Answer:
x = 32°Step-by-step explanation:
To solve for x we use sine
sin ∅ = opposite / hypotenuse
From the question
38 is the hypotenuse
20 is the opposite
So we have
sin x = 20/38
sin x = 10/19
x = sin-¹ 10/19
x = 31.75
x = 32° to the nearest degreeHope this helps you
The arithmetic mean (average) of four numbers is 85. If the largest of these numbers is 97, find the mean of the remaining three numbers. I cannot solve this. Please help on it.
Answer:
81
Step-by-step explanation:
Let's do this systematically:
Four numbers: a, b, c, d
Whose mean is 85: [tex]\frac{a + b + c + d}{4} = 85[/tex]
Whose largest number is 97: [tex]\frac{a + b + c + 97}{4} = 85[/tex]
Lets solve for the other numbers:
a+b+c+97 = 85*4 = 340
340 - 97 = 243
a+b+c = 243
at this point it doesn't matter what the numbers are, they just need to add up to 243.
We can do 243÷3=81, which is our answer
What is the difference?
StartFraction x Over x squared + 3 x + 2 EndFraction minus StartFraction 1 Over (x + 2) (x + 1) EndFraction
StartFraction x minus 1 Over 6 x + 4 EndFraction
StartFraction negative 1 Over 4 x + 2 EndFraction
StartFraction 1 Over x + 2 EndFraction
StartFraction x minus 1 Over x squared + 3 x + 2 EndFraction
Answer:
The answer is option D.Step-by-step explanation:
First we must first find the LCM
The LCM of x² + 3x + 2 and (x + 2)(x + 1 ) is
x² + 3x + 2
So we have
[tex] \frac{x}{ {x}^{2} + 3x + 2 } - \frac{1}{(x + 2)(x + 1)} \\ \\ = \frac{x - 1}{ {x}^{2} + 3x + 2 } [/tex]
Hope this helps you
Answer:
The answer is OPTION D!
Step-by-step explanation:
HoPe ThIs HeLpS!
Find all values of k for which the function y=sin(kt) satisfies the differential equation y′′+16y=0. Separate your answers by commas. isn't the answer just ±4?
Answer: k = 4, k = -4 and k = 0.
Step-by-step explanation:
If we have y = sin(kt)
then:
y' = k*cos(kt)
y'' = -k^2*son(x).
then, if we have the relation:
y'' - y = 0
we can replace it by the things we derivated previously and get:
-k^2*sin(kt) + 16*sin(kt) = 0
we can divide by sin in both sides (for t ≠0 and k ≠0 because we can not divide by zero)
-k^2 + 16 = 0
the solutions are k = 4 and k = -4.
Now, we have another solution, but it is a trivial one that actually does not give any information, but for the diff equation:
-k^2*sin(kt) + 16*sin(kt) = 0
if we take k = 0, we have:
-0 + 0 = 0.
So the solutions are k = 4, k = -4 and k = 0.
Find the surface area of the solid shown or described. If necessary, round to the nearest tenth. A.348m^2 B.484m^2 C.180.7m^2 D.262m^2
Answer: 484m²
Step-by-step explanation: This is a question on solid shape.
The surface area of a cone is the same thing as the perimeter of the cone ie, the materials required to construct the cone.
Formula for the surface area of the cone = πrl + πr², ( the circular base )
From.the diagram,
r = 7.1m , l = 14.6m, π = 3.142
Now substitute for those values in.the formula above
SA = πrl + πr²
= 3.142 × 7.1 × 14.6 + 3.142 × 7.1²
= 325.6997 + 158.388
= 484.09
Now to the nearest tenth meter,
SA = 484m²
Find the first five terms in sequences with the following nth terms. 6n+3
Answer:
33
Step-by-step explanation:
An = 6n+3
so the first five terms in sequences is A5= 6*5 +3 = 33
Use the properties of logarithms to prove log81000= log210.
Answer:
Step-by-step explanation:
Given the expression [tex]log_81000 = log_210[/tex], to prove this expression is true using the properties of logarithm, we will follow the following steps.
Starting from the Left Hand Side:
[tex]log_81000\\[/tex]= log₈ 10³= log_ 2^3 (10³)= log₂10E = { x l x is a perfect square <36}
Answer:
E = { x l x is a perfect square <36}
And we can rewrite it taking in count the list of all the perfect squares less than 36 and we have:
1= 1*1
4= 2*2
9 = 3*3
16 =4*4
25= 5*5
And we can rewrite the set on this way:
E= {1,4,9,16,25}
Step-by-step explanation:
For this problem we have the following set:
E = { x l x is a perfect square <36}
And we can rewrite it taking in count the list of all the perfect squares less than 36 and we have:
1= 1*1
4= 2*2
9 = 3*3
16 =4*4
25= 5*5
And we can rewrite the set on this way:
E= {1,4,9,16,25}
What does csc x cot x (1-cos^2 x) equal
Answer:
Step-by-step explanation:
Will give brainliest answer
Answer:
9π or 28.3 units²
Step-by-step explanation:
A = πr²
A = π(3)²
A = 9π
or
A= 28.3 units²
Hope this helps. :)
What is the next number in the sequence.
1,121,12321, 1234321
The next number in the sequence is _____
Answer:
123454321
Step-by-step explanation:
it's a palendrome, made out of a number of numbers in the sqquence.
6x^2-2x=20 use ac method
Answer:
Cannot be factored
Step-by-step explanation:
the table shows the time it took a group of students to complete a puzzle
Answer:
Where is the table because I dont see it up here?
Less than 51% of workers got their job through networking. Express the null and alternative hypotheses in symbolic form for this claim (enter as a percentage). H0 : p H1 : p
Use the following codes to enter the following symbols:
≥≥ enter >=
≤≤ enter <=
≠≠ enter !=
Answer:
Null Hypothesis, [tex]H_0[/tex] : p [tex]\geq[/tex] 51%
Alternate Hypothesis, [tex]H_A[/tex] : p < 51%
Step-by-step explanation:
We are given that less than 51% of workers got their job through networking. We have to express the null and alternative hypotheses in symbolic form for this claim.
Let p = population proportion of workers who got their job through networking
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\geq[/tex] 51%
Alternate Hypothesis, [tex]H_A[/tex] : p < 51%
Here, the null hypothesis states that greater than or equal to 51% of workers got their job through networking.
On the other hand, the alternate hypothesis states that less than 51% of workers got their job through networking.
Hence, this is the appropriate hypothesis that can be used.
What is the constant of proportionality in the equation Y = x/9?
Answer:
1/9
Step-by-step explanation:
Separate the fraction (1/9) from the variable x:
y = (1/9)x.
1/9 is the constant of proportionality.
Assume that the random variable X is normally distributed, with mean 60 and standard deviation 16. Compute the probability P(X < 80). Group of answer choices
Answer:
P(X < 80) = 0.89435.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 60, \sigma = 16[/tex]
P(X < 80)
This is the pvalue of Z when X = 80. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{80 - 60}{16}[/tex]
[tex]Z = 1.25[/tex]
[tex]Z = 1.25[/tex] has a pvalue of 0.89435.
So
P(X < 80) = 0.89435.
Select the correct answer.
The function RX) = 2x + 3x + 5, when evaluated, gives a value of 19. What is the function's input value?
A. 1
B. -1
C. 2
D. -2
E. -3
Answer:
Correct option: C.
Step-by-step explanation:
(Assuming the correct function is R(x) = 2x^2 + 3x + 5)
To find the input value that gives the value of R(x) = 19, we just need to use this output value (R(x) = 19) in the equation and then find the value of x:
[tex]R(x) = 2x^2 + 3x + 5[/tex]
[tex]19 = 2x^2 + 3x + 5[/tex]
[tex]2x^2 + 3x -14 = 0[/tex]
Solving this quadratic function using the Bhaskara's formula (a = 2, b = 3 and c = -14), we have:
[tex]\Delta = b^2 - 4ac = 9 + 112 = 121[/tex]
[tex]x_1 = (-b + \sqrt{\Delta})/2a = (-3 + 11)/4 = 2[/tex]
[tex]x_2 = (-b - \sqrt{\Delta})/2a = (-3 - 11)/4 = -3.5[/tex]
So looking at the options, the input to the function is x = 2
Correct option: C.
The double cone is intersected by a vertical plane passing through the point where the tips of the cones meet. What is the shape of the cross section formed? HELP PLEASE ITS FOR PLATO
Answer:
B.
Step-by-step explanation:
The double cone is a cone on top of another cone. The bottom cone has the circular base on the bottom and the tip on top. The upper cone is upside down, and the two tips touch. Since the vertical plane goes through the tips of both cones, the cross section must have a shape that gets to a point at the middle of the height.
Answer: B. One triangle with the tip on top and an inverted triangle above it with the tips touching.
Answer:
B.
Step-by-step explanation:
answer: B. one triangle tip on top and invert above it with the top touching
A department store finds that in a random sample of 200 customers, 60% of the sampled customers had browsed its website prior to visiting the store. Based on this data, a 90% confidence interval for the population proportion of customers that browse the store’s website prior to visiting the store will be between
Answer:
between 108-110?
Step-by-step explanation:
60% or 200 = 120 people
90% of 120 = 108
question doesnt look complete so this is the best I could come up with...♀️
What percent of this grid is unshaded?
The grid has 10 columns and 10 rows making 100 equal sized squares 5 rows are
unshaded. The sixth row has 6 squares unshaded.
Answer:
56% shaded
Step-by-step explanation:
if there are 100 boxes, then every box it 1%
5 rows (50%) + 6 extra boxes (6%) = 56%
Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0).
Answer:
for us to be able to ascertain whether a function has no limit we approach from two points which are from zero and infinity.
Step-by-step explanation:
the two best path to approach a function is to approach from zero and approach from infinity, literary what we are trying to do is approach from the smallest to the greatest and it each point we can conclude with certainty whether the function has a limit or not.
(matching type) given f(x)= x+4 and g(x) = 2x + 1 match the expression to its simplication operation
choose
x+4 / 2x+1
Answer 1
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x+1 / x+4
Answer 2
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
3x + 5
Answer 3
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x + 5
Answer 4
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
-x + 3
Answer 5
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x2 + 9x + 12
pa help po
Answer:
1) [tex]h(x) = \frac{f(x)}{g(x)}[/tex], 2) [tex]h(x) = \frac{g(x)}{f(x)}[/tex], 3) [tex]h(x) = f(x) + g(x)[/tex], 4) [tex]h (x) = f [g (x)][/tex], 5) [tex]h(x) = f(x) - g(x)[/tex]
Step-by-step explanation:
1) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h (x) = \frac{x+4}{2\cdot x + 1}[/tex], then:
[tex]h(x) = \frac{f(x)}{g(x)}[/tex]
2) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = \frac{2\cdot x + 1}{x+4}[/tex], then:
[tex]h(x) = \frac{g(x)}{f(x)}[/tex]
3) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = 3\cdot x + 5[/tex], then:
[tex]h(x) = 3\cdot x + 5[/tex]
[tex]h (x) = (1 + 2)\cdot x + (4+1)[/tex]
[tex]h(x) = x + 2\cdot x + 4 +1[/tex]
[tex]h(x) = (x+4) + (2\cdot x + 1)[/tex]
[tex]h(x) = f(x) + g(x)[/tex]
4) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = 2\cdot x + 5[/tex], then:
[tex]h(x) = 2\cdot x + 5[/tex]
[tex]h(x) = 2\cdot x + 1 + 4[/tex]
[tex]h(x) = (2\cdot x +1)+4[/tex]
[tex]h (x) = f [g (x)][/tex]
5) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = -x + 3[/tex], then:
[tex]h(x) = -x + 3[/tex]
[tex]h(x) = (1 - 2)\cdot x + 4 - 1[/tex]
[tex]h(x) = x - 2\cdot x + 4 - 1[/tex]
[tex]h(x) = x + 4 - (2\cdot x + 1)[/tex]
[tex]h(x) = f(x) - g(x)[/tex]
15. A zoo is building a glass cylindrical tank
for the small sharks. The tank is 10 feet
high and has a diameter of 16 feet. How
much water is needed to fill the tank?
(The volume of a right circular cylinder is
V = Tr?h, where r is the radius, h is the
height, and a = 3.14.)
Answer:
2009.6
Step-by-step explanation:
As we know, volume of a right cylinder is πr²h.
here, diameter is mentioned, which gives that the radius is half of the diameter.
r= 1/2*16=8 feet
height= 10 feet
π=3.14
volume= 3.14*8²*10
= 3.14*64*10
=3.14*640
= 2009.6
so, that much water is needed to fill the tank
Answer:
2,010.6192982
Step-by-step explanation:
please help pleaseeeeeeeee
━━━━━━━☆☆━━━━━━━
▹ Answer
#3. 1.89/100
▹ Step-by-Step Explanation
1.89 → hundreths place so..
1.89/100 is the correct answer
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
In a plane, if a line is perpendicular to one of two blank lines, then it is also perpendicular to the other
Answer:
ParallelStep-by-step explanation:
The complete statement would be "if a line is perpendicular to one of two parallel lines, then it is also perpendicular to the other".
The reason for this is because parallel lines have the same slope, that's the condition. On the other hand, parallel lines have opposite and reciprocal slopes.
So, if you think this through, if a line is perpendicular to another, then it's going to be perpendicular to all different lines which are parallel to the first one, because all their slopes are equivalent, and they will fulfill the perpendicularity condition.
Answer:
Parallel line
Step-by-step explanation:
Hope It Helps
The U.S. Department of Agriculture guarantees dairy producers that they will receive at least $1.00 per pound of butter they supply to the market. Below is the current monthly demand and supply schedule for wholesale butter (in millions of pounds per month). Wholesale Butter Market
Price (dollars per pound) Quantity of Butter Demanded Quantity of Butter Supplied
(millions of pounds) (millions of pounds)
$0.80 107 63 0
.90 104 71
1.00 101 79
1.10 98 87
1.20 95 95
1.30 92 103
1.40 89 111
1.50 86 119
1.60 83 127
1.70 80 135
1.80 77 143
a. In the butter market, the monthly equilibrium quantity is million pounds and the equilibrium price is $ per pound.
b. What is the monthly surplus created in the wholesale butter market due to the price support (price floor) program? 22 million pounds 79 million pounds Zero 11 million pounds Suppose that a decrease in the cost of feeding cows shifts the supply schedule to the right by 40 million pounds at every price.
Answer:
a. In the butter market, the monthly equilibrium quantity is 95 million pounds and the equilibrium price is $1.2 per pound.
b. The correct option is zero.
c. See the attached excel file for the new supply schedule.
d. The monthly surplus created by the price support program is 18 million pounds given the new supply of butter.
Step-by-step explanation:
Note: This question is not complete. A complete question is therefore provided in the attached Microsoft word file.
a. In the butter market, the monthly equilibrium quantity is million pounds and the equilibrium price is $ per pound.
At equilibrium, quantity demanded must be equal with the quantity supplied.
In this question, equilibrium occurs at the price of $1.20 per pound and quantity of 95 million pounds.
Therefore, in the butter market, the monthly equilibrium quantity is 95 million pounds and the equilibrium price is $1.2 per pound.
b. What is the monthly surplus created in the wholesale butter market due to the price support (price floor) program?
Price floor refers to a government price control on the lowest price that can be charged for a commodity.
It should be noted that for a price floor to be binding, it has to be fixed above the equilibrium price.
Since the price floor of $1 per pound is lower than the equilibrium price of $1.2 per pound, the price floor will therefore not be binding. As a result, the market will still be at the equilibrium point and the monthly surplus created in the wholesale butter market due to the price support (price floor) program will be zero.
Therefore, the correct option is zero.
c. Fill in the new supply schedule given the change in the cost of feeding cows.
Since a decrease in the cost of feeding cows shifts the supply schedule to the right by 40 million pounds at every price, this implies that there will be an increase in supply by 40 million at each price.
Note: Find attached the excel file for the new supply schedule.
d. Given the new supply of butter, what is the monthly surplus of butter created by the price support program?
Since the price floor has been fixed at $1 per pound by the price support program, we can observe that the quantity demanded is 101 million pounds and quantity supplied is 119 million pounds at this price floor of $1. The surplus created is then the difference between the quantity demanded and quantity supplied as follows:
Surplus created = Quantity supplied - Quantity demanded = 119 - 101 = 18 million pounds
Therefore, the monthly surplus created by the price support program is 18 million pounds given the new supply of butter.
Chocolate chip cookies have a distribution that is approximately normal with a mean of 24.7 chocolate chips per cookie and a standard deviation of 2.1 chocolate chips per cookie. Find Upper P 10 and Upper P 90. How might those values be helpful to the producer of the chocolate chip cookies?
Answer:
P10 = 27.4
P90 = 22.0
It helps the producer to know the higher (P10) and lower estimates (P90) for the amount of chocolate chips per cookie.
Step-by-step explanation:
In P10 and P90 the P stands for "percentile".
In the case of P10, indicates the value X of the random variable for which 10% of the observed values will be above this value X.
In the case of P90, this percentage is 90%.
In this case, we can calculate from the z-values for each of the percentiles in the standard normal distribution.
For P10 we have:
[tex]P(z>z_{P10})=0.1\\\\z_{P10}=1.2816[/tex]
For P90 we have:
[tex]P(z>z_{P90})=0.9\\\\z_{P90}=-1.2816[/tex]
Then, we can convert this values to our normal distribution as:
[tex]P10=\mu+z\cdot\sigma=24.7+1.2816\cdot 2.1=24.7+2.7=27.4 \\\\P90=\mu+z\cdot\sigma=24.7-1.2816\cdot 2.1=24.7-2.7=22.0[/tex]
what is the answer for 8=22x+1
Answer:
x = 22/7Step-by-step explanation:
22x + 1 = 8
Send 1 to the right side of the equation
22x = 8 - 1
22x = 7
Divide both sides by 22
x = 7/22
Hope this helps you
Identify the axis of symmetry of the given quadratic
y= -3x^2 - 12
Answer:
[tex]\frac{d}{dy}(-3x^{2} -12) = -6x[/tex]
0 = -6x
0 = x
[tex]-3(0)^{2} -12 = -12[/tex]
(0,-12)
Step-by-step explanation:
Need help with the problem 77
Hey there! :)
Answer:
∠A = 15.6°
Step-by-step explanation:
Use trigonometry to solve for ∠A. Since this involves the opposite and adjacent sides, tangent will be used. Therefore:
24/86 = arc tan x (inverse of tangent)
0.279 = arc tan x
x = 15.59° ≈ 15.6°.
Therefore:
∠A = 15.6°
Which of the following statements must be true about this diagram? Check all that apply.
Answer:
Options (D), (E) and (F) are the correct options.
Step-by-step explanation:
From the figure attached,
1). Angle 4 is the exterior angle of the given triangle having interior angles 1, 2 and 3.
Therefore, by the property of exterior angle,
∠4 = ∠1 + ∠2
2). Since ∠4 = ∠1 + ∠2,
Therefore, ∠4 will be greater than ∠1
Similarly, ∠4 will be greater than ∠2
Therefore, Options (D), (E) and (F) are the correct options.