1.10 ✕ 105 kg train moving at 0.350 m/s. (a) What is the force constant (in N/m) of the spring? N/m (b) What speed (in m/s) would the train be going if it only compressed the spring 0.600 m? m/s (c) What force (in N) does the spring exert when compressed 0.600 m? 2020 N (in the direction opposite to the train's motion)
Answer:
(a) k = 1684.38 N/m = 1.684 KN/m
(b) Vi = 0.105 m/s
(c) F = 1010.62 N = 1.01 KN
Explanation:
(a)
First, we find the deceleration of the car. For that purpose we use 3rd equation of motion:
2as = Vf² - Vi²
a = (Vf² - Vi²)/2s
where,
a = deceleration = ?
Vf = final velocity = 0 m/s (since, train finally stops)
Vi = Initial Velocity = 0.35 m/s
s = distance covered by train before stopping = 2 m
Therefore,
a = [(0 m/s)² - (0.35 m/s)²]/(2)(2 m)
a = 0.0306 m/s²
Now, we calculate the force applied on spring by train:
F = ma
F = (1.1 x 10⁵ kg)(0.0306 m/s²)
F = 3368.75 N
Now, for force constant, we use Hooke's Law:
F = kΔx
where,
k = Force Constant = ?
Δx = Compression = 2 m
Therefore.
3368.75 N = k(2 m)
k = (3368.75 N)/(2 m)
k = 1684.38 N/m = 1.684 KN/m
(c)
Applying Hooke's Law with:
Δx = 0.6 m
F = (1684.38 N/m)(0.6 m)
F = 1010.62 N = 1.01 KN
(b)
Now, the acceleration required for this force is:
F = ma
1010.62 N = (1.1 kg)a
a = 1010.62 N/1.1 x 10⁵ kg
a = 0.0092 m/s²
Now, we find initial velocity of train by using 3rd equation of motion:
2as = Vf² - Vi²
a = (Vf² - Vi²)/2s
where,
a = deceleration = -0.0092 m/s² (negative sign due to deceleration)
Vf = final velocity = 0 m/s (since, train finally stops)
Vi = Initial Velocity = ?
s = distance covered by train before stopping = 0.6 m
Therefore,
-0.0092 m/s² = [(0 m/s)² - Vi²]/(2)(0.6 m)
Vi = √(0.0092 m/s²)(1.2 m)
Vi = 0.105 m/s
Consider two identical springs. At the start of an experiment, Spring A is already stretched out 3 cm, while Spring B remains at the zero position. Both springs are then stretched an additional three centimeters. What conclusion can you draw about the force required to stretch these springs during the experiment
Answer:
Explanation:
In this interesting exercise we have that spring A is 3 cm longer, due to previous experiments if these experiments did not reach the non-linear elongation point, the cosecant Km of the spring must remain the same, therefore when we lengthen the two springs these the longitudinal are lengthened.
As a consequence of the above according to Hockey law, the prediction of lengthening is the same, therefore the outside is the same in two two systems
F = K Δx
An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.
Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.
Answer:
a. F = 2.32*10^-18 N
b. The force F is 2.59*10^11 times the weight of the electron
Explanation:
a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:
[tex]v^2=v_o^2+2ax[/tex] (1)
v: final speed of the electron = 6.60*10^5 m/s
vo: initial speed of the electron = 4.00*10^5 m/s
a: acceleration of the electron = ?
x: distance traveled by the electron = 5.40cm = 0.054m
you solve the equation (2) for a and replace the values of the parameters:
[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]
Next, you use the second Newton law to calculate the force:
[tex]F=ma[/tex]
m: mass of the electron = 9.11*10^-31kg
[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]
The magnitude of the force exerted on the electron is 2.32*10^-18 N
b. The weight of the electron is given by:
[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]
The quotient between the weight of the electron and the force F is:
[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]
The force F is 2.59*10^11 times the weight of the electron
At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the left side of the pivot an adult pushes straight down on the teeter-totter with a force of 151 N. Part A In which direction does the teeter-totter rotate if the adult applies the force at a distance of 3.0 m from the pivot?Part B
In which direction does the teeter-totter rotate if the adult applies the force at a distance of 2.5 m from the pivot?
(clockwise/counterclockwise)
Part C
In which direction does the teeter-totter rotate if the adult applies the force at a distance of 2.0 m from the pivot?
(clockwise/counterclockwise)
Answer:
By convention a negative torque leads to clockwise rotation and a positive torque leads to counterclockwise rotation.
here weight of the child =21kgx9.8m/s2 = 205.8N
the torque exerted by the child Tc = - (1.8)(205.8) = -370.44N-m ,negative sign is inserted because this torque is clockwise and is therefore negative by convention.
torque exerted by adult Ta = 3(151) = 453N , counterclockwise torque.
net torque Tnet = -370.44+453 =82.56N , which is positive means counterclockwise rotation.
b) Ta = 2.5x151 = 377.5N-m
Tnet = -370.44+377.5 = 7.06N-m , positive ,counterclockwise rotation.
c)Ta = 2x151 = 302N-m
Tnet = -370.44+302 = -68.44N-m, negative,clockwise rotation.
In 1949, an automobile manufacturing company introduced a sports car (the "Model A") which could accelerate from 0 to speed v in a time interval of Δt. In order to boost sales, a year later they introduced a more powerful engine (the "Model B") which could accelerate the car from 0 to speed 2.92v in the same time interval. Introducing the new engine did not change the mass of the car. Compare the power of the two cars, if we assume all the energy coming from the engine appears as kinetic energy of the car.
Answer: [tex]\frac{P_B}{P_A}[/tex] = 8.5264
Explanation: Power is the rate of energy transferred per unit of time: P = [tex]\frac{E}{t}[/tex]
The energy from the engine is converted into kinetic energy, which is calculated as: [tex]KE = \frac{1}{2}.m.v^{2}[/tex]
To compare the power of the two cars, first find the Kinetic Energy each one has:
K.E. for Model A
[tex]KE_A = \frac{1}{2}.m.v^{2}[/tex]
K.E. for model B
[tex]KE_B = \frac{1}{2}.m.(2.92v)^{2}[/tex]
[tex]KE_B = \frac{1}{2}.m.8.5264v^{2}[/tex]
Now, determine Power for each model:
Power for model A
[tex]P_{A}[/tex] = [tex]\frac{m.v^{2} }{2.t}[/tex]
Power for model B
[tex]P_B = \frac{m.8.5264.v^{2} }{2.t}[/tex]
Comparing power of model B to power of model A:
[tex]\frac{P_B}{P_A} = \frac{m.8.5264.v^{2} }{2.t}.\frac{2.t}{m.v^{2} }[/tex]
[tex]\frac{P_B}{P_A} =[/tex] 8.5264
Comparing power for each model, power for model B is 8.5264 better than model A.
13. Under what condition (if any) does a moving body experience no energy even though there
is a net force acting on it?
(2 marks)
Answer:
When the Net Forces are equal to 0
Explanation:
Momentum of a body can be defined as product of mass and velocity. It is in the same direction as in velocity. When the momentum of a body doesn't change, it is said to be conserved. If the momentum of a body is constant, the the net forces acting on a body becomes zero. When net forces acting on a body is zero, it means that no kinetic energy is being lost or gained, hence the kinetic energy is also conserved. If no energy is being gained or lost, it means that the body will experience no energy.
1. The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
Explanation:
each grid corresponding 0.1s⁻¹.
0.2grid unit = 0.2×0.1 =0.02s⁻¹
distance of the star from telescope
d = 1/p
d= 1/0.02= 50 par sec
1par sec = 3.26 light year
1 light year = 9.5×10¹²km
3.26ly=3.084×10¹³km
d= 50×3.084×10¹³=1.55×10¹⁵km
A 50-loop circular coil has a radius of 3 cm. It is oriented so that the field lines of a magnetic field are perpendicular to the coil. Suppose that the magnetic field is varied so that B increases from 0.10 T to 0.35 T in 2 ms. Find the induced emf in the coil.
Answer:
-17.8 V
Explanation:
The induced emf in a coil is given as:
[tex]E = \frac{-NdB\pi r^2}{dt}[/tex]
where N = number of loops
dB = change in magnetic field
r = radius of coil
dt = elapsed time
From the question:
N = 50
dB = final magnetic field - initial magnetic field
dB = 0.35 - 0.10 = 0.25 T
r = 3 cm
dt = 2 ms = 0.002 secs
Therefore, the induced emf is:
[tex]E = \frac{-50 * 0.25 * \pi * 0.03^2}{0.002} \\E = -17.8 V[/tex]
Note: The negative sign implies that the EMf acts in an opposite direction to the change in magnetic flux.
A wave travels at a speed of 242 m/s. If the distance between crests is 0.11
m, what is the frequency of the wave? Use |
A. 0.00045 Hz
B. 27 Hz
C. 2200 Hz
D. 190 Hz
Answer:
f = 2200 Hz
Explanation:
It is given that,
Speed of a wave is 242 m/s
The distance between crests is 0.11 m
We need to find the frequency of the wave. The distance between crests is called wavelength of a wave. So,
[tex]v=f\lambda\\\\f=\dfrac{v}{\lambda}\\\\f=\dfrac{242}{0.11}\\\\f=2200\ Hz[/tex]
So, the frequency of the wave is 2200 Hz.
Answer:2200 hz
Explanation:
Two small pith balls, each of mass m = 14.2 g, are suspended from the ceiling of the physics lab by 0.5 m long fine strings and are not moving. If the angle which each string makes with the vertical is θθ = 29.1°, and the charges on the two balls are equal, what is the magnitude of that charge
Answer:
1.424 μC
Explanation:
I'm assuming here, that the charged ball is suspended by the string. If the string also is deflected by the angle α, then the forces acting on it would be: mg (acting downwards),
tension T (acting along the string - to the pivot point), and
F (electric force – acting along the line connecting the charges).
We then have something like this
x: T•sin α = F,
y: T•cosα = mg.
Dividing the first one by the second one we have
T•sin α/ T•cosα = F/mg, ultimately,
tan α = F/mg.
Since we already know that
q1=q2=q, and
r=2•L•sinα,
k=9•10^9 N•m²/C²
Remember,
F =k•q1•q2/r², if we substitute for r, we have
F = k•q²/(2•L•sinα)².
tan α = F/mg =
= k•q²/(2•L•sinα)² •mg.
q = (2•L•sinα) • √(m•g•tanα/k)=
=(2•0.5•0.486) • √(0.0142•9.8•0.557/9•10^9) =
q = 0.486 • √(8.61•10^-12)
q = 0.486 • 2.93•10^-6
q = 1.424•10^-6 C
q = 1.424 μC.
In 1898, the world land speed record was set by Gaston Chasseloup-Laubat driving a car named Jeantaud. His speed was 39.24 mph (63.15 km/h), much lower than the limit on our interstate highways today. Repeat the calculations of Example 2.7 (assume the car accelerates for 6 miles to get up to speed, is then timed for a one-mile distance, and accelerates for another 6 miles to come to a stop) for the Jeantaud car. (Assume the car moves in the +x direction.)
Find the acceleration for the first 6 miles.
Answer:
the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]
Explanation:
Given that:
the initial speed v₁ = 0 m/s i.e starting from rest ; since the car accelerates at a distance Δx = 6 miles in order to teach that final speed v₂ of 63.15 km/h.
So; the acceleration for the first 6 miles can be calculated by using the formula:
v₂² = v₁² + 2a (Δx)
Making acceleration a the subject of the formula in the above expression ; we have:
v₂² - v₁² = 2a (Δx)
[tex]a = \dfrac{v_2^2 - v_1^2 }{2 \Delta x}[/tex]
[tex]a = \dfrac{(63.15 \ km/s)^2 - (0 \ m/s)^2 }{2 (6 \ miles)}[/tex]
[tex]a = \dfrac{(17.54 \ m/s)^2 - (0 \ m/s)^2 }{2 (9.65*10^3 \ m)}[/tex]
[tex]a =0.0159 \ m/s^2[/tex]
Thus;
Assume the car moves in the +x direction;
the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]
An unknown charged particle passes without deflection through crossed electric and magnetic fields of strengths 187,500 V/m and 0.1250 T, respectively. The particle passes out of the electric field, but the magnetic field continues, and the particle makes a semicircle of diameter 25.05 cm.
Part A. What is the particle's charge-to-mass ratio?
Part B. Can you identify the particle?
a. can't identify
b. proton
c. electron
d. neutron
Answer:
Explanation:
Given that
The electric fields of strengths E = 187,500 V/m and
and The magnetic fields of strengths B = 0.1250 T
The diameter d is 25.05 cm which is converted to 0.2505m
The radius is (d/2)
= 0.2505m / 2 = 0.12525m
The given formula to find the magnetic force is [tex]F_{ma}=BqV---(i)[/tex]
The given formula to find the electric force is [tex]F_{el}=qE---(ii)[/tex]
The velocity of electric field and magnetic field is said to be perpendicular
Electric field is equal to magnectic field
Equate equation (i) and equation (ii)
[tex]Bqv=qE\\\\v=\frac{E}{B}[/tex]
[tex]v=\frac{187500}{0.125} \\\\v=15\times10^5m/s[/tex]
It is said that the particles moves in semi circle, so we are going to consider using centripetal force
[tex]F_{ce}=\frac{mv^2}{r}---(iii)[/tex]
magnectic field is equal to centripetal force
Lets equate equation (i) and (iii)
[tex]Bqr=\frac{mv^2}{r} \\\\\frac{q}{m}=\frac{v}{Br} \\\\\frac{q}{m} =\frac{15\times 10^5}{0.125\times0.12525} \\\\=\frac{15\times10^5}{0.015656} \\\\=95808383.23\\\\=958.1\times10^5C/kg[/tex]
Therefore, the particle's charge-to-mass ratio is [tex]958.1\times10^5C/kg[/tex]
b)
To identify the particle
Then 1/ 958.1 × 10⁵ C/kg
The charge to mass ratio is very close to that of a proton, which is about 1*10^8 C/kg
Therefore the particle is proton.
A box on a ramp is connected by a rope to a winch. The winch is turned so that the box moves down the ramp at a constant speed. The box experiences kinetic friction with the ramp. Which forces on the box do zero work as the box moves down the ramp?
a. Weight (gravitational force)
b. Normal force
c. Kinetic friction force
d. Tension force
e. None
Answer:
Option B:
The normal force
Explanation:
The normal force does no work as the box slides down the ramp.
Work can only be done when the force succeeds in moving the object in the direction of the force.
All the other forces involved have a component that is moving the box in their direction.
However, the normal force does not, as it points downwards into the ramp. Since the normal force is pointing into the ramp, and the box is sliding down the ramp, we can say that no work is being done by the normal force because the box is not moving in its direction (which would have been the box moving into the ramp)
A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.
Answer:
v = 4.08m/s₂
Explanation:
A brass ring of diameter 10.00 cm at 19.0°C is heated and slipped over an aluminum rod with a diameter of 10.01 cm at 19.0°C. Assuming the average coefficients of linear expansion are constant. What if the aluminum rod were 10.02 cm in diameter?
Answer:
the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]
Explanation:
The change in length of a bar can be expressed with the relation;
[tex]\Delta L = L_f - L_i[/tex] ---- (1)
Also ; the relative or fractional increase in length is proportional to the change in temperature.
Mathematically;
ΔL/L_i ∝ kΔT
where;
k is replaced with ∝ (the proportionality constant )
[tex]\dfrac{ \Delta L}{L_i}=\alpha \Delta T[/tex] ---- (2)
From (1) ;
[tex]L_f = \Delta L + L_i[/tex] --- (3)
from (2)
[tex]{ \Delta L}=\alpha \Delta T*{L_i}[/tex] ---- (4)
replacing (4) into (3);we have;
[tex]L_f =(\alpha \Delta T*{L_i} ) + L_i[/tex]
On re-arrangement; we have
[tex]L_f = L_i + \alpha L_i (\Delta T )[/tex]
from the given question; we can say that :
[tex](L_f)_{brass}}} = (L_f)_{Al}[/tex]
So;
[tex]L_{brass} + \alpha _{brass} L_{brass}(\Delta T) = L_{Al} + \alpha _{Al} L_{Al}(\Delta T)[/tex]
Making the change in temperature the subject of the formula; we have:
[tex]\Delta T = \dfrac{L_{Al}-L_{brass}}{\alpha _ {brass} L_{brass}-\alpha _{Al}L_{Al}}[/tex]
where;
[tex]L_{Al}[/tex] = 10.02 cm
[tex]L_{brass}[/tex] = 10.00 cm
[tex]\alpha _{brass}[/tex] = 19 × 10⁻⁶ °C ⁻¹
[tex]\alpha_{Al}[/tex] = 24 × 10⁻⁶ °C ⁻¹
[tex]\Delta T = \dfrac{10.02-10.00}{19*10^{-6} \ \ {^0}C^{-1} *10.00 -24*10^{-6} \ \ {^0}C^{-1} *10.02}[/tex]
[tex]\Delta T[/tex] = −396.1965135 ° C
[tex]\Delta T[/tex] ≅ −396.20 °C
Given that the initial temperature [tex]T_i = 19^0 C[/tex]
Then ;
[tex]\Delta T = T_f - T_i[/tex]
[tex]T_f = \Delta T + T_I[/tex]
Thus;
[tex]T_f =(-396.20 + 19.0)^0 C[/tex]
[tex]\mathbf{T_f = -377.2^0 C}[/tex]
Thus; the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]
a What CE describes the way energy is stored in a sandwich
In a device called the ballistic pendulum, a compressed spring is used to launch a steel ball horizontally into a soft target hanging from a string. The ball embeds in the target and the two swing together from the string. Describe the energy transfers and/or transformations that take place during the use of the ballistic pendulum and at what points they occur
Answer:
When the spring in the ballistic pendulum is compressed, energy is stored up in the spring as potential energy. When the steel ball is launched by the spring, the stored up potential energy of the compressed spring is transformed and transferred into the kinetic energy of the steel ball as it flies off to hit its target. On hitting the soft target, some of the kinetic energy of the steel ball is transferred to the soft target (since they stick together), and they both start to swing together. During the process of swinging, the system's energy is transformed between kinetic and potential energy. At the maximum displacement of the ball from its point of rest, all the energy is converted to potential energy of the system. At the lowest point of travel (at the rest point), all the energy of the system is transformed into kinetic energy. In between these two points, energy the energy of the system is a combination of both kinetic and potential energy.
In the end, all the energy will be transformed and lost as heat to the surrounding; due to the air resistance around; bringing the system to a halt.
High voltage power is often carried in wire bundles made up of individual strands. In your initial post to the discussion, discuss the forces on the strands of wire due to the current flowing through them. What would happen if the force acted opposite of the known behavior
Answer:
More current will be loss through the metal wire strands if the force on them was repulsive, and more stress will be induced on the wire strands due to internal and external flexing.
Explanation:
A wire bundle is made up of wire strands bunched together to increase flexibility that is not always possible in a single solid metal wire conductor. In the strands of wire carrying a high voltage power, each strand carries a certain amount of current, and the current through the strands all travel in the same direction. It is know that for two conductors or wire, separated by a certain distance, that carries current flowing through them in the same direction, an attractive force is produced on these wires, one on the other. This effect is due to the magnetic induction of a current carrying conductor. The forces between these strands of the high voltage wire bundle, pulls the wire strands closer, creating more bond between these wire strands and reducing internal flex induced stresses.
If the case was the opposite, and the wires opposed themselves, the effect would be that a lot of cost will be expended in holding these wire strands together. Also, stress within the strands due to the repulsion, will couple with external stress from the flexing of the wire, resulting in the weakening of the material.
The biggest problem will be that more current will be lost in the wire due to increased surface area caused by the repulsive forces opening spaces between the strand. This loss is a s a result of the 'skin effect' in wire transmission, in which current tends to flow close to the surface of the metal wire. The skin effect generates power loss as heat through the exposed surface area.