A set of data with a mean of 39 and a standard deviation of 6.2 is normally distributed. Find each value, given its distance from the mean.

+1 standard deviation

Answers

Answer 1

The value at a distance of +1 standard deviation from the mean of the normally distributed data set with a mean of 39 and a standard deviation of 6.2 is 45.2.

To calculate the value at a distance of +1 standard deviation from the mean of a normally distributed data set with a mean of 39 and a standard deviation of 6.2, we need to use the formula below;

Z = (X - μ) / σ

Where:

Z = the number of standard deviations from the mean

X = the value of interest

μ = the mean of the data set

σ = the standard deviation of the data set

We can rearrange the formula above to solve for the value of interest:

X = Zσ + μAt +1 standard deviation,

we know that Z = 1.

Substituting into the formula above, we get:

X = 1(6.2) + 39

X = 6.2 + 39

X = 45.2

Therefore, the value at a distance of +1 standard deviation from the mean of the normally distributed data set with a mean of 39 and a standard deviation of 6.2 is 45.2.

Know more about the standard deviation

https://brainly.com/question/475676

#SPJ11


Related Questions

A manufacturer of yeast finds that the culture grows exponentially at the rate of 13% per hour . a) if the initial mass is 3.7 , what mass will be present after: 7 hours and then 2 days

Answers

After 7 hours, the mass of yeast will be approximately 9.718 grams. After 2 days (48 hours), the mass of yeast will be approximately 128.041 grams.

To calculate the mass of yeast after a certain time using exponential growth, we can use the formula:

[tex]M = M_0 * e^{(rt)}[/tex]

Where:

M is the final mass

M0 is the initial mass

e is the base of the natural logarithm (approximately 2.71828)

r is the growth rate (expressed as a decimal)

t is the time in hours

Let's calculate the mass of yeast after 7 hours:

M = 3.7 (initial mass)

r = 13% per hour

= 0.13

t = 7 hours

[tex]M = 3.7 * e^{(0.13 * 7)}[/tex]

Using a calculator, we can find that [tex]e^{(0.13 * 7)[/tex] is approximately 2.628.

M ≈ 3.7 * 2.628

≈ 9.718 grams

Now, let's calculate the mass of yeast after 2 days (48 hours):

M = 3.7 (initial mass)

r = 13% per hour

= 0.13

t = 48 hours

[tex]M = 3.7 * e^{(0.13 * 48)][/tex]

Using a calculator, we can find that [tex]e^{(0.13 * 48)}[/tex] is approximately 34.630.

M ≈ 3.7 * 34.630

≈ 128.041 grams

To know more about mass,

https://brainly.com/question/28053578

#SPJ11

a) After 7 hours, the mass will be approximately 7.8272.

b) After 2 days, the mass will be approximately 69.1614.

The growth of the yeast culture is exponential at a rate of 13% per hour.

To find the mass present after a certain time, we can use the formula for exponential growth:

Final mass = Initial mass × [tex](1 + growth ~rate)^{(number~ of~ hours)}[/tex]

a) After 7 hours:

Final mass = 3.7 ×[tex](1 + 0.13)^7[/tex]

To calculate this, we can plug in the values into a calculator or use the exponent rules:

Final mass = 3.7 × [tex](1.13)^{7}[/tex] ≈ 7.8272

Therefore, the mass present after 7 hours will be approximately 7.8272.

b) After 2 days:

Since there are 24 hours in a day, 2 days will be equivalent to 2 × 24 = 48 hours.

Final mass = 3.7 × [tex](1 + 0.13)^{48}[/tex]

Again, we can use a calculator or simplify using the exponent rules:

Final mass = 3.7 ×[tex](1.13)^{48}[/tex] ≈ 69.1614

Therefore, the mass present after 2 days will be approximately 69.1614.

Learn more about growth of the yeast

https://brainly.com/question/12000335

#SPJ11

How does the number 32.4 change when you multiply it by 10 to the power of 2 ? select all that apply.
a). the digit 2 increases in value from 2 ones to 2 hundreds.
b). each place is multiplied by 1,000
c). the digit 3 shifts 2 places to the left, from the tens place to the thousands place.

Answers

The Options (a) and (c) apply to the question, i.e. the digit 2 increases in value from 2 ones to 2 hundred, and, the digit 3 shifts 2 places to the left, from the tens place to the thousands place.

32.4×10²=32.4×100=3240

Hence, digit 2 moves from one's place to a hundred's. (a) satisfied

And similarly, digit 3 moves from ten's place to thousand's place. Now, 1000=10³=10²×10.

Hence, it shifts 2 places to the left.

Therefore, (c) is satisfied.

As for (b), where the statement: Each place is multiplied by 1,000; the statement does not hold true since each digit is shifted 2 places, which indicates multiplied by 10²=100, not 1000.

Hence (a) and (c) applies to our question.

Read more about simple arithmetic problems on

https://brainly.com/question/30194025

#SPJ4

Find the general solution to the following differential equations:
16y''-8y'+y=0
y"+y'-2y=0
y"+y'-2y = x^2

Answers

The general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

Given differential equations are:

16y''-8y'+y=0

y"+y'-2y=0

y"+y'-2y = x²

To find the general solution to the given differential equations, we will solve these equations one by one.

(i) 16y'' - 8y' + y = 0

The characteristic equation is:

16m² - 8m + 1 = 0

Solving this quadratic equation, we get m = 1/4, 1/4

Hence, the general solution of the given differential equation is:

y = c₁e^(x/4) + c₂xe^(x/4)..................................................(1)

(ii) y" + y' - 2y = 0

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2

Hence, the general solution of the given differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(2)

(iii) y" + y' - 2y = x²

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2.

The complementary function (CF) of this differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(3)

Now, we will find the particular integral (PI). Let's assume that the PI of the differential equation is of the form:

y = Ax² + Bx + C

Substituting the value of y in the given differential equation, we get:

2A - 4A + 2Ax² + 4Ax - 2Ax² = x²

Equating the coefficients of x², x, and the constant terms on both sides, we get:

2A - 2A = 1,

4A - 4A = 0, and

2A = 0

Solving these equations, we get

A = 1/2,

B = 0, and

C = 0

Hence, the particular integral of the given differential equation is:

y = (1/2)x²..................................................(4)

The general solution of the given differential equation is the sum of CF and PI.

Hence, the general solution is:

y = c₁e^x + c₂e^(-2x) + (1/2)x²..................................................(5)

Conclusion: Therefore, the general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

To know more about differential visit

https://brainly.com/question/13958985

#SPJ11

The particular solution is: y = -1/2 x². The general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

The general solution of the given differential equations are:

Given differential equation: 16y'' - 8y' + y = 0

The auxiliary equation is: 16m² - 8m + 1 = 0

On solving the above quadratic equation, we get:

m = 1/4, 1/4

∴ General solution of the given differential equation is:

y = c1 e^(x/4) + c2 x e^(x/4)

Given differential equation: y" + y' - 2y = 0

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:

m = -2, 1

∴ General solution of the given differential equation is:

y = c1 e^(-2x) + c2 e^(x)

Given differential equation: y" + y' - 2y = x²

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:m = -2, 1

∴ The complementary solution is:y = c1 e^(-2x) + c2 e^(x)

Now we have to find the particular solution, let us assume the particular solution of the given differential equation:

y = ax² + bx + c

We will use the method of undetermined coefficients.

Substituting y in the differential equation:y" + y' - 2y = x²a(2) + 2a + b - 2ax² - 2bx - 2c = x²

Comparing the coefficients of x² on both sides, we get:-2a = 1

∴ a = -1/2

Comparing the coefficients of x on both sides, we get:-2b = 0 ∴ b = 0

Comparing the constant terms on both sides, we get:2c = 0 ∴ c = 0

Thus, the particular solution is: y = -1/2 x²

Now, the general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

To know more about differential equations, visit:

https://brainly.com/question/32645495

#SPJ11