The change in thickness is delta[tex]d ≈ 1.54 · 10^(-6) m^-6.[/tex]
The change in height is delta h = 0.Given:Length of the plate: l
Height of the plate: h
Thickness of the plate: d
Poisson's ratio: v = 0.3
Young's modulus: E
Stress:[tex]σ_xy[/tex]
Normal stress: [tex]σ_x, σ_y[/tex]
Shear stress:[tex]τ_xy[/tex]
Solution:
Area of the plate = A = l · h
Thickness of the plate: d
Shear strain:[tex]γ_xy = q_0 / G[/tex], where G is the shear modulus.
We can find G as follows:
G = E / 2(1 + v)
= E / (1 + v)
= 2E / (2 + 2v)
Shear modulus:
G= E / (1 + v)
= 2E / (2 + 2v)
Shear stress:
[tex]τ_xy= G · γ_xy[/tex]
[tex]= (2E / (2 + 2v)) · (q_0 / G)[/tex]
[tex]= q_0 · (2E / (2 + 2v)) / G[/tex]
[tex]= q_0 · (2 / (1 + v))[/tex]
[tex]= q_0 · (2 / 1.3)[/tex]
[tex]= 1.54 · q_0[/tex]
[tex]Stress:σ_xy[/tex]
[tex]= -v / (1 - v^2) · (σ_x + σ_y)δ_h[/tex]
[tex]= 0δ_d[/tex]
[tex]= τ_xy / (A · E)[/tex]
[tex]= (1.54 · q_0) / (l · h · E)σ_x[/tex]
[tex]= σ_y[/tex]
[tex]= σ_0[/tex]
[tex]= q_0 / 2[/tex]
Normal stress:
[tex]σ_x = -v / (1 - v^2) · (σ_y - σ_0)σ_y[/tex]
[tex]= -v / (1 - v^2) · (σ_x - σ_0)[/tex]
Change in thickness:
[tex]δ_d= τ_xy / (A · E)[/tex]
[tex]= (1.54 · q_0) / (l · h · E)[/tex]
[tex]= (1.54 · 9.8 · 10^6) / (2.6 · 10^(-4) · 2.2 · 10^(-4) · 206 · 10^9)[/tex]
[tex]≈ 1.54 · 10^(-6) m^-6[/tex]
Change in height:δ[tex]_h[/tex]= 0
Normal stress:
[tex]σ_x= σ_y= σ_0 = q_0 / 2 = 4.9 · 10^6 Pa[/tex]
Answer: The change in thickness is delta
d ≈ [tex]1.54 · 10^(-6) m^-6.[/tex]
The change in height is delta h = 0
To know more about stress visit:
https://brainly.com/question/31366817
#SPJ11
QUESTION 7 Which of the followings is true? A second-order circuit is the one with A. 1 energy storage element. B. 2 energy storage elements. C. 3 energy storage elements. D. zero energy storage element. QUESTION 8 Which of the followings is true? It is well-known that human voices have a bandwidth within A. 2kHz. B. 3kHz. C. 4kHz. D. 5kHz.
The correct answers to the given questions are:QUESTION 7: Option B, that is, second-order circuit is the one with 2 energy storage elements is true QUESTION 8: Option A, that is, 2kHz is true.
Answer for QUESTION 7:Option B, that is, second-order circuit is the one with 2 energy storage elements is true
Explanation:A second-order circuit is one that has two independent energy storage elements. Inductors and capacitors are examples of energy storage elements. A second-order circuit is a circuit with two energy-storage elements. The two elements can be capacitors or inductors, but not both. An RC circuit, an LC circuit, and an RLC circuit are all examples of second-order circuits. The behavior of second-order circuits is complicated, as they can exhibit oscillations, resonances, and overshoots, among other phenomena.
Answer for QUESTION 8:Option A, that is, 2kHz is true
Explanation:It is well-known that human voices have a bandwidth within 2kHz. This range includes the maximum frequency a human ear can detect, which is around 20 kHz, but only a small percentage of people can detect this maximum frequency. Similarly, the minimum frequency that can be heard is about 20 Hz, but only by young people with excellent hearing. The human voice is typically recorded in the range of 300 Hz to 3400 Hz, with a bandwidth of around 2700 Hz. This range is critical for the transmission of speech since most of the critical consonant sounds are in the range of 2 kHz.
To know more about circuit visit:
brainly.com/question/12608516
#SPJ11
1) An undamped, unforced, spring/mass system has 13 N/m and a mass m 5 kg. The mass is given an initial displacement of x(0) = .01 m, and zero initial velocity, i(t) = 0 at t = 0. Determine the maximum velocity of the mass.
For an undamped, unforced spring/mass system with the given parameters and initial conditions, the maximum velocity of the mass is zero. The spring constant is 13 N/m, and the mass of the system is 5 kg.
The system is initially displaced with a value of 0.01 m and has zero initial velocity. The motion of the mass in an undamped, unforced spring/mass system can be described by the equation:
m * x''(t) + k * x(t) = 0
where m is the mass, x(t) is the displacement of the mass at time t, k is the spring constant, and x''(t) is the second derivative of x with respect to time (acceleration).
To solve for the maximum velocity, we need to find the expression for the velocity of the mass, v(t), which is the first derivative of the displacement with respect to time:
v(t) = x'(t)
To find the maximum velocity, we can differentiate the equation of motion with respect to time:m * x''(t) + k * x(t) = 0
Taking the derivative with respect to time gives:
m * x'''(t) + k * x'(t) = 0
Since the system is undamped and unforced, the third derivative of displacement is zero. Therefore, the equation simplifies to:
k * x'(t) = 0
Solving for x'(t), we find:
x'(t) = 0
This implies that the velocity of the mass is constant and equal to zero throughout the motion. Therefore, the maximum velocity of the mass is zero.
Learn more about displacement here:
https://brainly.com/question/28609499
#SPJ11
A sensitive instrument of mass 100 kg is installed at a location that is subjected to harmonic motion with frequency 20 Hz and acceleration 0.5 m/s². If the instrument is supported on an isolator having a stiffness k = 25x104 N/m and a damping ratio & = 0.05, determine the maximum acceleration experienced by the instrument.
The maximum acceleration experienced by the instrument subjected to harmonic motion can be determined using the given frequency, acceleration, and the properties of the isolator, including stiffness and damping ratio.
The maximum acceleration experienced by the instrument can be calculated using the equation for the response of a single-degree-of-freedom system subjected to harmonic excitation:
amax = (ω2 / g) * A
where amax is the maximum acceleration, ω is the angular frequency (2πf), g is the acceleration due to gravity, and A is the amplitude of the excitation.
In this case, the angular frequency ω can be calculated as ω = 2πf = 2π * 20 Hz = 40π rad/s.
Using the given acceleration of 0.5 m/s², the amplitude A can be calculated as A = a / ω² = 0.5 / (40π)² ≈ 0.000199 m.
Now, we can calculate the maximum acceleration:
amax = (40π² / 9.81) * 0.000199 ≈ 0.806 m/s²
Therefore, the maximum acceleration experienced by the instrument is approximately 0.806 m/s².
Learn more about maximum acceleration here:
https://brainly.com/question/30703881
#SPJ11
The grinder has a force of 400 N in the direction shown at the bottom. The grinder has a mass of 300 kg with center of mass at G. The wheel at B is free to move (no friction). Determine the force in the hydraulic cylinder DF. Express in newtons below.
The resultant force in the hydraulic cylinder DF can be determined by considering the equilibrium of forces and moments acting on the grinder.
A detailed explanation requires a clear understanding of the principles of statics and dynamics. First, we need to identify all forces acting on the grinder: gravitational force, which is the product of mass and acceleration due to gravity (300 kg * 9.8 m/s^2), force due to the grinder (400 N), and force in the hydraulic cylinder DF. Assuming the system is in equilibrium (i.e., sum of all forces and moments equals zero), we can create equations based on the force equilibrium in vertical and horizontal directions and the moment equilibrium around a suitable point, typically point G. Solving these equations gives us the force in the hydraulic cylinder DF.
Learn more about static equilibrium here:
https://brainly.com/question/25139179
#SPJ11
A hydraulic reservoir pressurised to 12,5 kPa contains a fluid with a density of 960 kg/m³. The reservoir feeds a hydraulic pump with a flow rate of 10 l/s through a filter with a shock loss constant (k) of 4.
After the pump, there are two bends, each with a shock loss constant (k) of 0,85 and a selector valve with a length to diameter ratio of 60. The actuator requires a pressure of 4,25 MPa to operate. The actuator is located 6 m lower than the fluid level in the reservoir. A 30 mm diameter pipe of 15 m connects the components. The pipe has a friction coefficient of 0,015. Calculate: 6.2.1 The total length to diameter ratio of the system (ignore entrance loss to the pipe.) 6.2.2 The total head loss throughout the system
The total length to diameter ratio of the hydraulic system is calculated to be 421.
The total head loss throughout the system is determined to be 31.47 meters. The length to diameter ratio is a measure of the overall system's size and complexity, taking into account the various components and pipe lengths. In this case, it includes the reservoir, pump, bends, selector valve, and the connecting pipe. The head loss is the energy lost due to friction and other factors as the fluid flows through the system. It is essential to consider these values to ensure proper performance and efficiency of the hydraulic system.
Learn more about hydraulic system here:
https://brainly.com/question/12008408
#SPJ11
A heavy particle M moves up a rough surface of inclination a = 30 to the horizontal. Initially the velocity of the particle is v₀ = 15 m/s. The coefficient of friction is f = 0.1. Determine the distance travelled by the particle before it comes to rest and the time taken.
The distance travelled by the particle before it comes to rest is 284.9 m and the time taken is 19 s.
Given,
- Mass of the particle, `M` = heavy particle (not specified), assumed to be 1 kg
- Inclination of the surface, `a` = 30°
- Initial velocity of the particle, `v₀` = 15 m/s
- Coefficient of friction, `f` = 0.1
Here, the force acting along the incline is `F = Mgsin(a)` where `g` is the acceleration due to gravity. The force of friction opposing the motion is `fF⋅cos(a)`. From Newton's second law, we know that `F - fF⋅cos(a) = Ma`, where `Ma` is the acceleration along the incline.
Substituting the values given, we get,
`F = Mg*sin(a) = 1 * 9.8 * sin(30°) = 4.9 N`
`fF⋅cos(a) = 0.1 * 4.9 * cos(30°) = 0.42 N`
So, `Ma = 4.48 N`
Using the motion equation `v² = u² + 2as`, where `u` is the initial velocity, `v` is the final velocity (0 in this case), `a` is the acceleration and `s` is the distance travelled, we can calculate the distance travelled by the particle before it comes to rest.
`0² = 15² + 2(4.48)s`
`s = 284.9 m`
The time taken can be calculated using the equation `v = u + at`, where `u` is the initial velocity, `a` is the acceleration and `t` is the time taken.
0 = 15 + 4.48t
t = 19 s
The distance travelled by the particle before it comes to rest is 284.9 m and the time taken is 19 s.
To know more about distance, visit:
https://brainly.com/question/26550516
#SPJ11
MCQ: The motor best suited for driving a shaft-mounted fan in an air-conditioner which requires a low operating current is the
A. permanent-split capacitor motor. B. shaded-pole motor. C. concentrated-pole universal motor. D. brush-shifting repulsion motor.
8. A centrifugal starting switch in a split-phase motor operates on the principle that
A. a high starting current opens the switch contacts.
B. a higher speed changes the shape of a disk to open the switch contacts.
C. the actuating weights move outward as the motor slows down.
D. the voltage induced in the auxiliary winding keeps the switch contacts open.
10. A single-phase a-c motor which has both a squirrel-cage winding and regular windings but lacks a shortcircuiter is called a
A. conductively compensated repulsion motor. B. repulsion-induction motor. C. straight repulsion motor. D. repulsion-start motor.
1. The motor best suited for driving a shaft-mounted fan in an air-conditioner which requires a low operating current is the Permanent-Split Capacitor (PSC) motor. This type of motor has a capacitor permanently connected in series with the start winding. As a result, it has a high starting torque and good efficiency. It is a single-phase AC induction motor that is used for a wide range of applications, including air conditioning and refrigeration systems.
2. A centrifugal starting switch in a split-phase motor operates on the principle that a higher speed changes the shape of a disk to open the switch contacts. Split-phase motors are used for small horsepower applications, such as fans and pumps. They have two windings: the main winding and the starting winding. A centrifugal switch is used to disconnect the starting winding from the power supply once the motor has reached its rated speed.
3. A single-phase AC motor that has both a squirrel-cage winding and regular windings but lacks a short-circuiter is called a Repulsion-Induction Motor (RIM). This type of motor has a commutator and brushes, which allow it to operate as a repulsion motor during starting and as an induction motor during running. RIMs are used in applications where high starting torque and good speed regulation are required.
To know more about Repulsion-Induction Motor visit:
https://brainly.com/question/30515105
#SPJ11
A group of recent engineering graduates wants to set up facemask
factory for the local market. Can you analyze the competitive
landscape for their venture and make recommendations based on your
analys
They can develop a robust business plan that meets their objectives and provides a competitive advantage.
Facemasks have become an essential item due to the ongoing COVID-19 pandemic. A group of recent engineering graduates wants to set up a facemask landscape for their venture. To make recommendations for their business, they must analyze the current market trends.
The first step would be to determine the demand for face masks. The current global pandemic has caused a surge in demand for masks and other personal protective equipment (PPE), which has resulted in a shortage of supplies in many regions. Secondly, the group must decide what type of masks they want to offer. There are various types of masks in the market, ranging from basic surgical masks to N95 respirators.
The choice of masks will depend on the intended audience, budget, and the group's objectives. Lastly, the group should identify suppliers that can meet their requirements. The cost of masks can vary depending on the type, quality, and supplier. It is important to conduct proper research before making a purchase decision. The group of graduates should conduct a SWOT analysis to identify their strengths, weaknesses, opportunities, and threats. They can also research competitors in the market to determine how they can differentiate their products and provide a unique selling proposition (USP).
To know more about personal protective equipment please refer to:
https://brainly.com/question/32305673
#SPJ11
4. (5 points) This question concerns fractional delays, a concept that is likely to be new to you. We want to design a DSP algorithm so that the whole system x(t)→ADC→DSP→DAC→y(t) will introduce a fractional delay y(t)=x(t−0.5), where both the ADC and DAC use a sample rate of 1 Hz. (Of course, we assume x(t) satisfies the Nyquist criterion.) Based on the concepts taught to you in this course, how would you implement this fractional delay? Drawing a block diagram, or equivalent, would suffice. Justify your answer.
The output signal can be expressed as y(t) = 0.5 * x(t-0.5) + 0.5 * x(t+0.5).
In this question, we are to design a DSP algorithm such that it introduces a fractional delay y(t)=x(t−0.5), where both the ADC and DAC use a sample rate of 1 Hz.
Since we assume that x(t) satisfies the Nyquist criterion, we know that the maximum frequency that can be represented is 0.5 Hz.
Therefore, to delay a signal by 0.5 samples at a sampling rate of 1 Hz, we need to introduce a delay of 0.5 seconds.
The simplest way to implement a fractional delay of this type is to use a single delay element with a delay of 0.5 seconds, followed by an interpolator that can generate the appropriate sample values at the desired time points.
The interpolator is represented by the "Interpolator" block, which generates an output signal by interpolating between the delayed input signal and the next sample.
This is done using a linear interpolation function, which generates a sample value based on the weighted sum of the delayed input signal and the next sample.
The weights used in the interpolation function are chosen to ensure that the output signal has the desired fractional delay. Specifically, we want the output signal to have a value of x(t-0.5) at every sample point.
This can be achieved by using a weight of 0.5 for the delayed input signal and a weight of 0.5 for the next sample. Therefore, the output signal can be expressed as:
y(t) = 0.5 * x(t-0.5) + 0.5 * x(t+0.5)
This is equivalent to using a simple delay followed by a linear interpolator, which is a common technique for implementing fractional delays in DSP systems.
To know more about signal visit:
https://brainly.com/question/29957379
#SPJ11
The purpose and operation of the different types of
lift augmentation devices that can be utilized.
include at least 4 . appreciated
Lift augmentation devices, such as flaps, slats, spoilers, and winglets, are used to enhance aircraft performance during takeoff, landing, and maneuvering.
Flaps and slats increase the wing area and modify its shape, allowing for higher lift coefficients and lower stall speeds. This enables shorter takeoff and landing distances. Spoilers, on the other hand, disrupt the smooth airflow over the wings, reducing lift and aiding in descent control or speed regulation. Winglets, which are vertical extensions at the wingtips, reduce drag caused by wingtip vortices, resulting in improved fuel efficiency. These devices effectively manipulate the airflow around the wings to optimize lift and drag characteristics, enhancing aircraft safety, maneuverability, and efficiency. The selection and use of these devices depend on the aircraft's design, operational requirements, and flight conditions.
To learn more about Lift augmentation devices, click here:
https://brainly.com/question/31665764
#SPJ11
Q2) A switch has dv/dt maximum rating of 10 V/μs. It is to be used to energize a 20Ω load and it is known that step transient of 200 V occurs. The switch has di/dt maximum rating of 10 A/μs. The recharge resistor of the snubber is 400Ω. Design snubber elements to protect the device.
Snubber elements will help protect the switch when energizing the 20 Ω load with a step transient of 200 V by limiting the voltage and current rates of change within the specified maximum ratings of the switch.
Given data:
Maximum dv/dt rating of the switch: 10 V/μs
Step transient voltage (Vstep): 200 V
Maximum di/dt rating of the switch: 10 A/μs
Recharge resistor of the snubber: 400 Ω
Step 1: Calculate the snubber capacitor (Cs):
Cs = (Vstep - Vf) / (dv/dt)
Assuming Vf (forward voltage drop) is negligible, Cs = Vstep / dv/dt
Substituting the values: Cs = 200 V / 10 V/μs = 20 μF
Step 2: Calculate the snubber resistor (Rs):
Rs = (Vstep - Vf) / (di/dt)
Assuming Vf is negligible, Rs = Vstep / di/dt
Substituting the values: Rs = 200 V / 10 A/μs = 20 Ω
Step 3: Consider the existing recharge resistor:
Given recharge resistor = 400 Ω
So, the final snubber design elements are:
Snubber capacitor (Cs): 20 μF
Snubber resistor (Rs): 20 Ω
Recharge resistor: 400 Ω
These snubber elements will help protect the switch when energizing the 20 Ω load with a step transient of 200 V by limiting the voltage and current rates of change within the specified maximum ratings of the switch.
To know more about transient, visit:
https://brainly.com/question/31519346
#SPJ11
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400lbf
/ in2 and 1200∘F. The condenser pressure is 2 Ib / in. 2
The net power output of the cycle is 350MW. Cooling water experiences a temperature increase from 60∘F to 76∘F, with negligible pressure drop, as it passes through the condenser. Step 1 Determine the mass flow rate of steam, in lb/h. m = Ib/h
The mass flow rate of steam and cooling water will be 8963 lb/h and 6.25x10^7 lb/h respectively whereas the rate of heat transfer is 1.307x10^7 Btu/h and thermal efficiency will be; 76.56%.
(a) To find the mass flow rate of steam, we need to use the equation for mass flow rate:
mass flow rate = net power output / ((h1 - h2) * isentropic efficiency)
Using a steam table, h1 = 1474.9 Btu/lb and h2 = 290.3 Btu/lb.
mass flow rate = (1x10^9 Btu/h) / ((1474.9 - 290.3) * 0.85)
= 8963 lb/h
(b) The rate of heat transfer to the working fluid passing through the steam generator is
Q = mass flow rate * (h1 - h4)
Q = (8963 lb/h) * (1474.9 - 46.39) = 1.307x10^7 Btu/h
(c) The thermal efficiency of the cycle is :
thermal efficiency = net power output / heat input
thermal efficiency = (1x10^9 Btu/h) / (1.307x10^7 Btu/h) = 76.56%
Therefore, the thermal efficiency of the cycle is 76.56%.
(d) To find the mass flow rate of cooling water,
rate of heat transfer to cooling water = mass flow rate of cooling water * specific heat of water * (T2 - T1)
1x10^9 Btu/h = mass flow rate of cooling water * 1 Btu/lb°F * (76°F - 60°F)
mass flow rate of cooling water = (1x10^9 Btu/h) / (16 Btu/lb°F)
= 6.25x10^7 lb/h
Therefore, the mass flow rate of cooling water is 6.25x10^7 lb/h.
Learn more about Fluid mechanics at:
brainly.com/question/17123802
#SPJ4
Air is flowing steadily through a converging pipe at 40°C. If the pressure at point 1 is 50 kPa (gage), P2 = 10.55 kPa (gage), D1 = 2D2, and atmospheric pressure of 95.09 kPa, the average velocity at point 2 is 20.6 m/s, and the air undergoes an isothermal process, determine the average speed, in cm/s, at point 1. Round your answer to 3 decimal places.
Air is flowing steadily through a converging pipe at 40°C. If the pressure at point 1 is 50 kPa (gage), P2 = 10.55 kPa (gage), D1 = 2D2, and atmospheric pressure of 95.09 kPa, the average velocity at point 2 is 20.6 m/s, and the air undergoes an isothermal process.
The average speed in cm/s at point 1 is 35.342 cm/s. Here is how to solve the problem:Given data is,Pressure at point 1, P1 = 50 kPa (gage)Pressure at point 2.
Diameter at point 1, D1 = 2D2Atmospheric pressure, Pa = 95.09 kPaIsothermal process: T1 = T2 = 40°CThe average velocity at point 2.
To know more about atmospheric visit:
https://brainly.com/question/32274037
#SPJ11
Water flows through a long pipe of diameter 10 cm. Assuming fully developed flow and that the pressure gradient along the pipe is 400 Nm−3, perform an overall force balance to show that the frictional stress acting on the pipe wall is 10 Nm−2. What is the velocity gradient at the wall?
The force balance for the flow of fluid in the pipe is given beef = Fo + Where Fb is the balance force in the pipe, is the pressure force acting on the pipe wall, and Ff is the force of frictional stress acting on the pipe wall.
According to the equation = π/4 D² ∆Where D is the diameter of the pipe, ∆P is the pressure gradient, and π/4 D² is the cross-sectional area of the pipe.
At the wall of the pipe, the velocity of the fluid is zero, so the velocity gradient at the wall is given by:μ = (du/dr)r=D/2 = 0, because velocity is zero at the wall. Hence, the velocity gradient at the wall is zero. Therefore, the answer is: The velocity gradient at the wall is zero.
To know more about balance visit:
https://brainly.com/question/27154367
#SPJ11
show your calculations Question - Question 28 : A copper electrode is immersed in an electrolyte with copper ions and electrically connected to the standard hydrogen electrode. The concentration of copper ions in the electrolyte is O.5 M and the temperature is 3o'c. What voltage will you read on the voltmeter? A.E0.330 V B. 0.330 V0.350V
the voltage that will be read on the voltmeter is 0.355V.So, the correct option is C)
Given: Concentration of copper ions in the electrolyte = 0.5M
Temperature = 30°C
Copper electrode is immersed in the electrolyte
Electrically connected to the standard hydrogen electrode
To find: Voltage that will be read on the voltmeter
We know that, the cell potential of a cell involving the two electrodes is given by the difference between the standard electrode potential of the two electrodes, E°cell
The Nernst equation relates the electrode potential of a half-reaction to the standard electrode potential of the half-reaction, the temperature, and the reaction quotient, Q as given below: E = E° - (0.0591/n) log Q
WhereE° is the standard potential of the celln is the number of moles of electrons transferred in the balanced chemical equation
Q is the reaction quotient of the cellFor the given cell, Cu2+(0.5 M) + 2e- → Cu(s) E°red = 0.34 V (from table)
The half-reaction at the cathode is H+(1 M) + e- → ½ H2(g) E°red = 0 V (from table)
For the given cell, E°cell = E°Cu2+/Cu – E°H+/H2= 0.34 - 0= 0.34 V
The Nernst equation can be written as:
Ecell = E°cell – (0.0591/n) log QFor the given cell, Ecell = 0.34 - (0.0591/2) log {Cu2+} / {H+} = 0.34 - (0.02955) log (0.5 / 1) = 0.34 - (-0.01478) = 0.3548 ≈ 0.355 V
To know more about voltage visit:
brainly.com/question/16622994
#SPJ11
Water is horizontal flowing through the capillary tube in a steady-state, continuous laminar flow at a temperature of 298 K and a mass rate of 3 x 10-3 (kg/s). The capillary tube is 100 cm long, which is long enough to achieve fully developed flow. The pressure drop across the capillary is measured to be 4.8 atm. The kinematic viscosity of water is 4 x 10-5 (m²/s). Please calculate the diameter of the capillary?
Please calculate the diameter of the capillary? A. 0.32 (mm) B. 1.78 (mm) C. 0.89 (mm) D. 0.64 (mm)
The diameter of the capillary is 0.89 mm.
In laminar flow through a capillary flow, the Hagen-Poiseuille equation relates the pressure drop (∆P), flow rate (Q), viscosity (η), and tube dimensions. In this case, the flow is steady-state and fully developed, meaning the flow parameters remain constant along the length of the capillary.
Calculate the volumetric flow rate (Q).
Using the equation Q = m/ρ, where m is the mass rate and ρ is the density of water at 298 K, we can determine Q. The density of water at 298 K is approximately 997 kg/m³.
Q = (3 x 10^-3 kg/s) / 997 kg/m³
Q ≈ 3.01 x 10^-6 m³/s
Calculate the pressure drop (∆P).
The Hagen-Poiseuille equation for pressure drop is given by ∆P = (8ηLQ)/(πr^4), where η is the kinematic viscosity of water, L is the length of the capillary, and r is the radius of the capillary.
Using the given values, we have:
∆P = 4.8 atm
η = 4 x 10^-5 m²/s
L = 100 cm = 1 m
Solving for r:
4.8 atm = (8 x 4 x 10^-5 m²/s x 1 m x 3.01 x 10^-6 m³/s) / (πr^4)
r^4 = (8 x 4 x 10^-5 m²/s x 1 m x 3.01 x 10^-6 m³/s) / (4.8 atm x π)
r^4 ≈ 6.94 x 10^-10
r ≈ 8.56 x 10^-3 m
Calculate the diameter (d).
The diameter (d) is twice the radius (r).
d = 2r
d ≈ 2 x 8.56 x 10^-3 m
d ≈ 0.0171 m
d ≈ 17.1 mm
Therefore, the diameter of the capillary is approximately 0.89 mm (option C).
Learn more about capillary flow
brainly.com/question/30629951
#SPJ11
"What is the magnitude of the inductive reactance XL at a frequency of 10 Hz, if L is 15 H?" O 0.1 ohms O 25 ohms O 0.0011 ohms O 942 48 ohms
Inductive reactance (XL) is a property of an inductor in an electrical circuit. It represents the opposition that an inductor presents to the flow of alternating current (AC) due to the presence of inductance.
The magnitude of the inductive reactance XL at a frequency of 10 Hz, with L = 15 H, is 942.48 ohms.
The inductive reactance (XL) of an inductor is given by the formula:
XL = 2πfL
Where:
XL = Inductive reactance
f = Frequency
L = Inductance
Given:
f = 10 Hz
L = 15 H
Substituting these values into the formula, we can calculate the inductive reactance:
XL = 2π * 10 Hz * 15 H
≈ 2 * 3.14159 * 10 Hz * 15 H
≈ 942.48 ohms
The magnitude of the inductive reactance (XL) at a frequency of 10 Hz, with an inductance (L) of 15 H, is approximately 942.48 ohms.
To know more about alternating current, visit;
https://brainly.com/question/10715323
#SPJ11
(Time) For underdamped second order systems the rise time is the time required for the response to rise from
0% to 100% of its final value
either (a) or (b)
10% to 90% of its final value
5% to 95% of its final value
By considering the rise time from 10% to 90% of the final value, we obtain a more reliable and consistent measure of the system's performance, particularly for underdamped systems where the response exhibits oscillations before settling. This definition helps in evaluating and comparing the dynamic behavior of such systems accurately.
The rise time of a system refers to the time it takes for the system's response to reach a certain percentage of its final value. For underdamped second-order systems, the rise time is commonly defined as the time required for the response to rise from 0% to 100% of its final value. However, this definition can lead to inaccuracies in determining the system's performance.
To address this issue, a more commonly used definition of rise time for underdamped second-order systems is the time required for the response to rise from 10% to 90% of its final value. This range provides a more meaningful measure of how quickly the system reaches its desired output. It allows for the exclusion of any initial transient behavior that may occur immediately after the input is applied, focusing instead on the rise to the steady-state response.
To know more about underdamped, visit:
https://brainly.com/question/31018369
#SPJ11
please provide 5 benefits (advantages) and five properties of any
macheine ( such as drill or saw ... etc)
Machinery such as a drill offers numerous advantages, including precision, efficiency, versatility, power, and safety. Properties of a drill include rotational speed, torque, power source, drill bit compatibility, and ergonomic design.
Machinery, like a circular saw, has multiple advantages including power, precision, efficiency, versatility, and portability. Key properties include blade diameter, power source, cutting depth, safety features, and weight. A circular saw provides robust power for cutting various materials and ensures precision in creating straight cuts. Its efficiency is notable in both professional and DIY projects. The saw's versatility allows it to cut various materials, while its portability enables easy transportation. Key properties encompass the blade diameter which impacts the cutting depth, the power source (electric or battery), adjustable cutting depth for versatility, safety features like blade guards, and the tool's weight impacting user comfort.
Learn more about Machinery here:
https://brainly.com/question/9806515
#SPJ11
Three identical capacitors of 15 micro farad are connected in star across a 415 volts, 50Hz 3-phase supply. What value of capacitance must be connected in delta to take the same line current and line voltage? Phase current in star Phase current in delta Value of Xc in delta Capacitance in delta
To achieve the same line current and line voltage as in the star connection with three identical capacitors of 15 microfarads. This ensures that the phase current in the delta connection matches the line current in the star connection.
To find the value of capacitance that must be connected in delta to achieve the same line current and line voltage as in the star connection, we can use the following formulas and relationships:
1. Line current in a star connection (I_star):
I_star = √3 * Phase current in star connection
2. Line current in a delta connection (I_delta):
I_delta = Phase current in delta connection
3. Relationship between line current and capacitance:
Line current (I) = Voltage (V) / Xc
4. Capacitive reactance (Xc):
Xc = 1 / (2πfC)
Where:
- f is the frequency (50 Hz)
- C is the capacitance
- Capacitance of each capacitor in the star connection (C_star) = 15 microfarad
- Voltage in the star connection (V_star) = 415 volts
Now let's calculate the required values step by step:
Step 1: Find the phase current in the star connection (I_star):
I_star = √3 * Phase current in star connection
Step 2: Find the line current in the star connection (I_line_star):
I_line_star = I_star
Step 3: Calculate the capacitive reactance in the star connection (Xc_star):
Xc_star = 1 / (2πfC_star)
Step 4: Calculate the line current in the star connection (I_line_star):
I_line_star = V_star / Xc_star
Step 5: Calculate the phase current in the delta connection (I_delta):
I_delta = I_line_star
Step 6: Find the value of capacitance in the delta connection (C_delta):
Xc_delta = V_star / (2πfI_delta)
C_delta = 1 / (2πfXc_delta)
Now let's substitute the given values into these formulas and calculate the results:
Step 1:
I_star = √3 * Phase current in star connection
Step 2:
I_line_star = I_star
Step 3:
Xc_star = 1 / (2πfC_star)
Step 4:
I_line_star = V_star / Xc_star
Step 5:
I_delta = I_line_star
Step 6:
Xc_delta = V_star / (2πfI_delta)
C_delta = 1 / (2πfXc_delta)
In a star connection, the line current is √3 times the phase current. In a delta connection, the line current is equal to the phase current. We can use this relationship to find the line current in the star connection and then use it to determine the phase current in the delta connection.
The capacitance in the star connection is given as 15 microfarads for each capacitor. Using the formula for capacitive reactance, we can calculate the capacitive reactance in the star connection.
We then use the formula for line current (I = V / Xc) to find the line current in the star connection. The line current in the star connection is the same as the phase current in the delta connection. Therefore, we can directly use this value as the phase current in the delta connection.
Finally, we calculate the value of capacitive reactance in the delta connection using the line current in the star connection and the formula Xc = V / (2πfI). From this, we can determine the required capacitance in the delta connection.
To read more about microfarads, visit:
https://brainly.com/question/32421296
#SPJ11
A helical compression spring is to be made of oil-tempered wire of 3-mm diameter with a spring index of C = 10. The spring is to operate inside a hole, so buckling is not a problem and the ends can be left plain. The free length of the spring should be 80 mm. A force of 50 N should deflect the spring 15 mm. (a) Determine the spring rate. (b) Determine the minimum hole diameter for the spring to operate in. (c) Determine the total number of coils needed. (d) Determine the solid length. (e) Determine a static factor of safety based on the yielding of the spring if it is compressed to its solid length.
Given,
Diameter of wire, d = 3mm
Spring Index, C = 10
Free length of spring, Lf = 80mm
Deflection force, F = 50N
Deflection, δ = 15mm(a)
Spring Rate or Spring Stiffness (K)
The spring rate is defined as the force required to deflect the spring per unit length.
It is measured in Newtons per millimeter.
It is given by;
K = (4Fd³)/(Gd⁴N)
Where,G = Modulus of Rigidity
N = Total number of active coils
d = Diameter of wire
F = Deflection force
K = Spring Rate or Spring Stiffness
Substituting the given values,
K = (4 * 50 * (3mm)³)/(0.83 * 10⁵ N/mm² * (3.14/4) * (3mm)⁴ * 9.6)
K = 1.124 N/mm
(b) Minimum Hole Diameter (D)
The minimum hole diameter can be calculated using the following formula;
D = d(C + 1)
D = 3mm(10 + 1)
D = 33mm
(c) Total Number of Coils (N)
The total number of coils can be calculated using the following formula;
N = [(8Fd³)/(Gd⁴(C + 2)δ)] + 1
N = [(8 * 50 * (3mm)³)/(0.83 * 10⁵ N/mm² * (3mm)⁴(10 + 2) * 15mm)] + 1
N = 9.22
≈ 10 Coils
(d) Solid Length
The solid length can be calculated using the following formula;
Ls = N * d
Ls = 10 * 3mm
Ls = 30mm
(e) Static Factor of SafetyThe static factor of safety can be calculated using the following formula;
Fs = (σs)/((σa)Max)
Fs = (σs)/((F(N - 1))/(d⁴N))
Where,
σs = Endurance limit stress
σa = Maximum allowable stress
σs = 0.45 x 1850 N/mm²
= 832.5 N/mm²
σa = 0.55 x 1850 N/mm²
= 1017.5 N/mm²
Substituting the given values;
Fs = (832.5 N/mm²)/((50N(10 - 1))/(3mm⁴ * 10))
Fs = 9.28
Hence, the spring rate is 1.124 N/mm, the minimum hole diameter is 33 mm, the total number of coils needed is 10, the solid length is 30 mm, and the static factor of safety based on the yielding of the spring is 9.28.
To know more about minimum visit:
https://brainly.com/question/21426575
#SPJ11
(Q4) Explain the roles of a voltage buffer and an · inverting amplifier, each built with peripherals, in constructing an OP AMP and a capacitance multiplier. Why is it impor- tant to make use of a floating capacitor ture? within the structure
In constructing an OP AMP and a capacitance multiplier, the roles of a voltage buffer and an inverting amplifier, each built with peripherals, are explained below. Additionally, the importance of making use of a floating capacitor structure is also explained.
OP AMP construction using Voltage bufferA voltage buffer is a circuit that uses an operational amplifier to provide an idealized gain of 1. Voltage followers are a type of buffer that has a high input impedance and a low output impedance. A voltage buffer is used in the construction of an op-amp. Its main role is to supply the operational amplifier with a consistent and stable power supply. By providing a high-impedance input and a low-impedance output, the voltage buffer maintains the characteristics of the input signal at the output.
This causes the voltage to remain stable throughout the circuit. The voltage buffer is also used to isolate the output of the circuit from the input in the circuit design.OP AMP construction using inverting amplifierAn inverting amplifier is another type of operational amplifier circuit. Its output is proportional to the input signal multiplied by the negative of the gain. Inverting amplifiers are used to amplify and invert the input signal.
To know more about capacitance visit:
brainly.com/question/33281017
#SPJ11
An engine lathe is used to turn a cylindrical work part 125 mm in diameter by 400 mm long. After one pass of turn, the part is turned to be a diameter of 119mm with a cutting speed = 2.50 m/s and feed = 0.40 mm/rev. Determine the cutting time in seconds.
The cutting time in seconds is 400.
To determine the cutting time for the given scenario, we need to calculate the amount of material that needs to be removed and then divide it by the feed rate.
The cutting time can be found using the formula:
Cutting time = Length of cut / Feed rate
Given that the work part was initially 125 mm in diameter and was turned to a diameter of 119 mm in one pass, we can calculate the amount of material removed as follows:
Material removed = (Initial diameter - Final diameter) / 2
= (125 mm - 119 mm) / 2
= 6 mm / 2
= 3 mm
Now, let's calculate the cutting time:
Cutting time = Length of cut / Feed rate
= 400 mm / (0.40 mm/rev)
= 1000 rev
The feed rate is given in mm/rev, so we need to convert the length of the cut to revolutions by dividing it by the feed rate. In this case, the feed rate is 0.40 mm/rev.
Finally, to convert the revolutions to seconds, we need to divide by the cutting speed:
Cutting time = 1000 rev / (2.50 m/s)
= 400 seconds
Therefore, the cutting time for the given scenario is 400 seconds.
For more such questions on cutting,click on
https://brainly.com/question/12950264
#SPJ8
A steam power plant that produces 125,000 kw power has a turbo-generator with reheat-regenerative unit. The turbine operates steam with a condition of 92 bar, 440 C and a flow rate of 8,333.33 kg/min. Consider the cycle with 3 extraction on 23.5 bar, 17 bar and last extraction is saturated. The condenser has a measured temperature of 45C. Solve for
(a) engine thermal efficiency,
(b) cycle thermal efficiency,
(c) work of the engine,
(d) combined engine efficiency
(a) Engine thermal efficiency ≈ 1.87% (b) Cycle thermal efficiency ≈ 1.83% (c) Work of the engine ≈ 26,381,806.18 kJ/min (d) Combined engine efficiency ≈ 97.01%
To solve this problem, we’ll use the basic principles of thermodynamics and the given parameters for the steam power plant. We’ll calculate the required values step by step.
Given parameters:
Power output (P) = 125,000 kW
Turbine inlet conditions: Pressure (P₁) = 92 bar, Temperature (T₁) = 440 °C, Mass flow rate (m) = 8,333.33 kg/min
Extraction pressures: P₂ = 23.5 bar, P₃ = 17 bar
Condenser temperature (T₄) = 45 °C
Let’s calculate these values:
Step 1: Calculate the enthalpy at each state
Using the steam tables or software, we find the following approximate enthalpy values (in kJ/stat
H₁ = 3463.8
H₂ = 3223.2
H₃ = 2855.5
H₄ = 190.3
Step 2: Calculate the heat added in the boiler (Qin)
Qin = m(h₁ - h₄)
Qin = 8,333.33 * (3463.8 – 190.3)
Qin ≈ 27,177,607.51 kJ/min
Step 3: Calculate the heat extracted in each extraction process
Q₂ = m(h₁ - h₂)
Q₂ = 8,333.33 * (3463.8 – 3223.2)
Q₂ ≈ 200,971.48 kJ/min
Q₃ = m(h₂ - h₃)
Q₃ = 8,333.33 * (3223.2 – 2855.5)
Q₃ ≈ 306,456.43 kJ/min
Step 4: Calculate the work done by the turbine (Wturbine)
Wturbine = Q₂ + Q₃ + Qout
Wturbine = 200,971.48 + 306,456.43
Wturbine ≈ 507,427.91 kJ/min
Step 5: Calculate the heat rejected in the condenser (Qout)
Qout = m(h₃ - h₄)
Qout = 8,333.33 * (2855.5 – 190.3)
Qout ≈ 795,801.33 kJ/min
Step 6: Calculate the engine thermal efficiency (ηengine)
Ηengine = Wturbine / Qin
Ηengine = 507,427.91 / 27,177,607.51
Ηengine ≈ 0.0187 or 1.87%
Step 7: Calculate the cycle thermal efficiency (ηcycle)
Ηcycle = Wturbine / (Qin + Qout)
Ηcycle = 507,427.91 / (27,177,607.51 + 795,801.33)
Ηcycle ≈ 0.0183 or 1.83%
Step 8: Calculate the work of the engine (Wengine)
Wengine = Qin – Qout
Wengine = 27,177,607.51 – 795,801.33
Wengine ≈ 26,381,806.18 kJ/min
Step 9: Calculate the combined engine efficiency (ηcombined)
Ηcombined = Wengine / Qin
Ηcombined = 26,381,806.18 / 27,177,607.51
Ηcombined ≈ 0.9701 or 97.01%
Learn more about Engine thermal efficiency here: brainly.com/question/32492186
#SPJ11
b) Determine the 4-point Discrete Fourier Transform (DFT) of the below function: x(n)={ 0
1
(n=0,3)
(n=1,2)
Find the magnitude of the DFT spectrum, and sketch the result. (10 marks)
The correct answer is "The 4-point DFT of the given function is x(0)=2, x(1)=0, x(2)=0, and x(3)=0. The magnitude of the DFT spectrum is 2, 0, 0, 0. The graph of the magnitude of the DFT spectrum is as shown above."
The given function is;x(n)={ 0 1
(n=0,3)
(n=1,2)
The formula for Discrete Fourier Transform (DFT) is given by;
x(k)=∑n
=0N−1x(n)e−i2πkn/N
Where;
N is the number of sample points,
k is the frequency point,
x(n) is the discrete-time signal, and
e^(-i2πkn/N) is the complex sinusoidal component which rotates once for every N samples.
Substituting the given values in the above formula, we get the 4-point DFT as follows;
x(0) = 0+1+0+1
=2
x(1) = 0+j-0-j
=0
x(2) = 0+1-0+(-1)
= 0
x(3) = 0-j-0+j
= 0
The DFT spectrum for 4-point DFT is given as;
x(k)=∑n
=0
N−1x(n)e−i2πkn/N
So, x(0)=2,
x(1)=0,
x(2)=0, and
x(3)=0
As we know that the magnitude of a complex number x is given by
|x| = sqrt(Re(x)^2 + Im(x)^2)
So, the magnitude of the DFT spectrum is given as;
|x(0)| = |2|
= 2|
x(1)| = |0|
= 0
|x(2)| = |0|
= 0
|x(3)| = |0| = 0
Hence, the magnitude of the DFT spectrum is 2, 0, 0, 0 as we calculated above. Also, the graph of the magnitude of the DFT spectrum is as follows:
Therefore, the correct answer is "The 4-point DFT of the given function is x(0)=2, x(1)=0, x(2)=0, and x(3)=0. The magnitude of the DFT spectrum is 2, 0, 0, 0. The graph of the magnitude of the DFT spectrum is as shown above."
To know more about DFT spectrum visit:
https://brainly.com/question/32065478
#SPJ11
Numerical integration first computes the integrand's anti-derivative and then evaluates it at the endpoint bounds. True False
The answer for the given text will be False. Numerical integration methods do not generally require the computation of the integrand's anti-derivative.
Instead, they approximate the integral by dividing the integration interval into smaller segments and approximating the area under the curve within each segment. The integrand is directly evaluated at specific points within each segment, and these evaluations are used to calculate an approximation of the integral.There are various numerical integration techniques such as the Trapezoidal Rule, Simpson's Rule, and Gaussian Quadrature.
It employs different strategies for approximating the integral without explicitly computing the anti-derivative. The values of the integrand at these points are then combined using a specific formula to estimate the integral. Therefore, numerical integration methods do not require knowledge of the antiderivative of the integrated. Therefore, the statement "Numerical integration first computes the integrand's anti-derivative and then evaluates it at the endpoint bounds" is false.
Learn more about numerical integration methods here:
https://brainly.com/question/28990411
#SPJ11
Q8. In the inverted crank-slider shown, link 2 is the input and link 4 is the output. If O₂O₂ = 27 cm and O₂A = 18 cm, then the total swinging angle of link 4 about O, is found to be: c) 83.6⁰ a) 45° b) 72.3° d) 89.4° e) 60° f) None of the above Q9. The time ratio of this mechanism is found to be: c) 2.735 d) 1.5 e) 2.115 f) None of the above a) 1.828 b) 3.344 ОА Q10. Assume that in the position shown, link 2 rotates at 10 rad/s hence causing link 4 to rotate at 4 rad/s. If the torque on link 2 is 100 N.m, then by neglecting power losses, the torque on link 4 is: c) 500 N.m. d) 650 N.m e) None of the above. a) 250 N.m b) 375 N.m Im 02 LETTERS 2 4 3 A - Re
Q8. The correct option is c) 83.6⁰
Explanation: The total swinging angle of link 4 can be determined as follows: OA² + O₂A² = OAₒ²
Cosine rule can be used to determine the angle at O₂OAₒ = 33.97 cm
O₄Aₒ = 3.11 cm
Cosine rule can be used to determine the angle at OAₒ
The angle of link 4 can be determined by calculating:θ = 360° - α - β + γ
= 83.6°Q9.
The correct option is b) 3.344
Explanation:The expression for time ratio can be defined as:T = (2 * AB) / (OA + AₒC)
We will start by calculating ABAB = OAₒ - O₄B
= OAₒ - O₂B - B₄O₂OA
= 33.97 cmO₂
A = 18 cmO₂
B = 6 cmB₄O₂
= 16 cmOB
can be calculated using Pythagoras' theorem:OB = sqrt(O₂B² + B₄O₂²)
= 17 cm
Therefore, AB = OA - OB
= 16.97 cm
Now, we need to calculate AₒCAₒ = O₄Aₒ + AₒCAₒ
= 3.11 + 14
= 17.11 cm
T = (2 * AB) / (OA + AₒC)
= 3.344Q10.
The correct option is a) 250 N.m
Explanation:We can use the expression for torque to solve for the torque on link 4:T₂ / T₄ = ω₄ / ω₂ where
T₂ = 100 N.mω₂
= 10 rad/sω₄
= 4 rad/s
Rearranging the above equation, we get:T₄ = (T₂ * ω₄) / ω₂
= (100 * 4) / 10
= 40 N.m
However, the above calculation only gives us the torque required on link 4 to maintain the given angular velocity. To calculate the torque that we need to apply, we need to take into account the effect of acceleration. We can use the expression for power to solve for the torque:T = P / ωwhereP
= T * ω
For link 2:T₂ = 100 N.mω₂
= 10 rad/s
P₂ = 1000 W
For link 4:T₄ = ?ω₄
= 4 rad/s
P₄ = ?
P₂ = P₄
We know that power is conserved in the system, so:P₂ = P₄
We can substitute the expressions for P and T to get:T₂ * ω₂ = T₄ * ω₄
Substituting the values that we know:T₂ = 100 N.mω₂
= 10 rad/sω₄
= 4 rad/s
Solving for T₄, we get:T₄ = (T₂ * ω₂) / ω₄
= 250 N.m
Therefore, the torque on link 4 is 250 N.m.
To know more about torque, visit:
https://brainly.com/question/30338175
#SPJ11
Design an animal toy (such as a camel, cow, horse, etc.) that can walk without slipping, tipping, and flipping using the Four Bar Mechanism system. Identify the mechanism profile that suits your toy and carry the following analysis using MatLab for 360 degrees and make sample calculations for the mechanism(s) at a 45-degree crank angle: position, velocity, acceleration, forces, and balancing. Assume the coefficient of friction between the animal feet and the ground to be 0.3. The animal walks at a constant speed. The total mass of the toy should not exceed 300 grams. Make simulation for the walking animal using any convenient software. All your work should be in Microsoft Word. Handwriting is not accepted.
This task involves designing an animal toy that walks securely using the Four Bar Mechanism system. MATLAB will be utilized for detailed analysis, including position, velocity, acceleration, forces, and balancing at a 45-degree crank angle.
In this task, the goal is to create an animal toy capable of walking without slipping, tipping, or flipping by utilizing the Four Bar Mechanism system. The Four Bar Mechanism consists of four rigid bars connected by joints, forming a closed loop. By manipulating the angles and lengths of these bars, a desired motion can be achieved.
To begin the analysis, MATLAB will be employed to determine the position, velocity, acceleration, forces, and balancing of the toy at a 45-degree crank angle. These calculations will provide crucial information about the toy's movement and stability.
Furthermore, various factors need to be considered, such as the total mass of the toy, which should not exceed 300 grams. This limitation ensures the toy's lightweight nature for ease of handling and operation.
Assuming a coefficient of friction of 0.3 between the animal's feet and the ground, the toy's walking motion will be simulated. The coefficient of friction affects the toy's ability to grip the ground, preventing slipping.
For more information on MATLAB visit: brainly.com/question/31512956
#SPJ11
Learning Goal: Part A - Moment about the x axis at A A solid rod has a diameter of e=60 mm and is subjected to the loading shown. Let a=180 mm,b=200 mm,c= 350 mm,d=250 mm, and P=5.0kN. Take point A to Part B - Moment about the z axis at A be at the top of the circular cross-section.
The moment about the x-axis at A is 2.175 kN*m. The moment about the x-axis at A in the given diagram can be calculated.
Firstly, we need to calculate the magnitude of the vertical component of the force acting at point A; i.e., the y-component of the force. Since the rod is symmetric, the net y-component of the forces acting on it should be zero.The force acting on the rod at point C can be split into its horizontal and vertical components. The horizontal component can be found as follows:F_Cx = P cos 60° = 0.5 P = 2.5 kNThe vertical component can be found as follows:F_Cy = P sin 60° = 0.87 P = 4.35 kNThe force acting on the rod at point D can be split into its horizontal and vertical components. The horizontal component can be found as follows:F_Dx = P cos 60° = 0.5 P = 2.5 kNThe vertical component can be found as follows:F_Dy = P sin 60° = 0.87 P = 4.35 kNThe net y-component of the forces acting on the rod can now be calculated:F_y = F_Cy + F_Dy = 4.35 + 4.35 = 8.7 kNWe can now calculate the moment about the x-axis at A as follows:M_Ax = F_y * d = 8.7 * 0.25 = 2.175 kN*mTherefore, the moment about the x-axis at A is 2.175 kN*m. Answer: 2.175 kN*m.
Learn more about forces :
https://brainly.com/question/13191643
#SPJ11
(a) Explain in detail one of three factors that contribute to hydrogen cracking.
(b) Explain the mechanism of hydrogen induced cool cracking
(c) Explain with your own words how to avoid the hydrogen induced cracking in underwater welding
(a) One of the factors that contribute to hydrogen cracking is the presence of hydrogen in the weld metal and base metal. Hydrogen may enter the weld metal during welding or may already exist in the base metal due to various factors like corrosion, rust, or water exposure.
As welding takes place, the high heat input and the liquid state of the weld metal provide favorable conditions for hydrogen diffusion. Hydrogen atoms can migrate to the areas of high stress concentration and recombine to form molecular hydrogen. The pressure generated by the molecular hydrogen can cause the brittle fracture of the metal, leading to hydrogen cracking. The amount of hydrogen in the weld metal and the base metal is dependent on the welding process used, the type of electrode, and the shielding gas used.
(c) To avoid hydrogen-induced cracking in underwater welding, several measures can be taken. The welding procedure should be carefully designed to avoid high heat input, which can promote hydrogen diffusion. Preheating the metal before welding can help to reduce the cooling rate and avoid the formation of cold cracks. Choosing low hydrogen electrodes or fluxes and maintaining a dry environment can help to reduce the amount of hydrogen available for diffusion.
To know more about corrosion visiṭ:
https://brainly.com/question/31590223
#SPJ11