Answer: C. A function only
Step-by-step explanation:
There is not relation to the dots on the graph.
The graph represents a relation only.
Hence option D is correct.
Since we know that
A function is a mathematical concept that describes a relationship between two sets, where each element in the first set (the domain) corresponds to exactly one element in the second set (the range). In simpler terms, a function is a rule that assigns each input value a unique output value.
In contrast, a relation is a general concept that describes any set of objects that have some kind of relationship to each other. In mathematics, a relation is often represented as a set of ordered pairs and can be visualized as a graph. For example, a relation could be a set of all points on a circle, represented as an ordered pair of x and y coordinates.
As we can see in the graph
There is more than one value for the number represented on the X-axis
We can see that at a particular age, there is more than one gray hairs worker.
Hence the graph represents a relation only.
To learn more about the Functions and Relations visit:
https://brainly.com/question/8892191
#SPJ2
1)
Check all the expressions that are equal to this one:
5. (4+1)
A. (5 • 4) + 1
B. 5.4 + 5 - 1
C. (4+1) • 5
D. 5. (1 + 4)
Given: g(x) = square root x-4 and h(x) = 2x - 8 What are the restrictions on the domain of g of h. x greater than or equal to
Answer:
Step-by-step explanation:
x-4 greater or equal 0
x greater or equal 4
Answer:
The actual answer is x is greater than or equal to 6 (i used the answer that was on here and got it wrong so here is the correct answer!!)
just did the test on edg 2021
Determine whether each function is even, odd, or neither.g(x) = |x-3| g(x) = x + x
Answer:
Step-by-step explanation:
g(x) = |x-3| is neither even nor odd; the graph is not symmetric about the y-axis (as characterizes even functions), and is not symmetric about the origin either.
g(x) = x + x is actually g(x) = 2x, which is an odd function. The graph is symmetric about the origin.
The pair of figures is similar. Find x. Round to the nearest tenth if necessary.
0.1 ft
4.5 ft
0.9 ft
4 ft
Answer:
x = 4.5 ft
Step-by-step explanation:
Since the figures are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{18}{x}[/tex] = [tex]\frac{8}{2}[/tex] ( cross- multiply )
8x = 36 ( divide both sides by 8 )
x = 4.5
What is the point-slope form of a line with slope 3/2 that contains the point
(-1,2)?
A. y+2 = (x - 1)
B. y-2 = {(x-1)
C. y-2 = = {(x+1)
D. y+2= {(x+1)
Answer:
y - 2 = (3/2)(x + 1)
Step-by-step explanation:
Start with the point-slope formula y - k = m(x - h). With m = 3/2, h = -1 and k = 2, we get:
y - 2 = (3/2)(x + 1)
by how much is 25% of #25 greater than 15% of #15
Answer:
4
Step-by-step explanation:
25% of 25
0.25 × 25 = 6.25
15% of 15
0.15 × 15 = 2.25
Find the difference.
6.25 - 2.25
= 4
The graph represents function 1 and the equation represents function 2: A graph with numbers 0 to 4 on the x-axis and y-axis at increments of 1. A horizontal straight line is drawn joining the ordered pairs 0, 3 and 4, 3. Function 2 y = 5x + 1 How much more is the rate of change of function 2 than the rate of change of function 1? PLEASE ANSWER SOON I NEED IT BAD WHO EVER ANSWERS FIRST GETS VOTE FOR BRAINLYIEST
Answer:
Rate of change of function 1: ZERO
Rate of change of function 2: TWO
The rate of change of function 2 is 2 more than the rate of change of function 1.
Step-by-step explanation:
Hope this helps and please mark as brainiest!
Answer:
The answer is 2.
Step-by-step explanation:
Does the following systems produce an infinite number of solutions 2y + x = 4 ; 2y = -x +4
Answer:
Yes.
Step-by-step explanation:
In the future, simply plug both equations into Desmos.
. The client was hoping for a likability score of at least 5.2. Use your sample mean and standard deviation identified in the answer to question 1 to complete the following table for the margins of error and confidence intervals at different confidence levels. Note: No further calculations are needed for the sample mean. (6 points: 2 points for each completed row) Confidence Level | Margin of error | Center interval | upper interval | Lower interval 68 95 99.7
Answer:
The 68% confidence interval is (6.3, 6.7).
The 95% confidence interval is (6.1, 6.9).
The 99.7% confidence interval is (5.9, 7.1).
Step-by-step explanation:
The Central Limit Theorem states that if we have a population with mean μ and standard deviation σ and take appropriately huge random-samples (n ≥ 30) from the population with replacement, then the distribution of the sample-means will be approximately normally distributed.
Then, the mean of the sample means is given by,
[tex]\mu_{\bar x}=\bar x[/tex]
And the standard deviation of the sample means (also known as the standard error)is given by,
[tex]\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}} \ \text{or}\ \frac{s}{\sqrt{n}}[/tex]
The information provided is:
[tex]n=400\\\\\bar x=6.5\\\\s=4[/tex]
As n = 400 > 30, the sampling distribution of the sample-means will be approximately normally distributed.
(a)
Compute the 68% confidence interval for population mean as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot \frac{s}{\sqrt{n}}[/tex]
[tex]=6.5\pm 0.9945\cdot \frac{4}{\sqrt{400}}\\\\=6.5\pm 0.1989\\\\=(6.3011, 6.6989)\\\\\approx (6.3, 6.7)[/tex]
The 68% confidence interval is (6.3, 6.7).
The margin of error is:
[tex]MOE=\frac{UL-LL}{2}=\frac{6.7-6.3}{2}=0.20[/tex]
(b)
Compute the 95% confidence interval for population mean as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot \frac{s}{\sqrt{n}}[/tex]
[tex]=6.5\pm 1.96\cdot \frac{4}{\sqrt{400}}\\\\=6.5\pm 0.392\\\\=(6.108, 6.892)\\\\\approx (6.1, 6.9)[/tex]
The 95% confidence interval is (6.1, 6.9).
The margin of error is:
[tex]MOE=\frac{UL-LL}{2}=\frac{6.9-6.1}{2}=0.40[/tex]
(c)
Compute the 99.7% confidence interval for population mean as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot \frac{s}{\sqrt{n}}[/tex]
[tex]=6.5\pm 0.594\cdot \frac{4}{\sqrt{400}}\\\\=6.5\pm 0.392\\\\=(5.906, 7.094)\\\\\approx (5.9, 7.1)[/tex]
The 99.7% confidence interval is (5.9, 7.1).
The margin of error is:
[tex]MOE=\frac{UL-LL}{2}=\frac{7.1-5.9}{2}=0.55[/tex]
Denise is planning to put a deck in her back yard. The deck will be a 10-by-7-foot rectangle with a semicircle of diameter 4 feet, as shown below. Find the area of the deck (in square feet).(round your answer to two decimal places)
Answer:
[tex]approx. = 85.28 {ft}^{2} [/tex]
Step-by-step explanation:
You can think of this as adding the area of the rectangular portion of the deck (length x width) and the semicircular portion (πr^2)/2.
(l×w)+(πr^2)/2
(10×7)+((π2^2)/2
79+2π
[tex]approx. = 85.28 {ft}^{2} [/tex]
According to a recent study, some experts believe that 15% of all freshwater fish in a particular country have such high levels of mercury that they are dangerous to eat. Suppose a fish market has 150 fish we consider randomly sampled from the population of edible freshwater fish. Use the Central Limit Theorem (and the Empirical Rule) to find the approximate probability that the market will have a proportion of fish with dangerously high levels of mercury that is more than two standard errors above 0.15. You can use the Central Limit Theorem because the fish were randomly sampled; the population is more than 10 times 150; and n times p is 22.5, and n times (1 minus p) is 127.5, and both are more than 10.
Answer:
The approximate probability that the market will have a proportion of fish with dangerously high levels of mercury that is more than two standard errors above 0.15 is 0.95.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:
[tex]\mu_{\hat p}=0.15[/tex]
The standard deviation of this sampling distribution of sample proportion is:
[tex]\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}[/tex]
As the sample size is large, i.e. n = 150 > 30, the central limit theorem can be used to approximate the sampling distribution of sample proportion by the normal distribution.
Compute the mean and standard deviation as follows:
[tex]\mu_{\hat p}=0.15\\\\\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.15(1-0.15)}{150}}=0.0292[/tex]
So, [tex]\hat p\sim N(0.15, 0.0292^{2})[/tex]
In statistics, the 68–95–99.7 rule, also recognized as the empirical rule, is a shortcut used to recall that 68%, 95% and 99.7% of the Normal distribution lie within one, two and three standard deviations of the mean, respectively.
Then,
P (µ-σ < X < µ+σ) ≈ 0.68
P (µ-2σ <X < µ+2σ) ≈ 0.95
P (µ-3σ <X < µ+3σ) ≈ 0.997
Then the approximate probability that the market will have a proportion of fish with dangerously high levels of mercury that is more than two standard errors above 0.15 is 0.95.
That is:
[tex]P(\mu_{\hat p}-2\sigma_{\hat p}<\hat p<\mu_{\hat p}+2\sigma_{\hat p})=0.95\\\\P(0.15-2\cdot0.0292<\hat p<0.15+2\cdot0.0292)=0.95\\\\P(0.092<\hat p<0.208)=0.95[/tex]
I need help plz someone help me solved this problem I need help ASAP! I will mark you as brainiest!
Answer: k = 12
Step-by-step explanation:
x² + kx + 36 = 0
In order for x to have exactly one solution, it must be a perfect square.
(x + √36)² = 0
(x + 6)² = 0
(x + 6)(x + 6) = 0
x² + 6x + 6x + 36 = 0
x² + 12x + 36 = 0
k = 12
State the domain and range of the following functions f(x) =1/x+3 g(x) =sqrt x+6
Answer:
For the function [tex]f(x)=\frac{1}{x} +3[/tex]. The domain is [tex]\left(-\infty \:,\:0\right)\cup \left(0,\:\infty \:\right)[/tex] and the range is [tex]\left(-\infty, 3\right) \cup \left(3, \infty\right)[/tex].
For the function [tex]g(x) =\sqrt{x+6}[/tex]. The domain is [tex]\left[-6, \infty\right)[/tex] and the range is [tex]\left[0, \infty\right)[/tex].
Step-by-step explanation:
The domain of a function is the set of input or argument values for which the function is real and defined.
The range of a function is the complete set of all possible resulting values of the dependent variable, after we have substituted the domain.
[tex]f(x)=\frac{1}{x} +3[/tex] is a rational function. A rational function is a function that is expressed as the quotient of two polynomials.
Rational functions are defined for all real numbers except those which result in a denominator that is equal to zero (i.e., division by zero).
The domain of the function is [tex]\left(-\infty \:,\:0\right)\cup \left(0,\:\infty \:\right)[/tex].
The range of the function is [tex]\left(-\infty, 3\right) \cup \left(3, \infty\right)[/tex].
[tex]g(x) =\sqrt{x+6}[/tex] is a square root function.
Square root functions are defined for all real numbers except those which result in a negative expression below the square root.
The expression below the square root in [tex]g(x) =\sqrt{x+6}[/tex] is [tex]x+6[/tex]. We want that to be greater than or equal to zero.
[tex]x+6\geq 0\\x\ge \:-6[/tex]
The domain of the function is [tex]\left[-6, \infty\right)[/tex].
The range of the function is [tex]\left[0, \infty\right)[/tex].
The half-life of radium-226 is 1590 years. If a sample contains 400 mg how many mg will remain after 4000 years?
Answer:
69.9 mg
Step-by-step explanation:
A = A₀ (½)^(t / T)
where A is the final amount,
A₀ is the initial amount,
t is time,
and T is the half life.
A = 400 (½)^(4000 / 1590)
A = 69.9 mg
The length of a rectangle is seven times its width. The area of the rectangle is 175 square centimeters. Find the dimensions of the rectangle.
Answer:
The length is 35cmThe width is 5cmStep-by-step explanation:
Area of a rectangle = l × w
where
l is the length
w is the width
The length is seven times the width is written as
l = 7w
Area of the rectangle = 175 cm²
7w × w = 175
7w² = 175
Divide both sides by 7
w² = 25
Find the square root of both sides
w = √25
w = 5cm
But l = 7w
l = 7(5)
l = 35cm
The length is 35cm
The width is 5cm
Hope this helps you.
Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. text({) 1/4, - 2/9, 3/16, - 4/25, ...text(})
Answer:
The general term for the given sequence is:
[tex]a_n=(-1)^{n+1}\dfrac{n}{(n+1)^2}[/tex]
Step-by-step explanation:
The given series is:
[tex]\dfrac{1}4, - \dfrac{2}9, \dfrac{3}{16}, - \dfrac{4}{25}, ......[/tex]
First of all, let us have a look at the positive and negative sign of the sequence.
2nd, 4th, 6th ..... terms have a negative sign.
For this we can use the following
[tex](-1)^{n+1}[/tex]
i.e. Whenever 'n' is odd, power of (-1) will become even resulting in a positive term for odd terms i.e. (1st, 3rd, 5th ........ terms)
Whenever 'n' is even, power of (-1) will become odd resulting in a negative term for even terms i.e. (2nd, 4th, 6th ..... terms)
Now, let us have a look at the numerator part:
1, 2, 3, 4.....
It is simply [tex]n[/tex].
Now, finally let us have a look at the denominator:
4, 9, 16, 25 ......
There are squares of the (n+1).
i.e. 1st term has a square of 2.
2nd term has a square of 3.
and so on
So, it can be represented as:
[tex](n+1)^2[/tex]
[tex]\therefore[/tex] nth term of the sequence is:
[tex]a_n=(-1)^{n+1}\dfrac{n}{(n+1)^2}[/tex]
Answer:
7
Step-by-step explanation:
Evaluate the expression ........
Answer:
13
Step-by-step explanation:
p^2 -6p +6
Let p=-1
(-1)^2 -6(-1) +6
1 +6+6
13
Show all work to solve 3x^2 – 5x – 2 = 0.
Answer:
Step-by-step explanation:
3x2−5x−2=0
For this equation: a=3, b=-5, c=-2
3x2+−5x+−2=0
Step 1: Use quadratic formula with a=3, b=-5, c=-2.
x= (−b±√b2−4ac )2a
x= (−(−5)±√(−5)2−4(3)(−2) )/2(3)
x= (5±√49 )/6
x=2 or x= −1 /3
Answer:
x=2 or x= −1/ 3
The solutions to the equation are x = -1/3 and x = 2.
Here are the steps on how to solve [tex]3x^{2}[/tex] – 5x – 2 = 0:
First, we need to factor the polynomial. The factors of 3 are 1, 3, and the factors of -2 are -1, 2. The coefficient on the x term is -5, so we need to find two numbers that add up to -5 and multiply to -2. The two numbers -1 and 2 satisfy both conditions, so the factored polynomial is (3x + 1)(x - 2).
Next, we set each factor equal to 0 and solve for x.
(3x + 1)(x - 2) = 0
3x + 1 = 0
3x = -1
x = -1/3
x - 2 = 0
x = 2
Therefore, the solutions to the equation [tex]3x^{2}[/tex] – 5x – 2 = 0 are x = -1/3 and x = 2.
Here is the explanation for each of the steps:
Step 1: In order to factor the polynomial, we need to find two numbers that add up to -5 and multiply to -2. The two numbers -1 and 2 satisfy both conditions, so the factored polynomial is (3x + 1)(x - 2).
Step 2: We set each factor equal to 0 and solve for x. When we set 3x + 1 equal to 0, we get x = -1/3. When we set x - 2 equal to 0, we get x = 2. Therefore, the solutions to the equation are x = -1/3 and x = 2.
Learn more about equation here: brainly.com/question/29657983
#SPJ2
Find the percent of increase. Original Price: $200 Retail Price: $250
Answer:
The percent of increase is 25%
Step-by-step explanation:
Percentage increase = increase in price/original price × 100 = ($250 - $200)/$200 × 100 = $50/$200 × 100 = 25%
If two variables, x and y, have a very strong linear relationship, then:______. a. there is evidence that x causes a change in y.b. there is evidence that y causes a change in x.c. there might not be any causal relationship between x and y.d. none of these alternatives is correct.
Answer:
c. there might not be any causal relationship between x and y.
Step-by-step explanation:
A correlation can be defined as a numerical measure of the relationship between existing between two variables (x and y).
In Mathematics and Statistics, a group of data can either be negatively correlated, positively correlated or not correlated at all.
1. For a negative correlation: a set of values in a data increases, when the other set begins to decrease. Here, the correlation coefficient is less than zero (0).
2. For a positive correlation: a set of values in a data increases, when the other set also increases. Here, the correlation coefficient is greater than zero (0).
3. For no or zero correlation: a set of values in a data has no effect on the other set. Here, the correlation coefficient is equal to zero (0).
If two variables, x and y, have a very strong linear relationship, then there might not be any causal relationship between x and y.
A causal relation exists between two variables (x and y), if the occurrence of the first causes the other; where, the first variable (x) is referred to as the cause while the second variable (y) is the effect.
A strong linear relationship exists between two variables (x and y), if they both increases or decreases at the same time. It usually has a correlation coefficient greater than zero or a slope of 1.
Hence, if two variables, x and y, have a very strong linear relationship, then there might not be any causal relationship between x and y.
An object moves along a horizontal coordinate line in such a way that its position at time t is specified by s equals t cubed minus 3 t squared minus 24 t plus 8. Here s is measured in centimeters and t in seconds. When is the object slowing down; that is, when is its speed decreasing?
Answer:
a)
The object slowing down S = -72 centimetres after t = 4 seconds
b)
The speed is decreasing at t = -2 seconds
The objective function S = 36 centimetres
Step-by-step explanation:
Step(i):-
Given S = t³ - 3 t² - 24 t + 8 ...(i)
Differentiating equation (i) with respective to 'x'
[tex]\frac{dS}{dt} = 3 t^{2} - 3 (2 t) - 24[/tex]
Equating Zero
3 t ² - 6 t - 24 = 0
⇒ t² - 2 t - 8 = 0
⇒ t² - 4 t + 2 t - 8 = 0
⇒ t (t-4) + 2 (t -4) =0
⇒ ( t + 2) ( t -4) =0
⇒ t = -2 and t = 4
Again differentiating with respective to 'x'
[tex]\frac{d^{2} S}{dt^{2} } = 6 t - 6[/tex]
Step(ii):-
Case(i):-
Put t= -2
[tex]\frac{d^{2} S}{dt^{2} } = 6 t - 6 = 6 ( -2) -6 = -12 -6 = -18 <0[/tex]
The maximum object
S = t³ - 3 t² - 24 t + 8
S = ( -2)³ - 3 (-2)² -24(-2) +8
S = -8-3(4) +48 +8
S = - 8 - 12 + 56
S = - 20 +56
S = 36
Case(ii):-
put t = 4
[tex]\frac{d^{2} S}{dt^{2} } = 6 t - 6 = 6 ( 4) -6 = 24 -6 = 18 >0[/tex]
The object slowing down at t =4 seconds
The minimum objective function
S = t³ - 3 t² - 24 t + 8
S = ( 4)³ - 3 (4)² -24(4) +8
S = 64 -48 - 96 +8
S = - 72
The object slowing down S = -72 centimetres after t = 4 seconds
Final answer:-
The object slowing down S = -72 centimetres after t = 4 seconds
The speed is decreasing at t = -2 seconds
The objective function S = 36 centimetres
Which equation can be used to find the area of the rectangle? A. A=9+4 B. A=1/2 (9)(4) C. A=9+9+4+4 D. A=(9)(4)
Answer:
D. A=(9)(4)
Step-by-step explanation:
area= length x width = 9x4
please help will mark brainliest!
Answer:
1. Vertex (-3,2)
A) (x+3)² + 5
B) (x-3)² + 2
C) (x-1)² -5
I hope these are all correct
Step-by-step explanation:
How do you write 0.0683 in scientific notation? ____× 10^____
Answer:
It's written as
[tex]6.83 \times {10}^{ - 2} [/tex]
Hope this helps you
Answer:
6.83 × 10 -2
hopefully this helped :3
A restaurant has a main location and a traveling food truck. The first matrix A shows the number of managers and associates employed. The second matrix B shows the average annual cost of salary and benefits (in thousands of dollars). Complete parts (a) through (c) below.
Managers Associates
Restaurant 5 25 = A
Food Truck 1 4
Salary Benefits
Managers 41 6 = B
Associates 20 2
a. Find the matrix product AB .
b. Explain what AB represents.
c. According to matrix AB , what is the total cost of salaries for all employees (managers and associates) at the restaurant? What is the total cost of benefits for all employees at the food truck?
Answer:
A*B= [tex]\left[\begin{array}{cc}705&80\\121&14 \end{array}\right][/tex]
Step-by-step explanation:
Given A= [tex]\left[\begin{array}{cc}5&25\\1&4\end{array}\right] \left[\begin{array}{cc}41&6\\20&2\end{array}\right][/tex] = B
Finding A*B means multiplying the first row with the first column and first row with the second column would give the first row elements. The second ro0w elements are obtained by multiplying the second row with the 1st column and second row with the second column.
so A*B= [tex]\left[\begin{array}{cc}5*41+ 25*20&5*6 + 25*2\\ 1*41+4*20 & 1*6+ 4*2\end{array}\right][/tex]
Now multiply and add the separate elements of the matrix A*B=
[tex]\left[\begin{array}{cc}205+500&30+50\\41+80&6+8\end{array}\right][/tex]
A*B= [tex]\left[\begin{array}{cc}705&80\\121&14 \end{array}\right][/tex]
b. The 1st element of the 1st row shows the salaries of the managers and 2nd element of the 1st row the salaries of associates at the restaurant . The second row 1 st element shows the benefits of the managers and 2nd element the benefits of the associates at the food truck.
c. The total cost of salaries for all employees (managers and associates) at the restaurant = 705 + 80 = 785
Total cost of benefits for all employees at the food truck= 121 + 14= 135
I NEED HELP FAST, THANKS! :)
Answer:
33 units²
Step-by-step explanation:
A (graphing) calculator shows you that f(4) ≈ 8, and f(8) ≈ 8.5. The curve is almost a straight line between, so the area is approximately ...
A = (1/2)(8 + 8.5)(4) = 33
__
If you do the integration, it gets a bit messy.
[tex]\displaystyle\dfrac{5}{7}\int_4^8{x^{2/7}}\,dx+\dfrac{1}{2}\int_4^8{x^{4/9}}\,dx+\int_4^8{6}\,dx\\\\=\left.\left(\dfrac{5}{9}x^{9/7}+\dfrac{9}{26}x^{13/9}+6x\right)\right|_4^8\approx 33.16[/tex]
The appropriate answer choice is 33 square units.
Using the matrix solver on your calculator, find the solution to the system of
equations shown below.
3x - y = 4
6x - 2y = 7
A. x = 6, y = 2
B. No solution
C. x= 3, y= 1
D. More than 1 solution
SUBMIT
Answer:
B. No solution.
Step-by-step example
I will try to solve your system of equations.
3x−y=4;6x−2y=7
Step: Solve3x−y=4for y:
3x−y+−3x=4+−3x(Add -3x to both sides)
−y=−3x+4
−y
−1
=
−3x+4
−1
(Divide both sides by -1)
y=3x−4
Step: Substitute3x−4foryin6x−2y=7:
6x−2y=7
6x−2(3x−4)=7
8=7(Simplify both sides of the equation)
8+−8=7+−8(Add -8 to both sides)
0=−1
Therefore, there is no solution, and the lines are parallel.
ope Equation
fy
What is the equation of the line in point-slope form?
4
= {(x + 4)
Oy+4=;
O y-4 = 2(x + 4)
N
Oy - 0 = 2(x-4)
Oy - 4 = 2(x -0)
4
-2.
2.
Answer:
A
Step-by-step explanation:
For point-slope form, you need a point and the slope.
y - y₁ = m(x - x₁)
Looking at the graph, the points you have are (4, 0) and (-4, -4). You can use these points to find the slope. Divide the difference of the y's by the difference of the x's/
-4 - 0 = -4
-4 - 4 = -8
-4/-8 = 1/2
The slope is 1/2. This cancels out choices C and D.
With the point (-4, -4), A is the answer.
the equation of the line in slope-intercept form is:
y = (1/2)x - 2
What is the Linear equation?A linear equation is an algebraic equation of the form y=mx+b, where m is the slope and b is the y-intercept, and only a constant and a first-order (linear) term are included. Sometimes, the aforementioned is referred to as a "linear equation of two variables," with y and x serving as the variables.
From the graph, two points on the line are (-4, -4) and (4,0),
The formula for the slope of a line is:
m = (y₂ - y₁) / (x₁ - x₁)
where (x₁, y₁) and (x₂, y₂) are two points on the line.
Using the given points (-4, -4) and (4, 0), we can calculate the slope:
m = (0 - (-4)) / (4 - (-4))
m = 4 / 8
m = 1/2
Now that we know the slope, we can use the slope-intercept form of a line, which is:
y = mx + b
where m is the slope and b is the y-intercept.
To find the y-intercept, we can use one of the given points on the line. Let's use the point (-4, -4):
y = mx + b
-4 = (1/2)(-4) + b
-4 = -2 + b
b = -2
Therefore, the slope-intercept form of the line is y = (1/2)x - 2.
Learn more about Linear equations here:
https://brainly.com/question/11897796
#SPJ7
In 12 years, a bond with a 6.35% annual rate earned $7620 as simple interest. What was the principle amount of the bond
Answer:
The principal amount is $10160
Step-by-step explanation:
Given; Simple interest, I = 7620
Rate, R = 6.25
Time, T = 12
Principal, P =?
The formula for simple interest, I is;
[tex]I = \frac{PRT}{100}[/tex]
Making P the subject of formula;
[tex]P = \frac{I100}{RT}[/tex]
[tex]P = \frac{7620 *100}{6.25*12}[/tex]
[tex]P = \frac{762000}{75}\\P = 10160[/tex]
Therefore, the principal amount is $10160
Answer:
10000
Step-by-step explanation:
If an amount of money, P, called the principal, is invested for a period of t years at an annual interest rate r, the amount of simple interest, I, earned is given by
I=PrtwhereIPrt=interest=principal=rate=time
The following information is given.
Irt=$7,620=0.0635=12 years
Substituting the given information into the simple interest formula and solving for P gives
7,6207,620=(P)(0.0635)(12)=0.762P
Dividing both sides by 0.762, we have
P=7,6200.762=10,000
Thus, the principal amount of the bond was $10,000.
Write a two column proof Given: AB || DC; BC || AE Prove: BC/EA = BD/EB
Answer:
Step-by-step explanation:
Given:
AB║DC and BC║AE
To prove:
[tex]\frac{\text{BC}}{\text{EA}}=\frac{\text{BD}}{\text{EB}}[/tex]
Statements Reasons
1). ∠ABE ≅ ∠CDB 1). Alternate interior angles
2). ∠AEB ≅ ∠CBD 2). Alternate interior angles
3). ΔCBD ~ ΔAEB 3). AA property of similarity
4). [tex]\frac{\text{BC}}{\text{EA}}=\frac{\text{BD}}{\text{EB}}[/tex] 4). Property of similarity [Corresponding sides of two similar triangles are proportional]