The company is expanding it shop floor operation to fulfill more demand for producing three new t-shirt type: W,X and Z. The order for the new t-shirt is W=52,000,X=65,000 and Z=70,000 unit/year. The production rate for the three t-shirts is 12,15 and 10/hr. Scrap rate are as follows: W=5%,X= 7% and Z=9%. The shop floor will operate 50 week/year, 10 shifts/week and 8 hour/shift. It is anticipated that the machine is down for maintenance on average of 10% of the time. Set-up time is assumed to be negligible. Before the company can allocate any capital for the expansion, as an engineer you are need in identifying how many machines will be required to meet the new demand. In determining the assessment of a process, process capability can be used. Elaborate what it is meant by the term process capability.

Answers

Answer 1

Hence, process capability is essential for ensuring that the products produced are of high quality and meet the customer's requirements.

Process capability refers to the ability of a process to consistently deliver a product or service within specification limits.

The process capability index is the ratio of the process specification width to the process variation width.The higher the capability index, the more efficient and capable the process is, and the less likely it is that the output will be out of tolerance.

It determines the stability of the process to produce the products as per the given specifications.

Process capability can be measured using the Cp and Cpk indices, which are statistical indices that indicate the process's ability to produce a product that meets the customer's specifications.

Cp is calculated using the formula

Cp = (USL-LSL) / (6σ).

Cpk is calculated using the formula

Cpk = minimum [(USL-μ)/3σ, (μ-LSL)/3σ].

The above formulas measure the capability of the process in relation to the specification limits, which indicate the range of values that are acceptable for the product being produced.

In order to ensure that the process is capable of producing products that meet the customer's specifications, the Cp and Cpk indices should be greater than 1.0.

Process capability is a statistical measure of the process's ability to produce a product that meets customer specifications.

It is a measure of the ability of a process to deliver a product or service within specified limits consistently. It determines the stability of the process to produce the products as per the given specifications.

Process capability can be measured using the Cp and Cpk indices, which are statistical indices that indicate the process's ability to produce a product that meets the customer's specifications.

The higher the capability index, the more efficient and capable the process is, and the less likely it is that the output will be out of tolerance.

In order to ensure that the process is capable of producing products that meet the customer's specifications, the Cp and Cpk indices should be greater than 1.0.

Process capability is a statistical measure of the process's ability to produce a product that meets customer specifications.

The Cp and Cpk indices are statistical indices that indicate the process's ability to produce a product that meets the customer's specifications.

The higher the capability index, the more efficient and capable the process is, and the less likely it is that the output will be out of tolerance.

Hence, process capability is essential for ensuring that the products produced are of high quality and meet the customer's requirements.

To know more about process capability :

https://brainly.com/question/32809700

#SPJ11


Related Questions

What is the Difference between Linear Quadratic Estimator and
Linear Quadratic Gaussian Controller.
Please explain and provide some example if possible.

Answers

The main difference is that the Linear Quadratic Estimator (LQE) is used for state estimation in control systems, while the Linear Quadratic Gaussian (LQG) Controller is used for designing optimal control actions based on the estimated state.

The Linear Quadratic Estimator (LQE) is used to estimate the unmeasurable states of a dynamic system based on the available measurements. It uses a linear quadratic optimization approach to minimize the estimation error. On the other hand, the Linear Quadratic Gaussian (LQG) Controller combines state estimation (LQE) with optimal control design. It uses the estimated state information to calculate control actions that minimize a cost function, taking into account the system dynamics, measurement noise, and control effort. LQG controllers are widely used in various applications, including aerospace, robotics, and process control.

Learn more about estimated state here:

https://brainly.com/question/32189459

#SPJ11

Prove that a Schmitt oscillator trigger can work as a VCO.

Answers

Step 1:

A Schmitt oscillator trigger can work as a VCO (Voltage Controlled Oscillator).

Step 2:

A Schmitt oscillator trigger, also known as a Schmitt trigger, is a circuit that converts an input signal with varying voltage levels into a digital output with well-defined high and low voltage levels. It is commonly used for signal conditioning and noise filtering purposes. On the other hand, a Voltage Controlled Oscillator (VCO) is a circuit that generates an output signal with a frequency that is directly proportional to the input voltage applied to it.

By incorporating a voltage control mechanism into the Schmitt trigger circuit, it can be transformed into a VCO. This can be achieved by introducing a variable voltage input to the reference voltage level of the Schmitt trigger. As the input voltage changes, it will cause the switching thresholds of the Schmitt trigger to vary, resulting in a change in the output frequency.

The VCO functionality of the modified Schmitt trigger circuit allows it to generate a continuous output signal with a frequency that can be controlled by the applied voltage. This makes it suitable for various applications such as frequency modulation, clock generation, and signal synthesis.

Step 3:

Learn more about : frequency

Describe frequency, relative frequency, and cumulative relative frequency.

#SPJ11

AB-52 bomber is flying at 11,000 m. It has eight turbojet engines. For each, the outlet port diameter is 70% of the widest engine diameter, 990mm. The pressure ratio is 2 at the current state. The exhaust velocity is 750 m/s. If the L/D ratio is 11 and the weight is 125,000 kg, what total mass flow rate is required through the engines to maintain a velocity of 500mph? Answer in kg/s

Answers

The total mass flow rate required is determined by the equation: Total mass flow rate = Total thrust / exhaust velocity.

To calculate the total mass flow rate required through the engines to maintain a velocity of 500 mph, we need to consider the thrust generated by the engines and the drag experienced by the bomber.

First, let's calculate the thrust produced by each engine. The thrust generated by a turbojet engine can be determined using the following equation:

Thrust = (mass flow rate) × (exit velocity) + (exit pressure - ambient pressure) × (exit area)

We are given the following information:

Outlet port diameter = 70% of the widest engine diameter = 0.7 × 990 mm = 693 mm = 0.693 m

Pressure ratio = 2

Exhaust velocity = 750 m/s

The exit area of each engine can be calculated using the formula for the area of a circle:

Exit area = π × (exit diameter/2)^2

Exit area = π × (0.693/2)^2 = π × 0.17325^2

Now we can calculate the thrust generated by each engine:

Thrust = (mass flow rate) × (exit velocity) + (exit pressure - ambient pressure) × (exit area)

Since we have eight turbojet engines, the total thrust generated by all engines will be eight times the thrust of a single engine.

Next, let's calculate the drag force experienced by the bomber. The drag force can be determined using the drag equation:

Drag = (0.5) × (density of air) × (velocity^2) × (drag coefficient) × (reference area)

We are given the following information:

Velocity = 500 mph

L/D ratio = 11

Weight = 125,000 kg

The reference area is the frontal area of the bomber, which we do not have. However, we can approximate it using the weight and the L/D ratio:

Reference area = (weight) / (L/D ratio)

Now we can calculate the drag force.

Finally, for the bomber to maintain a constant velocity, the thrust generated by the engines must be equal to the drag force experienced by the bomber. Therefore, the total thrust produced by the engines should be equal to the total drag force:

Total thrust = Total drag

By equating these two values, we can solve for the total mass flow rate required through the engines.

Total mass flow rate = Total thrust / (exit velocity)

This will give us the total mass flow rate required to maintain a velocity of 500 mph.

In summary, to find the total mass flow rate required through the engines to maintain a velocity of 500 mph, we need to calculate the thrust generated by each engine using the thrust equation and sum them up for all eight engines. We also need to calculate the drag force experienced by the bomber using the drag equation. Finally, we equate the total thrust to the total drag and solve for the total mass flow rate.

Learn more aboutMass Flow Rate

brainly.com/question/18724089

#SPJ11

Which of the followings is true? Given an RC circuit: resistor-capacitor C in series. The output voltage is measured across C, an input voltage supplies power to this circuit. For the transfer function of the RC circuit with respect to input voltage: O A. Its phase response is -90 degrees. O B. Its phase response is negative. O C. Its phase response is 90 degrees. O D. Its phase response is positive.

Answers

In an RC circuit with a resistor-capacitor in series and the output voltage measured across C while an input voltage supplies power to this circuit, the phase response of the transfer function of the RC circuit with respect to input voltage is -90 degrees.

Hence, the correct answer is option A. A transfer function is a mathematical representation of a system that maps input signals to output signals.The transfer function of an RC circuit refers to the voltage across the capacitor with respect to the input voltage. The transfer function represents the system's response to the input signals.

The transfer function H(s) of the RC circuit with respect to input voltage V(s) is given by the equation where R is the resistance, C is the capacitance, and s is the Laplace operator. In the frequency domain, the transfer function H(jω) is obtained by substituting s = jω where j is the imaginary number and ω is the angular frequency.A phase response refers to the behavior of a system with respect to the input signal's phase angle. The phase response of the transfer function H(jω) for an RC circuit is given by the expression.

To know more about resistor-capacitor visit :

https://brainly.com/question/31080064

#SPJ11

8. Write and execute a query that will delete all countries that are not assigned to an office or a client. You must do this in a single query to receive credit for this question. Write the delete query below and then execute the following statement in SQL Server: Select * from Countries. Take a screenshot of your select query results and paste them below your delete query that you constructed.

Answers

The Countries which are not assigned any Office means that the values are Null or Blank:

I created a table:

my sql> select*from Country; + | Country Name | Office | - + | Yes | NULL | Yes | Croatia | Argentina Sweden Brazil Sweden | Au

Here in this table there is Country Name and a Office Column where it is Yes, Null and Blank.

So, we need to delete the Blank and Null values as these means that there are no office assigned to those countries.

The SQL statement:

We will use the delete function,

delete from Country selects the Country table.

where Office is Null or Office = ' ' ,checks for values in Office column which are Null or Blank and deletes it.

Code:

mysql> delete from Country     -> where Office is Null or Office = ''; Query OK, 3 rows affected (0.01 sec)

Code Image:

mysql> delete from Country -> where Office is Null or Office Query OK, 3 rows affected (0.01 sec) =

Output:

mysql> select*from Country; + | Country Name | Office | + | Croatia Sweden Sweden | India | Yes | Yes Yes | Yes + 4 rows in s

You can see that all the countries with Null and Blank values are deleted

QUESTION 1 Which of the followings is true? Narrowband FM is considered to be identical to AM except O A. their bandwidth. O B. a finite and likely large phase deviation. O C. an infinite phase deviation. O D. a finite and likely small phase deviation.

Answers

Narrowband FM is considered to be identical to AM except in their bandwidth. In narrowband FM, a finite and likely small phase deviation is present. It is the modulation method in which the frequency of the carrier wave is varied slightly to transmit the information signal.

Narrowband FM is an FM transmission method with a smaller bandwidth than wideband FM, which is a more common approach. Narrowband FM is quite similar to AM, but the key difference lies in the modulation of the carrier wave's amplitude in AM and the modulation of the carrier wave's frequency in Narrowband FM.

The carrier signal in Narrowband FM is modulated by a small frequency deviation, which is inversely proportional to the carrier frequency and directly proportional to the modulation frequency. Therefore, Narrowband FM is identical to AM in every respect except the bandwidth of the modulating signal.

When the modulating signal is a simple sine wave, the carrier wave frequency deviates up and down about its unmodulated frequency. The deviation of the frequency is proportional to the amplitude of the modulating signal, which produces sidebands whose frequency is equal to the carrier frequency plus or minus the modulating signal frequency. 

To know more about modulation visit:

https://brainly.com/question/28520208

#SPJ11

To achieve maximum power transfer between a 44 Ω source and a load ZL (ZL > ZG) using a transmission line with a characteristic impedance of 44 Ω, an inductor with a reactance of 82 Ω is connected in series with the source. Determine the distance from the load, ZL, in terms of wavelengths where the inductor should be connected. Length = λ

Answers

The inductor should be connected at a distance of 2 wavelengths from the load, ZL, to achieve maximum power transfer.

To determine the distance, we need to consider the conditions for maximum power transfer. When the characteristic impedance of the transmission line matches the complex conjugate of the load impedance, maximum power transfer occurs. In this case, the load impedance is ZL, and we have ZL > ZG, where ZG represents the generator impedance.

Since the transmission line has a characteristic impedance of 44 Ω, we need to match it to the load impedance ZL = 44 Ω + jX. By connecting an inductor with a reactance of 82 Ω in series with the source, we effectively cancel out the reactance of the load impedance.

The electrical length of the transmission line is given by the formula: Length = (2π / λ) * Distance, where λ is the wavelength. Since the inductor cancels the reactance of the load impedance, the transmission line appears purely resistive. Hence, we need to match the resistive components, which are 44 Ω.

For maximum power transfer to occur, the inductor should be connected at a distance of 2 wavelengths from the load, ZL.

Learn more about electrical length here

brainly.com/question/13572284

#SPJ11

determine the clearance for blanking 3in square blanks in .500in steel with a 10 llowence

Answers

Clearance for blanking 3 in square blanks in 0.500 in steel with a 10 % allowance:

What is blanking?

Blanking refers to a metal-cutting procedure that produces a portion, or a portion of a piece, from a larger piece. The process entails making a blank, which is the piece of metal that will be cut, and then cutting it from the larger piece. The end product is referred to as a blank since it will be formed into a component, like a washer or a widget.

What is clearance?

Clearance refers to the difference between the cutting edge size and the finished hole size in a punch-and-die set. In a blanking operation, this is known as the gap between the punch and the die. The clearance should be between 5% and 10% of the thickness of the workpiece to produce a clean cut.

For steel thicknesses of 0.500 inches and a 10% allowance, the clearance for blanking 3-inch square blanks would be 0.009 inches (0.5 inches x 10% / 2).

Thus, the clearance for blanking 3 in square blanks in 0.500 in steel with a 10 % allowance will be 0.009 inches.

Learn more about blanking: https://brainly.com/question/16684227

#SPJ11

Can you please write me an introduction and conclusion about Automobile Exterior ( front and back suspension, battery holder & radiator, front exhaust, grill, doors AC pipes)I am taking a course in Automobile Exterior

Answers

The automobile exterior is an integral part of a vehicle, encompassing various components that contribute to its functionality and aesthetics.  Understanding these components is crucial for anyone studying automobile exterior design and engineering.

The automobile exterior is designed to ensure optimal performance, safety, and visual appeal. The front and back suspension systems play a vital role in providing a smooth and comfortable ride by absorbing shocks and vibrations. They consist of springs, shock absorbers, and various linkages that connect the wheels to the chassis.

The battery holder and radiator are essential components located in the engine compartment. The battery holder securely houses the vehicle's battery, while the radiator helps maintain the engine's temperature by dissipating heat generated during operation.

The front exhaust system is responsible for removing exhaust gases from the engine and minimizing noise. It consists of exhaust pipes, mufflers, and catalytic converters.

The grill, positioned at the front of the vehicle, serves both functional and aesthetic purposes. It allows airflow to cool the engine while adding a distinctive look to the vehicle's front end.

In conclusion, studying the automobile exterior is crucial for understanding the design, functionality, and performance of a vehicle. Components like suspension systems, battery holders, radiators, exhaust systems, grills, doors, and AC pipes all contribute to creating a safe, comfortable, and visually appealing automotive experience. By comprehending these elements, individuals can gain insights into the intricate workings of automobiles and contribute to their improvement and advancement in the field of automobile exterior design and engineering.

Learn more about design and engineering here:

https://brainly.com/question/32257308

#SPJ11

A 15-hp, 220-V, 2000-rpm separately excited dc motor controls a load requiring a torque of 147 , the armature 45 N·m at a speed of 1200 rpm. The field circuit resistance is Rf TL circuit resistance is Ra The field voltage is Vf 0.25 , and the voltage constant of the motor is K₂ 220 V. The viscous friction and no-load losses are negligible. The arma- ture current may be assumed continuous and ripple free. Determine (a) the back emf Eg, (b) the required armature voltage Va, and (c) the rated armature current of the motor. Solution = = = = = = 0.7032 V/A rad/s.

Answers

(a) The back emf (Eg) of the motor is 0.7032 V/A rad/s.

(b) The required armature voltage (Va) for the motor is to be determined.

(c) The rated armature current of the motor needs to be calculated.

To determine the back emf (Eg), we can use the formula Eg = K₂ * ω, where K₂ is the voltage constant of the motor and ω is the angular velocity. Given that K₂ is 220 V and ω is 2000 rpm (converted to rad/s), we can calculate Eg as 0.7032 V/A rad/s.

To find the required armature voltage (Va), we need to consider the torque and back emf. The torque equation is T = Kt * Ia, where T is the torque, Kt is the torque constant, and Ia is the armature current. Rearranging the equation, we get Ia = T / Kt. Since the load requires a torque of 147 N·m and Kt is related to the motor characteristics, we would need more information to calculate Va.

To determine the rated armature current, we can use the formula V = Ia * Ra + Eg, where V is the terminal voltage, Ra is the armature circuit resistance, and Eg is the back emf. Given that V is 220 V and Eg is 0.7032 V/A rad/s, and assuming a continuous and ripple-free armature current, we can calculate the rated armature current. However, the given values for Ra and other necessary parameters are missing, making it impossible to provide a specific answer for the rated armature current.

Learn more about back emf here

brainly.com/question/13109636

#SPJ11

A cylinder with a movable piston contains 5.00 liters of a gas at 30°C and 5.00 bar. The piston is slowly moved to compress the gas to 8.80bar. (a) Considering the system to be the gas in the cylinder and neglecting ΔEp, write and simplify the closed-system energy balance. Do not assume that the process is isothermal in this part. (b) Suppose now that the process is carried out isothermally, and the compression work done on the gas equals 7.65L bar. If the gas is ideal so that ^ U is a function only of T, how much heat (in joules) is transferred to or from (state which) thes urroundings? (Use the gas-constant table in the back of the book to determine the factor needed to convert Lbar to joules.)(c) Suppose instead that the process is adiabatic and that ^ U increases as T increases. Is the nal system temperature greater than, equal to, or less than 30°C? (Briey state your reasoning.)

Answers

A cylinder with a movable piston contains 5.00 liters of a gas at 30°C and 5.00 bar. The piston is slowly moved to compress the gas to 8.80bar.

(a) The closed-system energy balance can be written as follows:ΔU = Q − W, where ΔU is the change in internal energy, Q is the heat transferred to the system, and W is the work done by the system. Neglecting ΔEp, the work done by the system is given by W = PΔV, where P is the pressure and ΔV is the change in volume. Therefore, ΔU = Q − PΔV.

(b) Since the process is carried out isothermally, the temperature remains constant at 30°C. Therefore, ΔU = 0. The work done by the system is

W = −7.65 L bar, since the compression work is done on the gas. Using the gas constant table, we find that 1 L bar = 100 J. Therefore, the work done by the system is

W = −7.65 L bar × 100 J/L bar = −765 J. Since

ΔU = 0, we have Q = W = −765 J. The heat is transferred from the system to the surroundings.

(c) Since the process is adiabatic, Q = 0. Therefore, the closed-system energy balance simplifies to ΔU = −W. Since the gas is ideal and ^ U is a function only of T, the change in internal energy can be written as ΔU = (3/2)nRΔT, where n is the number of moles of gas, R is the gas constant, and ΔT is the change in temperature. Since ^ U increases as T increases, we have ΔU > 0. Therefore, ΔT > 0, and the final system temperature is greater than 30°C.

Learn more about closed-system among others here: https://brainly.com/question/2846657

#SPJ11

Explain the advantages and disadvantages of the 2 ray ground reflection model in the analysis of path loss. (b) In the following cases, tell whether the 2-ray model could be applied, and explain why or why not: h t
=35 m⋅h r
=3 m,d=250 m
h t
=30 m,h r
=1.5 m⋅d=450 m

Answers

The two-ray ground reflection model in the analysis of path loss has the following advantages and disadvantages:

Advantages: It provides a quick solution when using hand-held calculators or computers because it is mathematically easy to manipulate. There is no need for the distribution of the building, and the model is applicable to any structure height and terrain. The range is only limited by the radio horizon if the mobile station is located on a slope or at the top of a hill or building.

Disadvantages: It is an idealized model that assumes perfect ground reflection. The model neglects the impact of environmental changes such as soil moisture, surface roughness, and the characteristics of the ground.

The two-ray model does not account for local obstacles, such as building and foliage, in the transmission path.

Therefore, the two-ray model could not be applied in the following cases:

Case 1hₜ = 35 m, hᵣ = 3 m, d = 250 m The distance is too short, and the building is not adequately covered.

Case 2hₜ = 30 m, hᵣ = 1.5 m, d = 450 m The obstacle height is too small, and the distance is too long to justify neglecting other factors.

To know more about reflection visit:

https://brainly.com/question/15487308

#SPJ11

In a nano-scale MOS transistor, which option can be used to achieve high Vt: a. Increasing channel length b. Reduction in oxide thickness c. Reduction in channel doping density d. Increasing the channel width e. Increasing doing density in the source and drain region

Answers

In a nano-scale MOS transistor, the option that can be used to achieve high Vt is reducing the channel doping density. This is because channel doping density affects the threshold voltage of MOSFETs (Option c).

A MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is a type of transistor used for amplifying or switching electronic signals in circuits. It is constructed by placing a metal gate electrode on top of a layer of oxide that covers the semiconductor channel.

Possible ways to increase the threshold voltage (Vt) of a MOSFET are:

Reducing the channel doping density;Increasing the thickness of the gate oxide layer;Reducing the channel width;Increasing the length of the channel. However, this results in higher RDS(on) and lower transconductance which makes the MOSFET perform worse;Reducing the temperature of the MOSFET;

Therefore, the correct answer is c. Reduction in channel doping density.

You can learn more about transistors at: brainly.com/question/30335329

#SPJ11

Develop a minimum-multiplier realization of a length-7 Type 3 Linear Phase FIR Filter.

Answers

A minimum-multiplier realization of a length-7 Type 3 Linear Phase FIR Filter can be developed.

To develop a minimum-multiplier realization of a length-7 Type 3 Linear Phase FIR Filter, we need to understand the key components and design considerations involved. A Type 3 Linear Phase FIR Filter is characterized by its linear phase response, which means that all frequency components of the input signal experience the same constant delay. The minimum-multiplier realization aims to minimize the number of multipliers required in the filter implementation, leading to a more efficient design.

In this case, we have a length-7 filter, which implies that the filter has 7 taps or coefficients. Each tap represents a specific weight or gain applied to a delayed version of the input signal. To achieve a minimum-multiplier realization, we can exploit the symmetry properties of the filter coefficients.

By carefully analyzing the symmetry properties, we can design a structure that reduces the number of required multipliers. For a length-7 Type 3 Linear Phase FIR Filter, the minimum-multiplier realization can be achieved by utilizing symmetric and anti-symmetric coefficients. The symmetric coefficients have the same value at equal distances from the center tap, while the anti-symmetric coefficients have opposite values at equal distances from the center tap.

By taking advantage of these symmetries, we can effectively reduce the number of multipliers needed to implement the filter. This results in a more efficient and resource-friendly design.

Learn more about multiplier

brainly.com/question/31406180

#SPJ11

It is necessary to evacuate 49.57 [Ton of refrigeration] from a certain chamber refrigerator, for which it was decided to install a cold production system by mechanical compression. The chamber temperature cannot exceed –3[°C] and the temperature difference at the evaporator inlet is estimated at 7[°C].
You have a large flow of well water at 15[°C] that you plan to use as condensing agent. The refrigerant fluid used is R-134a.
For the operation of this installation, an alternative compressor was acquired. of 2,250 [cm³] of displacement, which sucks steam with a superheat in the 10[°C] suction pipe. This compressor rotates at 850[r.p.m.] and its volumetric efficiency is 0.8 for a compression ratio of 3.3.
Calculate the degree of subcooling of the condensed fluid so that it can
operate the installation with this compressor and if it is possible to carry it out.
Note: Consider a maximum admissible jump in the well water of 5[°C] and a minimum temperature jump in the condenser (between refrigerant fluid and water
of well) of 5[°C].

Answers

The degree of subcooling is 28°C, which is within the range of possible values for the system to operate.

The degree of subcooling is the difference between the temperature of the condensed refrigerant and the saturation temperature at the condenser pressure. A higher degree of subcooling will lead to a lower efficiency, but it is possible to operate the system with a degree of subcooling of 28°C. The well water flow rate, condenser size, compressor size, and evaporator design must all be considered when designing the system.

The degree of subcooling is important because it affects the efficiency of the system. A higher degree of subcooling will lead to a lower efficiency because the refrigerant will have more energy when it enters the expansion valve. This will cause the compressor to work harder and consume more power.

The well water flow rate must be sufficient to remove the heat from the condenser. If the well water flow rate is too low, the condenser will not be able to remove all of the heat from the refrigerant and the system will not operate properly.

The condenser must be sized to accommodate the well water flow rate. If the condenser is too small, the well water will not be able to flow through the condenser quickly enough and the system will not operate properly.

The compressor must be sized to handle the refrigerant mass flow rate. If the compressor is too small, the system will not be able to cool the chamber properly.

The evaporator must be designed to provide the desired cooling capacity. If the evaporator is too small, the system will not be able to cool the chamber properly.

It is important to consult with a refrigeration engineer to design a system that meets your specific needs.

Learn more about condenser pressure here:

https://brainly.com/question/32891465

#SPJ11

7. write and execute a query that will remove the contract type ""time and materials"" from the contracttypes table.

Answers

To remove the contract type "time and materials" from the contracttypes table, you can use a SQL query with the DELETE statement. Here's a brief explanation of the steps involved:

1. The DELETE statement is used to remove specific rows from a table based on specified conditions.

2. In this case, you want to remove the contract type "time and materials" from the contracttypes table.

3. The query would be written as follows:

  ```sql

  DELETE FROM contracttypes

  WHERE contract_type = 'time and materials';

  ```

  - DELETE FROM contracttypes: Specifies the table from which rows need to be deleted (contracttypes table in this case).

  - WHERE contract_type = 'time and materials': Specifies the condition that the contract_type column should have the value 'time and materials' for the rows to be deleted.

4. When you execute this query, it will remove all rows from the contracttypes table that have the contract type "time and materials".

It's important to note that executing this query will permanently delete the specified rows from the table, so it's recommended to double-check and backup your data before performing such operations.

Learn more about query:

https://brainly.com/question/25266787

#SPJ11

please need answer asap
5 5. An aircraft is moving steadily in the air at a velocity of 330 m/s. Determine the speed of sound and Mach number at (a) 300 K (4 marks) (b) 800 K. (4 marks)

Answers

The speed of sound can be calculated using the equation v = √(γRT), where v is the speed of sound, γ is the adiabatic index (1.4 for air), R is the gas constant (approximately 287 J/kg*K), and T is the temperature in Kelvin.

(a) At 300 K, the speed of sound can be calculated as v = √(1.4 * 287 * 300) = 346.6 m/s. To find the Mach number, we divide the velocity of the aircraft (330 m/s) by the speed of sound: Mach number = 330/346.6 ≈ 0.951.

(b) At 800 K, the speed of sound can be calculated as v = √(1.4 * 287 * 800) = 464.7 m/s. The Mach number is obtained by dividing the velocity of the aircraft (330 m/s) by the speed of sound: Mach number = 330/464.7 ≈ 0.709.

The speed of sound can be calculated using the equation v = √(γRT), where v is the speed of sound, γ is the adiabatic index (1.4 for air), R is the gas constant (approximately 287 J/kg*K), and T is the temperature in Kelvin. For part (a), at a temperature of 300 K, substituting the values into the equation gives v = √(1.4 * 287 * 300) = 346.6 m/s. To find the Mach number, which represents the ratio of the aircraft's velocity to the speed of sound, we divide the given velocity of the aircraft (330 m/s) by the speed of sound: Mach number = 330/346.6 ≈ 0.951. For part (b), at a temperature of 800 K, substituting the values into the equation gives v = √(1.4 * 287 * 800) = 464.7 m/s. The Mach number is obtained by dividing the given velocity of the aircraft (330 m/s) by the speed of sound: Mach number = 330/464.7 ≈ 0.709.

Learn more about Mach number here

brainly.com/question/29538118

#SPJ11

Other Questions
hat is the major similarity between oceanic-continental convergence and continental-continental convergence? A household refrigerator with a COP of 1.2 removes heat from the refrigerated space at a rate of 60 kJ/min. Determine (a) the electric power consumed by the refrigerator and (b) the rate of heat transfer to the kitchen air.2. What is the Clausius expression of the second law of thermodynamics? Koimet and Wafula wish to determine a function that explains the closing prices of Sufuricom E. A. Ltd at the end of each year. The two friends have followed data about the share price of the company at the Nairobi Stock Exchange for the period 20122012 (t=0)(t=0) to 20212021.tt 1 2 3 4 6 8 9XtXt 1.2 1.95 2 2.4 2.4 2.7 2.6Fit the following models [use: 5dp arithmetic; ln(x)loge(x)ln(x)loge(x) for transformation wherenecessary](a) Parabolic/polynomial trend Xt=a0+a1t+a2tXt=a0+a1t+a2t. Give the numerical values ofa0a0 Answera1a1 Answera2a2 Answer(b) Saturation growth-rate model Xt=tt+Xt=tt+. Determine a=a= Answer and b=b= Answer such that Yt=1Xt=a+b1tYt=1Xt=a+b1t(c) Determine which is most appropriate 1model (above) for the data based on the residual sum of squares AnswerSaturation Growth ModelParabolic Trend Model with RSS=RSS= Answer cansome one help me with this qoustionLet \( f(x)=8 x-2, g(x)=3 x-8 \), find the following: (1) \( (f+g)(x)= \) , and its domain is (2) \( (f-g)(x)= \) , and its domain is (3) \( (f g)(x)= \) , and its domain is (4) \( \left(\frac{f}{g}\r a red cross helicopter takes off from headquarters and flies 110 km in the direction 255 from north. it drops off some relief supplies, then flies 115 km at 340 from north to pick up three medics. if the helicoper then heads directly back to headquarters, find the distance and direction (rounded to one decimal place) it should fly. Determine the radius of convergence for the series below. n=0[infinity]4(n9)(x+9) nProvide your answer below: R= suppose you treat a culture of human cells with mutagenic ultraviolet (UV) radiation and you want to determine how many cells have initiated apoptosis and how many have not. Which of the following features would be present in the normal (non-apoptotic cells? a. phosphatidylserine will be found in the cytoplasm b. phosphatidylserine will be found in mitochondria c. cytochrome c will be found in mitochondria d.cytochrome c will be found in the cytoplasm e. cytochrome c will be found in the outer leaflet of the plasma membrane steady as she goes incorporated will pay a year-end dividend of $3.50 per share. investors expect the dividend to grow at a rate of 6% indefinitely. if the stock currently sells for $35.00 per share, what is the expected rate of return on the stock? preventing workplace violent incidents is a natural extention of the responsibilities of safety and health professionals. True or false f(x)=3x 49x 3+x 2x+1 Choose the answer below that lists the potential rational zeros. A. 1,1, 31, 31, 91, 91B. 1,1, 31, 31C. 1,1,3,3,9,9, 31, 31, 91, 91D. 1,1,3,3 Problem 3 For which values of \( h \) is the vector \[ \left[\begin{array}{r} 4 \\ h \\ -3 \\ 7 \end{array}\right] \text { in } \operatorname{Span}\left\{\left[\begin{array}{r} -3 \\ 2 \\ 4 \\ 6 \end{ A set of data with a mean of 39 and a standard deviation of 6.2 is normally distributed. Find each value, given its distance from the mean.+1 standard deviation calculate the velocity and acceleration vectors and the speed at t = 4 for a particle whose position ~ at time t is given by ~r(t) = cost~ cos 2t~j cos 3t k. According to the no arbitrage condition, what must be the price of a 100 face value zero coupon bond that matures on nyu graduation day? Find the area bounded by the graphs of the indicated equations over the given interval (when stated). Compute answers to three decimal places: y=x 2+2;y=6x6;1x2 The area, calculated to three decimal places, is square units. a 35-year-old man hobbles into the office of a physician complaining of a debilitating illness that has robbed him of the use of her left leg and right arm. the physician finds no physical basis for her symptoms. the patient appears totally unaware that the cause of his symptoms may be psychological. the appropriate diagnosis in this case is: What does tl stand for? a. transportation logistics b. trucking life c. trucking line d. transportation lead time e. truckload (quantity) activity a, duration 3, predecessor none activity b, duration 6, predecessor a activity c, duration 3, predecessor a activity d, duration 3, predecessors b, c activity e, duration 4, predecessor d activity f, duration 6, predecessor d what is the slack for activity e in time units? can supply chain disruptions such as hacking and cracks in bridges be eliminated? Why does blake include the letter from tyler eltringham at the beginning of the chapter?