The functions y₁(t) = e^ãt cos(μt) and y₂(t) = e^ãt sin(μt) are a fundamental set of solutions because they are linearly independent and satisfy the given homogeneous linear differential equation, allowing for the formation of the general solution.
To show that y₁(t) = e^ãt cos(μt) and y₂(t) = e^ãt sin(μt) are a fundamental set of solutions, we need to demonstrate two things: linear independence and satisfaction of the given homogeneous linear differential equation.
First, let's consider linear independence. We can prove it by showing that there is no constant c₁ and c₂, not both zero, such that c₁y₁(t) + c₂y₂(t) = 0 for all t.
Now, let's verify that y₁(t) and y₂(t) satisfy the homogeneous linear differential equation. If the given differential equation is of the form ay''(t) + by'(t) + cy(t) = 0, we can substitute y₁(t) and y₂(t) into the equation and verify that it holds true.
Once we have established linear independence and satisfaction of the differential equation, we can state that the general solution to the homogeneous linear differential equation is given by y(t) = c₁y₁(t) + c₂y₂(t), where c₁ and c₂ are arbitrary constants. This general solution represents the linear combination of the fundamental set of solutions.
In summary, y₁(t) = e^ãt cos(μt) and y₂(t) = e^ãt sin(μt) form a fundamental set of solutions for the given differential equation, and the general solution is given by y(t) = c₁y₁(t) + c₂y₂(t).
Know more about linear independence here:
https://brainly.com/question/31328368
#SPJ8
what best describes the relationship between the computed mean of 52.4 and the actual mean of 52.7
The computed mean of 52.4 and the actual mean of 52.7 suggest a close relationship in terms of central tendency.
A computed mean is a statistical measure calculated by summing up a set of values and dividing by the number of observations. In this case, the computed mean of 52.4 implies that when the values are averaged, the result is 52.4.
The actual mean of 52.7 refers to the true average of the population or data set being analyzed. Since it is higher than the computed mean, it indicates that the sample used for computation might have slightly underestimated the true population mean.
However, the difference between the computed mean and the actual mean is relatively small, with only a 0.3 unit discrepancy.
Given the proximity of these two values, it suggests that the computed mean is a reasonably accurate estimate of the actual mean.
However, it's important to note that without additional information, such as the sample size or the variability of the data, it is difficult to draw definitive conclusions about the relationship between the computed mean and the actual mean.
For more such questions on mean
https://brainly.com/question/1136789
#SPJ8
After long study, tree scientists conclude that a eucalyptus tree will
3
grow at the rate of +
ft. per years, where t is time in years. Find the
5 (t+1)³
number of feet the tree will grow in the first year. Be sure to use the proper
units of measure.
After a long study, tree scientists conclude that a eucalyptus tree will grow at the rate of 3ft per year, where t is time in years. So, the tree will grow 5 feet in the first year.
We have to find the number of feet the tree will grow in the first year, given that 5(t + 1)³. The rate of growth of a tree is given as 3ft/year. Therefore, in the first year, the tree will grow 3 feet.
To find the number of feet the tree will grow in the first year, we substitute t = 0 in the given expression.
5(t + 1)³ = 5(0 + 1)³= 5(1)³= 5(1)= 5. Therefore, the tree will grow 5 feet in the first year.
For more questions on: scientists
https://brainly.com/question/9523340
#SPJ8
Let f(x) = 4x² - 7.
Using the definition of derivative
Answer:
56
Step-by-step explanation:
f(x)=4x^2-7
f'(x)=8x
f'(7)=56
Please help what is the slope of the line?
Answer:
-5/4
Step-by-step explanation:
Let [tex](x_1,y_1)=(-4,4)[/tex] and [tex](x_2,y_2)=(0,-1)[/tex]. The slope of the line would be:
[tex]\displaystyle \frac{y_2-y_1}{x_2-x_1}=\frac{-1-4}{0-(-4)}=\frac{-5}{4}=-\frac{5}{4}[/tex]
Answer: -5/4
Step-by-step explanation:
To find the slope between two points, you can use the formula:
Slope = (y2 - y1)/(x2 - x1)
Using the points (0, -1) and (-4, 4), we can substitute the coordinates into the formula:
slope = (4 - (-1))/(-4 - 0)
slope = (4 + 1)/(-4)
slope = 5/-4
Therefore, the slope between the two points is -5/4.
Solve using inverse (matrix) method
5x - 4y + z = 12
x + 7y-z = -9
2x+3y + 3z = 8
The solution to the system of equations using the inverse matrix method is x = -1, y = 2, z = 3.
To solve the system of equations using the inverse matrix method, we need to represent the system in matrix form.
The given system of equations can be written as:
| 5 -4 1 | | x | = | 12 |
| 1 7 -1 | [tex]\times[/tex]| y | = | -9 |
| 2 3 3 | | z | | 8 |
Let's denote the coefficient matrix on the left side as A, the variable matrix as X, and the constant matrix as B.
Then the equation can be written as AX = B.
Now, to solve for X, we need to find the inverse of matrix A.
If A is invertible, we can calculate X as [tex]X = A^{(-1)} \times B.[/tex]
To find the inverse of matrix A, we can use the formula:
[tex]A^{(-1)} = (1 / det(A)) \times adj(A)[/tex]
Where det(A) is the determinant of A and adj(A) is the adjugate of A.
Calculating the determinant of A:
[tex]det(A) = 5 \times (7 \times 3 - (-1) \times 3) - (-4) \times (1 \times 3 - (-1) \times 2) + 1 \times (1 \times (-1) - 7\times 2)[/tex]
= 15 + 10 + (-13)
= 12.
Next, we need to find the adjugate of A, which is obtained by taking the transpose of the cofactor matrix of A.
Cofactor matrix of A:
| (73-(-1)3) -(13-(-1)2) (1(-1)-72) |
| (-(53-(-1)2) (53-12) (5[tex]\times[/tex] (-1)-(-1)2) |
| ((5(-1)-72) (-(5(-1)-12) (57-(-1)[tex]\times[/tex](-1)) |
Transpose of the cofactor matrix:
| 20 -7 -19 |
| 13 13 -3 |
| -19 13 36 |
Finally, we can calculate the inverse of A:
A^(-1) = (1 / det(A)) [tex]\times[/tex] adj(A)
= (1 / 12) [tex]\times[/tex] | 20 -7 -19 |
| 13 13 -3 |
| -19 13 36 |
Multiplying[tex]A^{(-1)[/tex] with B, we can solve for X:
[tex]X = A^{(-1)}\times B[/tex]
= | 20 -7 -19 | | 12 |
| 13 13 -3 | [tex]\times[/tex] | -9 |
| -19 13 36 | | 8 |
Performing the matrix multiplication, we can find the values of x, y, and z.
For similar question on inverse matrix method.
https://brainly.com/question/18604519
#SPJ8
Alonso brings
$
21
$21dollar sign, 21 to the market to buy eggs and avocados. He gets eggs that cost
$
2.50
$2.50dollar sign, 2, point, 50. Then, he notices that the store only sells avocados in bags of
3
33 for
$
5
$5dollar sign, 5. He wants to buy as many avocados as he can with his remaining money.
Let
�
BB represent the number of bags of avocados that Alonso buys.
Alonso spent all of his money, this confirms that he can buy 3 bags of avocados.
Alonso has $21.00 to spend on eggs and avocados. He buys eggs that cost $2.50, which leaves him with $18.50. Since the store only sells avocados in bags of 3, he will need to find the cost per bag in order to calculate how many bags he can buy.
First, divide the cost of 3 avocados by 3 to find the cost per avocado. $5.00 ÷ 3 = $1.67 per avocado.
Next, divide the money Alonso has left by the cost per avocado to find how many avocados he can buy.
$18.50 ÷ $1.67 per avocado = 11.08 avocados.
Since avocados only come in bags of 3, Alonso needs to round down to the nearest whole bag. He can buy 11 avocados, which is 3.67 bags.
Thus, he will buy 3 bags of avocados.Let's test our answer to make sure that Alonso has spent all his money:
$2.50 for eggs3 bags of avocados for $5.00 per bag, which is 9 bags of avocados altogether. 9 bags × $5.00 per bag = $45.00 spent on avocados.
Total spent:
$2.50 + $45.00 = $47.50
Total money had:
$21.00
Remaining money:
$0.00
Since Alonso spent all of his money, this confirms that he can buy 3 bags of avocados.
For more such questions on avocados, click on:
https://brainly.com/question/29818026
#SPJ8
A village P is 12 km from village Q. It takes 3 hours 20 minutes to travel from Q to P and back to Q by a boat. If the boat travels at a speed of 6 km/h from P to Q and (6 + x) km/h back to P, find the value of x.
Answer:
Hope this helps and have a nice day
Step-by-step explanation:
To find the value of x, we can use the formula:
Time = Distance / Speed
Let's calculate the time taken to travel from Q to P and back to Q.
From Q to P:
Distance = 12 km
Speed = 6 km/h
Time taken from Q to P = Distance / Speed = 12 km / 6 km/h = 2 hours
From P to Q:
Distance = 12 km
Speed = (6 + x) km/h
Time taken from P to Q = Distance / Speed = 12 km / (6 + x) km/h
Given that the total time taken for the round trip is 3 hours 20 minutes, we can convert it to hours:
Total time = 3 hours + (20 minutes / 60) hours = 3 + (1/3) hours = 10/3 hours
According to the problem, the total time is the sum of the time from Q to P and from P to Q:
Total time = Time taken from Q to P + Time taken from P to Q
Substituting the values:
10/3 hours = 2 hours + 12 km / (6 + x) km/h
Simplifying the equation:
10/3 = 2 + 12 / (6 + x)
Multiply both sides by (6 + x) to eliminate the denominator:
10(6 + x) = 2(6 + x) + 12
60 + 10x = 12 + 2x + 12
Collecting like terms:
8x = 24
Dividing both sides by 8:
x = 3
Therefore, the value of x is 3.
Answer:
x = 3
Step-by-step explanation:
speed = distance / time
time = distance / speed
Total time from P to Q to P:
T = 3h 20min
P to Q :
s = 6 km/h
d = 12 km
t = d/s
= 12/6
t = 2 h
time remaining t₁ = T - t
= 3h 20min - 2h
= 1 hr 20 min
= 60 + 20 min
= 80 min
t₁ = 80/60 hr
Q to P:
d₁ = 12km
t₁ = 80/60 hr
s₁ = d/t₁
[tex]= \frac{12}{\frac{80}{60} }\\ \\= \frac{12*60}{80}[/tex]
= 9
s₁ = 9 km/h
From question, s₁ = (6 + x)km/h
⇒ 6 + x = 9
⇒ x = 3
Given the function f(x) = 4 – 2x, find f(3r – 1).
Answer:
f(3r - 1) = -6r + 6
Step-by-step explanation:
To find f(3r - 1), we substitute 3r - 1 for x in the expression for f(x) and simplify:
f(x) = 4 - 2x
f(3r - 1) = 4 - 2(3r - 1)
= 4 - 6r + 2
= -6r + 6
So, f(3r - 1) = -6r + 6.
Trent has an 8-foot tall tent in the shape of square based pyramid with a base length of 14 feet. If one bottle of waterproof spray covers 76 square feet, how many bottles will he need to waterproof his tent.
Trent will need approximately 2.86 bottles of waterproof spray to cover his tent.
To calculate the number of bottles of waterproof spray Trent will need to cover his tent, we first need to find the surface area of the tent.
The surface area of a square-based pyramid is given by the formula:
Surface Area = Base Area + (0.5 x Perimeter of Base x Slant Height)
The base of the pyramid is a square with a side length of 14 feet, so the base area is:
Base Area = (Side Length)^2 = 14^2 = 196 square feet
To find the slant height of the pyramid, we can use the Pythagorean theorem. The slant height is the hypotenuse of a right triangle formed by one side of the base, the height of the pyramid, and the slant height. The height of the pyramid is given as 8 feet, and half the length of the base is 7 feet.
Using the Pythagorean theorem:
[tex]Slant Height^2 = (Half Base Length)^2 + Height^2[/tex]
[tex]Slant Height^2 = 7^2 + 8^2Slant Height^2 = 49 + 64Slant Height^2 = 113Slant Height ≈ √113 ≈ 10.63 feet[/tex]
Now we can calculate the surface area of the tent:
Surface Area = 196 + (0.5 x 4 x 10.63)
Surface Area = 196 + (2 x 10.63)
Surface Area = 196 + 21.26
Surface Area ≈ 217.26 square feet
Since each bottle of waterproof spray covers 76 square feet, we can divide the total surface area of the tent by the coverage of each bottle to find the number of bottles needed:
Number of Bottles = Surface Area / Coverage per Bottle
Number of Bottles = 217.26 / 76
Number of Bottles ≈ 2.86
Therefore, Trent will need approximately 2.86 bottles of waterproof spray to cover his tent. Since we can't have a fraction of a bottle, he will need to round up to the nearest whole number. Therefore, Trent will need 3 bottles of waterproof spray to fully waterproof his tent.
for more such question on bottles visit
https://brainly.com/question/28855819
#SPJ8
[tex]\sqrt{x+7}-1=x[/tex]
Answer:
x = 2
Step-by-step explanation:
Pre-SolvingWe are given the following equation:
[tex]\sqrt{x+7} -1=x[/tex], which we want to solve for x.
To do this, we should isolate the square root on one side, then square both sides. We can then solve the equation as normal, but then we have to check the domain in the end for any extraneous solutions.
SolvingStart by adding 1 to both sides.
[tex]\sqrt{x+7} -1=x[/tex]
+1 +1
________________________
[tex]\sqrt{x+7} = x+1[/tex]
Now, square both sides.
[tex](\sqrt{x+7} )^2= (x+1)^2[/tex]
We get:
x + 7 = x² + 2x + 1
Subtract x + 7 from both sides.
x + 7 = x² + 2x + 1
-(x+7) -(x+7)
________________________
0 = x² + x - 6
This can be factored to become:
0 = (x+3)(x-2)
Solve:
x+3 = 0
x = -3
x-2 = 0
x = 2
We get x = -3 and x = 2. However, we must check the domain.
DomainSubstitute -3 as x and 2 as x into the original equation.
We get:
[tex]\sqrt{-3+7} -1 = -3[/tex]
[tex]\sqrt{4} -1 = -3[/tex]
2 - 1 = -3
-1 = -3
This is an untrue statement, so x = -3 is an extraneous solution.
We also get:
[tex]\sqrt{2+7} -1 = 2[/tex]
[tex]\sqrt{9}-1=2[/tex]
3 - 1 = 2
2 = 2
This is a true statement, so x = 2 is a real solution.
Our only answer is x = 2.
What are all ordered triples of positive integers (x,y,z) whose products is 4 times their sum, If x < y
We can conclude that there are no ordered triples of positive integers (x, y, z) that satisfy the given equation and the condition x < y.
We are given that the product of three positive integers (x, y, z) is equal to four times their sum:
xyz = 4(x + y + z)
Rearranging the equation, we get:
xyz - 4x - 4y - 4z = 0
We can factor out a common factor of 4 from the terms on the right-hand side:
4(xy - x - y - z) = 0
Now, we have two cases to consider:
Case 1: xy - x - y - z = 0
In this case, we can rewrite the equation as:
x(y - 1) - (y + z) = 0
From this equation, we observe that (y + z) must be divisible by (y - 1). Since x < y, the minimum value of (y - 1) is 1, which means (y + z) should also be 1. However, since we are looking for positive integers, this case does not yield any solutions.
Case 2: xy - x - y - z = 4
In this case, we can rewrite the equation as:
x(y - 1) - (y + z) = 4
Similarly, we observe that (y + z) must be divisible by (y - 1), and now (y - 1) can take on a minimum value of 2. We can analyze different possibilities based on this:
If (y - 1) = 2, then (y + z) = 2. Since we are dealing with positive integers, the only possibility is y = 3 and z = -1, which does not satisfy the condition.
If (y - 1) = 3, then (y + z) = 3. The only possibility is y = 4 and z = -1, which also does not satisfy the condition.
If (y - 1) = 4, then (y + z) = 4. The only possibility is y = 5 and z = -1, which does not satisfy the condition.
For more suhc questions on triples visit:
https://brainly.com/question/16036846
#SPJ8
A rectangular pyramid is sliced. The slice passes through line segment AB and is parallel to the base.
Which two-dimensional figure represents the cross section?
A. A rectangle the same size as the base
B. A rectangle that is smaller than the base
C. A quadrilateral that is not a rectangle
D. A triangle with a height the same as the pyramid
Answer:
Step-by-step explanation:
The correct answer is A. A rectangle the same size as the base.
When a rectangular pyramid is sliced parallel to the base, the resulting cross-section is a rectangle that is the same size as the base. The parallel slicing ensures that the cross-section maintains the same dimensions as the base of the pyramid. Therefore, option A, a rectangle the same size as the base, represents the cross-section.
James wants to have earned $6,180 amount of interest in 28 years. Currently he finds
that his annual interest rate is 6.12%. Calculate how much money James needs to invest
as his principal in order to achieve this goal.
Answer:
$3606.44
Step-by-step explanation:
The question asks us to calculate the principal amount that needs to be invested in order to earn an interest of $6180 in 28 years at an annual interest rate of 6.12%.
To do this, we need to use the formula for simple interest:
[tex]\boxed{I = \frac{P \times R \times T}{100}}[/tex],
where:
I = interest earned
P = principal invested
R = annual interest rate
T = time
By substituting the known values into the formula above and then solving for P, we can calculate the amount that James needs to invest:
[tex]6180 = \frac{P \times 6.12 \times 28}{100}[/tex]
⇒ [tex]6180 \times 100 = P \times 171.36[/tex] [Multiplying both sides by 100]
⇒ [tex]P = \frac{6180 \times 100}{171.36}[/tex] [Dividing both sides of the equation by 171.36]
⇒ [tex]P = \bf 3606.44[/tex]
Therefore, James needs to invest $3606.44.
An isosceles triangle has two angles both equal to x. The third angle is 45 degrees bigger than either of these. Find the value of x.
Let's use the fact that the sum of the angles of a triangle is always 180 degrees to solve this problem. Let the two equal angles be x, then the third angle is x + 45.Let's add all the angles together:x + x + x + 45 = 180Simplifying this equation, we get:3x + 45 = 180Now, we need to isolate the variable on one side of the equation. We can do this by subtracting 45 from both sides of the equation:3x = 135Finally, we can solve for x by dividing both sides of the equation by 3:x = 45Therefore, the value of x is 45 degrees.
Answer:
45°
Step-by-step explanation:
An isosceles triangle has two angles both equal to x. The third angle is 45 degrees bigger than either of these. Find the value of x.Let's turn the question into an equation
180 = x + x + x + 45
180 - 45 = 3x
135 = 3x
x = 135 : 3
x = 45°
------------------
check
180 = 45 + 45 + 45 + 45
180 = 180
same value the answer is good
This Month
Quality
Productivity
Safety
Engagement
Last Month
Quality
Productivity
Safety
Engagement
ce Scores are based on 100 prant scale,
Great is 80 or stove for a categories
482324R
A
90
79
68
78
A
94
62
70
Group
B
2338-32N
70
58
84
88
B
74
86
76
72
33880*880
96
25
72
92
82
in which performance area are the
groups performing most
consistently compared to last
month?
Quality
Productivity
Associate Engagement
Group A is performing most consistently in terms of quality and associate engagement compared to last month.
To determine which performance area the groups are performing most consistently compared to last month, we need to compare the scores of each performance area between the two months.
Let's analyze each performance area:
Quality:
For Group A, the quality score increased from 90 to 94, indicating an improvement in quality performance. However, for Group B, the quality score decreased from 74 to 70, indicating a decline in quality performance. Therefore, Group A is performing more consistently in terms of quality compared to last month.
Productivity:
For Group A, the productivity score decreased from 79 to 62, showing a significant decline in productivity performance. Similarly, for Group B, the productivity score decreased from 86 to 58, indicating a notable decline as well. Both groups experienced a decrease in productivity performance, but Group A had a larger decline. Therefore, neither group is performing consistently in terms of productivity compared to last month.
Associate Engagement:
For Group A, the engagement score increased from 68 to 70, suggesting a slight improvement in associate engagement. Conversely, for Group B, the engagement score increased from 76 to 72, indicating a slight decline. Both groups had minor changes in engagement scores, but Group A had a smaller change. Therefore, Group A is performing more consistently in terms of associate engagement compared to last month.
Based on the analysis, Group A is performing most consistently in terms of quality and associate engagement compared to last month. However, neither group is performing consistently in terms of productivity. It is important to address the productivity decline and identify areas for improvement to ensure consistent performance across all categories.
for more such question on consistently visit
https://brainly.com/question/15654281
#SPJ8
The sum of negative twenty-nine and twenty-eight is negative seven more than a number. What is the number?
Answer:
8
Step-by-step explanation:
let x be the number,
according to the question,
-29 + 28 = -7 + x
1 + 7 = x
thus, x = 8
A company Charting its profits notices that the relationship between the number of units sold,x, and the profit,P, is a linear. If 170 units sold results in $20 profit and 220 units sold results in $2820 profit, write the profit function for this company.
P=
Find the marginal profit
$
Step-by-step explanation:
a linear relationship or function is described in general as
y = f(x) = ax + b
Because the variable term has the variable x only with the exponent 1, this makes this a straight line - hence the name "linear".
here f(x) is P(x) :
P(x) = ax + b
now we are using both given points (ordered pairs) to calculate a and b :
20 = a×170 + b
2820 = a×220 + b
to eliminate first one variable we subtract equation 1 from equation 2 :
2800 = a×50
a = 2800/50 = 280/5 = 56
now, we use that in any of the 2 original equations to get b :
20 = 56×170 + b
b = 20 - 56×170 = 20 - 9520 = -9500
so,
P(x) = 56x - 9500
How would you describe the difference between the graphs of f (x) = 3x²
and g(x) = -2² ?
OA. g(x) is a reflection of f(x) over the line y = x.
B. g(x) is a reflection of f(x) over the line y = -1.
C. g(x) is a reflection of f(x) over the x-axis.
D. g(x) is a reflection of f(x) over the y-axis.
Comparing the characteristics of the two functions, we can conclude that the graph of g(x) = -2² is a reflection of the graph of f(x) = 3x² over the x-axis (option C).
The given functions are f(x) = 3x² and g(x) = -2².
To understand the difference between their graphs, let's examine the characteristics of each function individually:
Function f(x) = 3x²:
The coefficient of x² is positive (3), indicating an upward-opening parabola.
The graph of f(x) will be symmetric with respect to the y-axis, as any change in x will result in the same y-value due to the squaring of x.
The vertex of the parabola will be at the origin (0, 0) since there are no additional terms affecting the position of the graph.
Function g(x) = -2²:
The coefficient of x² is negative (-2), indicating a downward-opening parabola.
The negative sign will reflect the graph of f(x) across the x-axis, resulting in a vertical flip.
The vertex of the parabola will also be at the origin (0, 0) due to the absence of additional terms.
Comparing the characteristics of the two functions, we can conclude that the graph of g(x) = -2² is a reflection of the graph of f(x) = 3x² over the x-axis (option C). This means that g(x) is obtained by taking the graph of f(x) and flipping it vertically. The reflection occurs over the x-axis, causing the parabola to open downward instead of upward.
Therefore, the correct answer is option C: g(x) is a reflection of f(x) over the x-axis.
For more such questions on functions visit:
https://brainly.com/question/25638609
#SPJ8
Circumference of circle inscribed or circumscribed polygon
Hint: you will need to find the diameter of the circle, use Pythagorean Theorem)
ind then I out of the 3 problems.
Find the exact circumference of each circle by using the given inscribed or circumscribed polygon.
8 cm
15 cm
The exact circumferences of the inscribed and circumscribed circles for the given polygons are 8π cm and 15π cm, respectively.
To find the exact circumference of a circle inscribed or circumscribed by a polygon, we can use the Pythagorean theorem to determine the diameter of the circle.
In the case of an inscribed polygon, the diameter of the circle is equal to the diagonal of the polygon. Let's consider the polygon with a diagonal of 8 cm. If we draw a line connecting two non-adjacent vertices of the polygon, we get a diagonal that represents the diameter of the inscribed circle.
Using the Pythagorean theorem, we can find the length of this diagonal. Let's assume the sides of the polygon are a and b. Then the diagonal can be found using the equation: diagonal^2 = a^2 + b^2. Substituting the given values, we have 8^2 = a^2 + b^2. Solving this equation, we find that a^2 + b^2 = 64.
For the circumscribed polygon with a diagonal of 15 cm, the diameter of the circle is equal to the longest side of the polygon. Let's assume the longest side of the polygon is c. Therefore, the diameter of the circumscribed circle is 15 cm.
Once we have determined the diameter of the circle, we can calculate its circumference using the formula C = πd, where C is the circumference and d is the diameter.
For the inscribed circle, the circumference would be C = π(8) = 8π cm.
For the circumscribed circle, the circumference would be C = π(15) = 15π cm.
For more such questions on circumferences
https://brainly.com/question/27447563
#SPJ8
Suppose a finite population has 6 items and 2 items are selected at random without replacement,then all possible samples will be:
Select one:
a. 15
b. 2
c. 36
d. 6
e. 12
Note: Answer D is NOT the correct answer. Please find the correct answer. Any answer without justification will be rejected automatically.
When 2 items are selected without replacement from a population of 6 items, there are 15 possible samples that can be formed. Option A.
To determine the number of possible samples when 2 items are selected at random without replacement from a population of 6 items, we can use the concept of combinations.
The number of combinations of selecting k items from a set of n items is given by the formula C(n, k) = n! / (k! * (n-k)!), where n! represents the factorial of n.
In this case, we have a population of 6 items and we want to select 2 items. Therefore, the number of possible samples can be calculated as:
C(6, 2) = 6! / (2! * (6-2)!) = 6! / (2! * 4!) = (6 * 5 * 4!) / (2! * 4!) = (6 * 5) / (2 * 1) = 15. Option A is correct.
For more such question on samples. visit :
https://brainly.com/question/13219833
#SPJ8
14x^(2n+1)+7x^(n+3)-21^(n+2)
100 points will be awarded
Answer:
Step-by-step explanation:
The given expression is: 14x^(2n+1) + 7x^(n+3) - 21^(n+2)
Unfortunately, it seems there is a missing exponent for the term "21" in the expression. Please provide the correct exponent for 21, and I'll be happy to help you further simplify the expression.
on a scale drawing 9 inches represents 11 miles how many inches represent 55 miles
Answer:
45 inches represent 55 miles on the scale drawing.
Step-by-step explanation:
To solve this proportion, we can set up the following ratio:
9 inches / 11 miles = x inches / 55 miles
We can cross-multiply to solve for x:
9 inches * 55 miles = 11 miles * x inches
495 inches = 11 miles * x inches
Now, we can isolate x by dividing both sides by 11 miles:
495 inches / 11 miles = x inches
Simplifying the expression:
45 inches = x inches
The product of 3, and a number increased by -7, is -36
┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈
✦ The number is - 5
┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈
[tex]\begin{gathered} \; \sf{\color{pink}{Let \; the \; other \; number \; be \; (x)::}} \\ \end{gathered}[/tex]
Atq,,
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3 \times \bigg \lgroup \: x + ( - 7) \bigg \rgroup = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3 \times \bigg \lgroup \: x - 7 \bigg \rgroup = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x - 21 = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x = - 36 + 21} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x = - 15} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{x = \dfrac{\cancel{ - 15}}{\cancel{ \: 3}}} \qquad \bigg \lgroup \sf{Cancelling \: by \: 3} \bigg \rgroup \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{pink} :\dashrightarrow \underline{\color{pink}\boxed{\colorbox{black}{x = - 5}}} \: \pmb{\bigstar} \\ \\ \end{gathered}[/tex]
The answer is:
z = -5Work/explanation:
The product means we multiply two numbers.
Here, we multiply 3 and a number increased by -7; let that number be z.
So we have
[tex]\sf{3(z+(-7)}[/tex]
simplify:
[tex]\sf{3(z-7)}[/tex]
This equals -36
[tex]\sf{3(z-7)=-36}[/tex]
[tex]\hspace{300}\above2[/tex]
[tex]\frak{solving~for~z}[/tex]
Distribute
[tex]\sf{3z-21=-36}[/tex]
Add 21 on each side
[tex]\sf{3z=-36+21}[/tex]
[tex]\sf{3z=-15}[/tex]
Divide each side by 3
[tex]\boxed{\boxed{\sf{z=-5}}}[/tex]
Which of these relations are functions?
y = 5
x = -2
y=2x-5
2y=x-4
Answer:
True
EXPLANATIONDETAIL STEPS:
(A)Determine whether y = 5 is a function: Click for video explanations: True
(B)Determine whether x = -2 is a function: Click for video explanations: False
(7)Determine whether y = 2x-5 is a function: Click for video explanations: True
(D)Determine whether 2y = x-4 is a function: Click for video explanations: True
(A)Determine whether
=
is a function: Click for video explanations: True
(B)Determine whether
=
is a function: Click for video explanations: False
(7)Determine whether
=
is a function: Click for video explanations: True
(D)Determine whether
=
is a function: Click for video explanations: True
93-(15x10)+(160:16) =
Answer:
Step-by-step explanation:
Let's calculate the expression step by step:
93 - (15 × 10) + (160 ÷ 16)
First, we perform the multiplication:
93 - 150 + (160 ÷ 16)
Next, we perform the division:
93 - 150 + 10
Finally, we perform the subtraction and addition:
-57 + 10
The result is:
-47
Therefore, 93 - (15 × 10) + (160 ÷ 16) equals -47.
find the critical numbers of the function.
f(x)=x^2(x-3)^2
The physician’s order reads to administer Lasix 80 mg PO STAT. You have Lasix 20 mg tablets on hand. How many tablets will you administer to the patient ?
The nurse should administer 4 Lasix 20 mg tablets to the patient to achieve the prescribed dose of 80 mg.
To determine the number of Lasix 20 mg tablets that should be administered to the patient, we need to calculate how many tablets are equivalent to the prescribed dose of 80 mg.
Given that each Lasix tablet contains 20 mg of the medication, we can divide the prescribed dose (80 mg) by the dosage strength of each tablet (20 mg) to find the number of tablets needed.
Number of tablets = Prescribed dose / Dosage strength per tablet
Number of tablets = 80 mg / 20 mg
Number of tablets = 4 tablets
Therefore, the nurse should administer 4 Lasix 20 mg tablets to the patient to achieve the prescribed dose of 80 mg.
It is important to note that this calculation assumes that the Lasix tablets can be divided or split if necessary. However, it is crucial to follow the specific instructions provided by the prescribing physician or consult with a pharmacist if there are any concerns about the appropriate administration of the medication.
Additionally, it is important to consider any additional instructions, such as the frequency and timing of administration, as specified by the physician's order.
For more such questions on administer visit:
https://brainly.com/question/29458949
#SPJ8
45% of the Walton High School student body are male. 90% of Walton females love math, while only 60% of the males love math. What percentage of the student body loves math?
Approximately 76.5% of the student body at Walton High School loves math.
To determine the percentage of the student body that loves math, we need to consider the proportions of males and females in the Walton High School student body and their respective percentages of loving math.
Given that 45% of the student body are males, we can deduce that 55% are females (since the total percentage must add up to 100%). Now let's calculate the percentage of the student body that loves math:
For the females:
55% of the student body are females.
90% of the females love math.
So, the percentage of females who love math is 55% * 90% = 49.5% of the student body.
For the males:
45% of the student body are males.
60% of the males love math.
So, the percentage of males who love math is 45% * 60% = 27% of the student body.
To find the total percentage of the student body that loves math, we add the percentages of females who love math and males who love math:
49.5% + 27% = 76.5%
As a result, 76.5% of Walton High School's student body enjoys maths.
for such more question on percentage
https://brainly.com/question/24877689
#SPJ8
The height h(x), of an object is given by the function h(x) = -16x + 176x + 65
where x is time in seconds and h(x) is height in feet. When does the object reach its maximum height? Round your answer to two decimal places.
To find an object's maximum height, we need to find the vertex of this quadratic equation.
Answer: 5.50 seconds
Terms to know:
Quadratic function: A quadratic function is a polynomial function of degree 2, which means the highest power of the variable in the equation is 2.
Vertex: The vertex of a quadratic function is the point on the graph where the function reaches its highest or lowest point. In the case of a quadratic function in the form f(x) = ax^2 + bx + c, the vertex is given by the coordinates (x, f(x)).
Step-by-step explanation:
The vertex of a quadratic equation can be represented as [tex](\frac{-b}{2a}, f(\frac{-b}{2a})[/tex]
Since we only are looking at the time it takes to reach maximum height we will only look at the x value.
[tex]x= \frac{-176}{2(-16)}[/tex]
[tex]x= 5.50[/tex]
how can you write the expression with a rationalized denominator?
3 sqrt 2 / 3 sqrt 6
see photo attached for answers
The expression (3√2) / (3√6) with a rationalized denominator is 3√9 / 6. Option C is the correct answer.
To rationalize the denominator in the expression (3√2) / (3√6), we can multiply both the numerator and denominator by the conjugate of the denominator. The conjugate of √6 is -√6, so we multiply the expression by (-√6) / (-√6):
(3√2 / 3√6) * (-√6 / -√6)
This simplifies to:
-3√12 / (-3√36)
Further simplifying, we have:
-3√12 / (-3 * 6)
-3√12 / -18
Finally, we can cancel out the common factor of 3:
- 3√9 / - 6.
Simplifying further, we get:
3√9 / 6.
Option C is the correct answer.
For such more question on denominator:
https://brainly.com/question/29618306
#SPJ8