Answer:
Mean increase or decrease (same quantity) according to the quantity of the increment or reduction
As all elements were equally affected the standard deviation will remain the same
Step-by-step explanation:
For the original set of salaries: ( In thousands of $ )
51, 53, 48, 62, 34, 34, 51, 53, 48, 30, 62, 51, 46
Mean = μ₀ = 47,92
Standard deviation = σ = 9,56
If we raise all salaries in the same amount ( 5 000 $ ), the nw set becomes
56,58,53,67,39,39,56,58,53,35,67,56,51
Mean = μ₀´ = 52,92
Standard deviation = σ´ = 9,56
And if we reduce salaries in the same quantity ( 2000 $ ) the set is
49,51,46,60,32,32,49,51,46,28,60,49,44
Mean μ₀´´ = 45,92
Standard deviation σ´´ = 9,56
What we observe
1.-The uniform increase of salaries, increase the mean in the same amount
2.-The uniform reduction of salaries, reduce the mean in the same quantity
3.-The standard deviation in all the sets remains the same.
We can describe the situation as a translation of the set along x-axis (salaries). If we normalized the three curves we will get a taller curve (in the first case) and a smaller one in the second, but the data spread around the mean will be the same
Any uniform change in the data will directly affect the mean value
Uniform changes in values in data set will keep standard deviation constant
An article gave the accompanying data on ultimate load (kN) for two different types of beams. Assuming the underlying distributions are Normal, calculate and interpret a 99% Cl for the difference between the true average load for the fiberglass beams and that for the carbon beams.
Type Sample size Sample Mean Sample SD
Fiberglass grid 26 33.4 2.2
Commercial carbon 26 42.8 4.3
grid
1. Calculate and interpret a 99% Cl for true average stance duration among elderly individuals.
2. Carry out a test of hypotheses at significance level 0.05 to decide whether true average stance duration is larger among elderly individuals than younger individuals.
Answer:
The 99% confidence interval for the difference between the true average load for the fiberglass beams and that for the carbon beams is (-11.937, -6.863).
Step-by-step explanation:
We have to calculate a 99% confidence interval for the difference between the true average load for the fiberglass beams and that for the carbon beams.
The sample 1 (Fiberglass), of size n1=26 has a mean of 33.4 and a standard deviation of 2.2.
The sample 2 (Carbon), of size n2=26 has a mean of 42.8 and a standard deviation of 4.3.
The difference between sample means is Md=-9.4.
[tex]M_d=M_1-M_2=33.4-42.8=-9.4[/tex]
The estimated standard error of the difference between means is computed using the formula:
[tex]s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{2.2^2}{26}+\dfrac{4.3^2}{26}}\\\\\\s_{M_d}=\sqrt{0.186+0.711}=\sqrt{0.897}=0.9473[/tex]
The critical t-value for a 99% confidence interval is t=2.678.
The margin of error (MOE) can be calculated as:
[tex]MOE=t\cdot s_{M_d}=2.678 \cdot 0.9473=2.537[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=M_d-t \cdot s_{M_d} = -9.4-2.537=-11.937\\\\UL=M_d+t \cdot s_{M_d} = -9.4+2.537=-6.863[/tex]
The 99% confidence interval for the difference between the true average load for the fiberglass beams and that for the carbon beams is (-11.937, -6.863).
In this way, we can calculate the individual duration of each one and the duration time, knowing that the sample means:
The 99% confidence interval for the difference between the true average load for the fiberglass beams and that for the carbon beams is -11.937 and -6.863.
We have to calculate a 99% confidence interval for the difference between the true average load for the fiberglass beams and that for the carbon beams. The sample 1 (Fiberglass), of size n1=26 has a mean of 33.4 and a standard deviation of 2.2. The sample 2 (Carbon), of size n2=26 has a mean of 42.8 and a standard deviation of 4.3. The difference between sample means is Md=-9.4.
[tex]Sm_d= \sqrt{\frac{\sigma^2_1}{n_1} +\frac{\sigma^2_2}{n_2}} = \sqrt{(0.186)+(0.711) }= 0.9473[/tex]
The critical t-value for a 99% confidednce interval is t=2.678. The margin of error (MOE) can be calculated as:
[tex]MOE=t*8M_d = (2.678)(0.9473)= 2.537[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL= M_d-t*SM_d = -9.4-2.537= -11.937\\UL= M_d+t*SM_d= -9.4+2.537= -6.863[/tex]
The 99% confidence interval for the difference between the true average load for the fiberglass beams and that for the carbon beams is (-11.937, -6.863).
See more about statistics at brainly.com/question/2289255
Dairy cows at large commercial farms often receive injections of bST (Bovine Somatotropin), a hormone used to spur milk production. Bauman et al. (Journal of Dairy Science, 1989) reported that 12 cows given bST produced an average of 28.0 kg/d of milk. Assume that the standart deviation of milk production is 2.25 kg/d.
Requried:
a. Find a 99% confidence interval for the true mean milk production.
b. If the farms want the confidence interval to be no wider than ± 1.25 kg/d, what level of confidence would they need to use?
Answer:
a) 26.33 kg/d and 29.67 kg/d
b) 94.5%
Step-by-step explanation:
a. Find a 99% confidence interval for the true mean milk production.
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1-0.99}{2} = 0.005[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].
So it is z with a pvalue of [tex]1-0.005 = 0.995[/tex], so [tex]z = 2.575[/tex]
Now, find the margin of error M as such
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.575*\frac{2.25}{\sqrt{12}} = 1.67[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 28 - 1.67 = 26.33 kg/d
The upper end of the interval is the sample mean added to M. So it is 28 + 1.67 = 29.67 kg/d
The 99% confidence interval for the true mean milk production is between 26.33 kg/d and 29.67 kg/d
b. If the farms want the confidence interval to be no wider than ± 1.25 kg/d, what level of confidence would they need to use?
We need to find z initially, when M = 1.25.
[tex]M = z*\frac{2.25}{\sqrt{12}} = 1.67[/tex]
[tex]1.25 = z*\frac{2.25}{\sqrt{12}} = 1.67[/tex]
[tex]2.25z = 1.25\sqrt{12}[/tex]
[tex]z = \frac{1.25\sqrt{12}}{2.25}[/tex]
[tex]z = 1.92[/tex]
When [tex]z = 1.92[/tex], it has a pvalue of 0.9725.
1 - 2*(1 - 0.9725) = 0.945
So we should use a confidence level of 94.5%.
Factor completely 5x(x + 3) + 6(x + 3). (1 point)
Answer:
The answer is ( 5x + 6 ) ( x + 3 )Step-by-step explanation:
5x(x + 3) + 6(x + 3)
The final answer is
( 5x + 6 ) ( x + 3 )
Hope this helps you
There are 60 people at the subway station 12 of them jumped the
turnstile. What percentage of people jumped the turnstile? What
percentage of people paid?
Answer:
20% jumped the turnstile
80% paid
Step-by-step explanation:
We can calculate the percent of people that jumped it by dividing the number that did by the total:
12/60 = 0.2, which is 20%
If 20% jumped it, then this means 80% paid.
Answer:
jumped= 20%
paid= 80%
Step-by-step explanation:
[tex]\frac{12}{60}[/tex]×100 = 20%
[tex]\frac{48}{60}[/tex]×100 = 80%
You are given that sin(A)=−20/29, with A in Quadrant III, and cos(B)=12/13, with B in Quadrant I. Find sin(A+B). Give your answer as a fraction.
Answer:
[tex]sin(A+B)=-\dfrac{345}{377}[/tex]
Step-by-step explanation:
Given that:
[tex]sin(A)=-\dfrac{20}{29}\\cos(B)=\dfrac{12}{13}[/tex]
A is in 3rd quadrant and B is in 1st quadrant.
To find: sin(A+B)
Solution:
We know the Formula:
1. [tex]sin(A+B) = sinAcosB+cosAsinB[/tex]
2. [tex]sin^{2} \theta+cos^{2} \theta=1[/tex]
Now, let us find the values of cosA and sinB.
[tex]sin^{2} A+cos^{2} A=1\\\Rightarrow (\frac{-20}{29})^2+cos^{2} A=1\\\Rightarrow cos^{2} A=1- \dfrac{400}{941}\\\Rightarrow cos^{2} A=\dfrac{941-400}{941}\\\Rightarrow cos^{2} A=\dfrac{441}{941}\\\Rightarrow cos A=\pm \dfrac{21}{29}[/tex]
A is in 3rd quadrant, so cosA will be negative,
[tex]\therefore cos A=-\dfrac{21}{29}[/tex]
[tex]sin^{2} B+cos^{2} B=1\\\Rightarrow sin^{2} A+(\frac{12}{13})^2=1\\\Rightarrow sin^{2} B=1- \dfrac{144}{169}\\\Rightarrow sin^{2} B=\dfrac{169-144}{169}\\\Rightarrow sin^{2} B=\dfrac{25}{169}\\\Rightarrow sinB=\pm \dfrac{5}{13}[/tex]
B is in 1st quadrant, sin B will be positive.
[tex]sinB =\dfrac{5}{13}[/tex]
Now, using the formula:
[tex]sin(A+B) = sinAcosB+cosAsinB\\\Rightarrow -\dfrac{20}{29} \times \dfrac{12}{13}-\dfrac{21}{29}\times \dfrac{5}{13}\\\Rightarrow -\dfrac{20\times 12+21\times 5}{29\times 13} \\\Rightarrow -\dfrac{240+105}{29\times 13} \\\Rightarrow -\dfrac{345}{377}[/tex]
[tex]sin(A+B)=-\dfrac{345}{377}[/tex]
Find the area of the yellow region.
Round to the nearest tenth.
15 cm
15 cm
Area = [ ? ] cm2
Answer:
48.3 cm²
Step-by-step explanation:
Let A be the area of the yellow region
A= the area of the square - the area of the quarter square
A= 15²-(15²*π)/4= 48.28≈ 48.3 cm²
If two chords in a circle are congruent, then they are
_____
Answer:
A
Step-by-step explanation:
Two congruent chords in a circle have the same distance from the center.
If two chords in a circle are congruent, then they are the same distance from the center of the circle .
What are the properties of equal chords of a circle?The properties of Equal Chords of a Circle are:
In a circle equal-chords are equidistant from the center.Equal-chords of congruent circles are equidistant from the corresponding centers.In a circle equal chords subtend equal angles at the center.According to the question
If two chords in a circle are congruent, then they are
Now,
By properties of Equal Chords of a Circle
The equal chords will be equal distance from the center of the circle .
Hence, If two chords in a circle are congruent, then they are the same distance from the center of the circle .
To know more about properties of equal chords of a circle here:
https://brainly.com/question/14539317
#SPJ3
WILL GIVE BRAINLIEST TO ANSWER:)) <33
Q: A committee of six people is to be formed from a pool of six grade 11 students and seven grade 12 students. Determine the probability that the committee will have two grade 11 students.
Answer: 5/26
Step-by-step explanation: 6/13 x 5/12
find the value of x. m<2= x + 119
Answer: x = -10
Step-by-step explanation:
see image
A) congruent sides implies congruent angles A = 64°
B) Use the Triangle Sum Theorem: 64° + 64° + B = 180° --> B = 52°
C) B and C are complimentary angles: 52° + C = 90° --> C = 38°
D) Use the Triangle Sum Theorem knowing that congruent sides implies congruent angles: 38° + 2D = 180° --> D = 71°
∠2) D and ∠2 are supplementary angles: 71° + ∠2 = 180° --> ∠2 = 109°
Solve for x:
109° = x + 119
-10 = x
Answer:
x = -10
Step-by-step explanation:
Find the measure of angle m∠2
The triangles are isosceles triangles, the base angles are equal.
The other base angle is also 64°.
Using Triangle Sum Theorem.
64 + 64 + y = 180
y = 52
The top angle is 52°.
The whole angle is 90°.
90 - 52 = 38
The second triangle has base angles equal.
Using Triangle Sum Theorem.
38 + z + z = 180
z = 71
The two base angles are 71°.
Angles on a straight line add up to 180°.
71 + m∠2 = 180
m∠2 = 109
The measure of m∠2 is 109°
Find the value of x
m∠2 = x + 119
109 = x + 119
x = 109 - 119
x = -10
Given X= 5+ V16 select the value(s) of x. Check
all of the boxes that apply.
-11
1
9
21
Answer:
[tex]x = 9\ or\ x = 1[/tex]
Step-by-step explanation:
Given
[tex]x = 5 + \sqrt{16}[/tex]
Required
Find the value of x
[tex]x = 5 + \sqrt{16}[/tex]
We start by taking the square root of 16; Square root of 16 is +4 or -4; So, we have:-
[tex]x = 5 \±4[/tex]
The expression above can be split into two; This is as follows
[tex]x = 5 + 4\ or\ x = 5 - 4[/tex]
[tex]x = 9\ or\ x = 1[/tex]
Hence, the solution to [tex]x = 5 + \sqrt{16}[/tex] is B. 1 and C. 9
Answer:
its b and c
Step-by-step explanation:
the guy who answered first said so
also i just did it
Use the counting principle to determine the number of elements in the sample space. Two digits are selected without replacement from the digits 1, 2, 3, and 4.
Answer:
if the order of the digit matters, we have:
options: 1, 2, 3, 4.
We want to select two digits.
First selection: we have 4 options
Second selection: we have 3 options (because we already selected one in the first selection)
The total number of elements in the sample space, or the total number of combinations, is equal to the product of the number of options in each selection, this is:
P = 4*3 = 12
Find the solution of the given initial value problem. ty' + 2y = sin t, y π 2 = 9, t > 0 y(t) =
For the ODE
[tex]ty'+2y=\sin t[/tex]
multiply both sides by t so that the left side can be condensed into the derivative of a product:
[tex]t^2y'+2ty=t\sin t[/tex]
[tex]\implies(t^2y)'=t\sin t[/tex]
Integrate both sides with respect to t :
[tex]t^2y=\displaystyle\int t\sin t\,\mathrm dt=\sin t-t\cos t+C[/tex]
Divide both sides by [tex]t^2[/tex] to solve for y :
[tex]y(t)=\dfrac{\sin t}{t^2}-\dfrac{\cos t}t+\dfrac C{t^2}[/tex]
Now use the initial condition to solve for C :
[tex]y\left(\dfrac\pi2\right)=9\implies9=\dfrac{\sin\frac\pi2}{\frac{\pi^2}4}-\dfrac{\cos\frac\pi2}{\frac\pi2}+\dfrac C{\frac{\pi^2}4}[/tex]
[tex]\implies9=\dfrac4{\pi^2}(1+C)[/tex]
[tex]\implies C=\dfrac{9\pi^2}4-1[/tex]
So the particular solution to the IVP is
[tex]y(t)=\dfrac{\sin t}{t^2}-\dfrac{\cos t}t+\dfrac{\frac{9\pi^2}4-1}{t^2}[/tex]
or
[tex]y(t)=\dfrac{4\sin t-4t\cos t+9\pi^2-4}{4t^2}[/tex]
From Statistics and Data Analysis from Elementary to Intermediate by Tamhane and Dunlop, pg 265. A thermostat used in an electrical device is to be checked for accuracy of its design setting of 200◦F. Ten thermostats were tested to determine their actual settings, resulting in the following data: 202.2 203.4 200.5 202.5 206.3 198.0 203.7 200.8 201.3 199.0 Perform the t-test to determine if the mean setting is different from 200◦F. Use α = 0.05
Answer:
[tex]t=\frac{201.77-200}{\frac{2.41}{\sqrt{10}}}=2.32[/tex]
The degrees of freedom are given by:
[tex]df=n-1=10-1=9[/tex]
The p value for this case is given by:
[tex]p_v =2*P(t_{(9)}>2.32)=0.0455[/tex]
For this case since the p value is lower than the significance level we have enough evidence to reject the null hypothesis and we can conclude that the true mean is significantly different from 200 F.
Step-by-step explanation:
Information given
data: 202.2 203.4 200.5 202.5 206.3 198.0 203.7 200.8 201.3 199.0
We can calculate the sample mean and deviation with the following formulas:
[tex]\bar X= \frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex]\sigma=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}[/tex]
[tex]\bar X=201.77[/tex] represent the sample mean
[tex]s=2.41[/tex] represent the sample standard deviation
[tex]n=10[/tex] sample size
[tex]\mu_o =200[/tex] represent the value that we want to test
[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.
t would represent the statistic
[tex]p_v[/tex] represent the p value for the test
Hypothesis to test
We want to determine if the true mean is equal to 200, the system of hypothesis are :
Null hypothesis:[tex]\mu = 200[/tex]
Alternative hypothesis:[tex]\mu = 200[/tex]
The statistic for this case is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
The statistic is given by:
[tex]t=\frac{201.77-200}{\frac{2.41}{\sqrt{10}}}=2.32[/tex]
The degrees of freedom are given by:
[tex]df=n-1=10-1=9[/tex]
The p value for this case is given by:
[tex]p_v =2*P(t_{(9)}>2.32)=0.0455[/tex]
For this case since the p value is lower than the significance level we have enough evidence to reject the null hypothesis and we can conclude that the true mean is significantly different from 200 F.
Which expression is equivalent to 3m + 1 - m? 2 + m - 1 + m 1 + m 3m - 1 3m
Answer:
2m + 1
Step-by-step explanation:
Simply combine like terms. m terms go with m terms and constants go with constants.
Answer:
2m + 1
Step-by-step explanation:
3m + 1 - m =
= 3m - m + 1
= 2m + 1
what is 3 + 3 × 3 + 3 =
Answer:
15
Step-by-step explanation:
PEMDAS
3x3 = 9
3+3 = 6
9+6 = 15
By the BODMAS rule we get, 3 + 3 × 3 + 3 = 15
The acronym BODMAS rule is used to keep track of the right sequence of operations to do when solving mathematical issues. Brackets (B), order of powers or roots (O), division (D), multiplication (M), addition (A), and subtraction (S) are all represented by this acronym (S).
3 + 3 × 3 + 3 =
3 × 3 = 9
3 + 9 + 3 = 15.
Therefore, the correct answer is 15.
Learn more about BODMAS rule here:
https://brainly.com/question/16738857
#SPJ4
4. A rectangle-shaped picture frame has a length of 4b cm and an area of 12ab² square cm. Find the width. *
Answer:
3ab
Step-by-step explanation:
area = length * width
width = area/length
width = (12ab^2)/(4b)
width = 3ab
find the value of x that makes abcd a parallelogram
The 4 angles need to add to 360.
2 of them are 70
The other two need to equal 360-140 = 220
They are both the same so one angle needs to equal 220/2 = 110
Now find x:
X + 60 = 110
Subtract 60 from both sides:
X = 50. The answer is D
Suppose Gabe, an elementary school student, has just finished dinner with his mother, Judy. Eyeing the nearby cookie jar, Gabe asks his mother if he can have a cookie for dessert. She tells Gabe that she needs to check his backpack to make sure k. Gabe cannot remember where he left his backpack, but he knows for sure that he did not complete his bomework and will not be alowed to cat a cookie. Gabe believes his only option is to quickly steal a cookie while his mother is out of the room. Judy then leanves the room to look for Gabe's backpack. Assome that Judy could return at any time in the next 90 seconds with equal probability, For the first 40 seconds, Gabe sheepishly wonders if he will get caught rying to grab a nearby cookie. After waiting and not secing his mother, Gabe decides that he needs a cookie and begins to take one from the jar Assuming it takes Gabe 30 seconds to grab a cookie from the jar and devour it without a trace, what is the probability that his mother returns in time to catch Gabe stealing a cookie?
Answer:
0.56
Step-by-step explanation:
What is the probability that his mother returns just in time to catch Gabe stealing a cookie?
The probability of this is the same as 1 minus the probability that Gabe is NOT caught.
- Judy could return at anytime in the next 90 seconds
- Gabe spends the first 40 seconds pondering... time wasted=40secs
- It takes 30 seconds (out of the remaining 50secs) to finish eating a cookie without a trace
- The question says that Gabe was going to do it, so he probably did
Now we're looking for the probability that he gets caught. That is, probability that he does not "successfully" complete the 30secs task within the remaining 50secs.
Remember that each second has an equal probability of being the second that Judy comes back in. The latter of the 90 seconds does not carry a higher probability!
So the probability of catching Gabe (despite the 30secs it takes to complete his task) is 50/90 which is equal to 0.56
how large of a sample of state employee should be taken if we want to estimate with 98% confidence the mean salary to within 2000 g
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
How large of a sample of state employees should be taken if we want to estimate with 98% confidence the mean salary to be within $2,000? The population standard deviation is assumed to be $10,500. z-value for 98% confidence level is 2.326.
Answer:
Sample size = n = 150
Step-by-step explanation:
Recall that the margin of error is given by
[tex]$ MoE = z \cdot (\frac{\sigma}{\sqrt{n} } ) $\\\\[/tex]
Re-arranging for the sample size (n)
[tex]$ n = (\frac{z \cdot \sigma }{MoE})^{2} $[/tex]
Where z is the value of z-score corresponding to the 98% confidence level.
Since we want mean salary to be within $2,000, therefore, the margin of error is 2,000.
The z-score for a 98% confidence level is 2.326
So the required sample size is
[tex]n = (\frac{2.326 \cdot 10,500 }{2,000})^{2}\\\\n = (12.212)^{2}\\\\n = 149.13\\\\n = 150[/tex]
Therefore, we need to take a sample size of at least 150 state employees to estimate with 98% confidence the mean salary to be within $2,000.
What number is 408% of 568?
Answer:
2317.44
Step-by-step explanation:
Solution for What is 408 percent of 568:
408 percent *568 =
(408:100)*568 =
(408*568):100 =
231744:100 = 2317.44
Answer:
2317.44
Step-by-step explanation:
Simplify: |2-5|-(12 ÷4-1)^2
The value of the expression when simplified is -13
How to determine the valueIt is important to note:
PEDMAS is a mathematical acronym that representing;
P for ParenthesesE for exponentsD for divisionM for multiplicationA for additionS for subtractionAlso, we should note that absolute value of a number is the non-negative value of that number. It s the value of a number irrespective of its direction from zero.
It is denoted with the symbol '| |'
Given the expression;
|2-5|-(12 ÷4-1)^2
Solve the bracket
|-3| - (12 /3)^2
Solve further
|-3| - 4^2
Find the absolute value
3 - 4^2
Find the square
3 - 16
-13
The value is - 13
Thus, the value of the expression when simplified is -13
Learn more about PEDMAS here:
https://brainly.com/question/345677
#SPJ1
what is u over 4-4= -20
u/4 - 4 = -20
Add 4 to both sides:
u/4 = -16
Multiply both sides by 4:
u = -64
Answer:
u=-64
Step-by-step explanation:
u/4 -4 = -20
First add 4 to both sides.
u/4=-16
Now multiply both sides by 4
u=-64
Write a pair of integers whose sum is- -8
Answer:
-3+(-5)
Checking our answer:
Adding this does indeed give -8
Suppose Z has a standard normal distribution with a mean of 0 and standard deviation of 1. 27% of the possible Z values are greater than _____________.
Answer:
27% of the possible Z values are greater than 0.613
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 0, \sigma = 1[/tex]
27% of the possible Z values are greater than
The 100 - 27 = 73rd percentile, which is X when Z has a pvalue of 0.73. So X when the z-score is 0.613.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.613 = \frac{X - 0}{1}[/tex]
[tex]X = 0.613[/tex]
27% of the possible Z values are greater than 0.613
Jane is collecting data for a ball rolling down a hill. She measures out a set of different distances and then proceeds to use a stop watch to find the time it takes the ball to roll. What are the independent, dependent, and control variables in this experiment?
Answer:
Step-by-step explanation:
The independent variables are the input values which are not dependent on the other value.
The dependent variables are the output values whose values depends on the value of some other number.
The independent variable in this case is the data on the set of distances she measured out.
The dependent variable in this case is the the time (measured by the stopwatch) it takes for the ball to roll.
The control variable in this case study is the size of ball, slope of hill, weight of ball etc.
The volume of a rectangular prism is given by the formula V = lwh, where l is the length of the prism, w is the width, and h is the height. Suppose a box in the shape of a rectangular prism has length (2a + 11), width (5a – 12), and height (a + 6). Which expression represents the volume of the box?
Answer:
Volume = 10a³ + 91a² + 54a - 792
Step-by-step explanation:
In the absence of answer choices, let's find the expression for the volume.
Given: Volume = length×width×height
V = lwh
length =(2a + 11)
width =(5a – 12)
height= (a + 6)
V = (2a + 11)(5a – 12) (a + 6)
Expand the first two brackets using distributive property
V = (10a² -24a +55a - 132)(a + 6)
Collect like terms
V = (10a² + 31a -132)(a + 6)
Expand the two brackets using distributive property
V = 10a³ + 31a² - 132a + 60a² + 186a - 792
Collect like terms
V = 10a³ + 91a² + 54a - 792
The expression that represents the volume of the box = 10a³ + 91a² + 54a - 792
Answer:
Volume = 10a³ + 91a² + 54a - 792
Step-by-step explanation:
Simply the expression 3.4-1/2(0.75)
Answer:
3.025
Step-by-step explanation:
3.4-1/2(0.75)
3.4-0.375
3.025
What is if we divide 8 by 4 multiply by 6 and add 2 then subtract 2 what is the result?
Answer:
its its 12.
Step-by-step explanation:
=8÷4×6+2-2
=2×6+2-2
=12+2-2
=14-2
=12 is answer..
Answer:
12
Step-by-step explanation:
8÷4×6+2-2
=2×6+2-2
=12+2-2
14-2
=12
Entertainment Software Association would like to test if the average age of "gamers" (those that routinely play video games) is more than 30 years old. A Type I error would occur if Entertainment Software Association concludes that the average age of gamers is: _______.
A. Equal to 30 years when, in reality, the average age is not equal to 30 years
B. Not equal to 30 years when, in reality, the average age is equal to 30 years
C. Greater than 30 years when, in reality, the average age is 30 years or less
D. 30 years or less when, in reality, the average age is more than 30 years
Answer:
"30 years or less when, in reality, the average age is more than 30 years"
Step-by-step explanation:
Type I error is produced when conclusion rejects a true null hypothesis.
The null hypothesis is
"The average gamer is more than 30 years old"
(deduced from the wording, not explicitly stated).
Then if the conclusion is "the average gamer is less than or equal to 30 years old" when in reality the average age is more than 30 years, then there is a type I error, since the null hypothesis is rejected.
Answer is D:
"30 years or less when, in reality, the average age is more than 30 years"
What is the justification for step 2 in the solution process?
Answer:
Answer C
Step-by-step explanation:
You are balancing this equation out by subtracting 7x from both sides. This means you are using the subtraction property of equality.