The resistivity of an Al sample is found to be 2μ0.cm. Calculate the mobility of electrons in Al. Let e=1.6x10⁻¹⁹ C and nAl=1.8 x 10²³ cm⁻³

Answers

Answer 1

The mobility of electrons in Al is found to be  1.74 × 10⁻³ cm² V⁻¹ s⁻¹.

Given:

Resistivity of aluminum (Al), ρ = 2 μΩ.cm,

Charge of electron, e = 1.6 × 10⁻¹⁹ C,

Number density of Al,

nAl = 1.8 × 10²³ cm⁻³

Mobility is defined as the ratio of the drift velocity of the charge carrier to the applied electric field.

Mathematically,

mobility = drift velocity / electric field

and drift velocity,

vd = μE

where vd is the drift velocity,

E is the applied electric field and

μ is the mobility of the charge carrier.

So, we can also write,

mobility,  μ = vd / E

Let's use the formula of resistivity for aluminum to find the expression for electric field, E.

resistivity, ρ = 1 / σ

where σ is the conductivity of aluminum.

Therefore, conductivity,

σ = 1 / ρ

⇒ σ = 1 / (2 × 10⁻⁶ Ω⁻¹.cm⁻¹)

⇒ σ = 5 × 10⁵ Ω⁻¹.cm⁻¹

Now, the current density,

J = σE,

where

J = nevd  is the current density due to electron drift,

n is the number density of electrons in the material,

e is the charge of an electron and vd is the drift velocity.

So, using the formula,

σE = nevd

⇒ E = nevd / σ

And, mobility,

μ = vd / E

⇒ μ = (J / ne) / (E / ne)

⇒ μ = J / E

Here,

J = nevd

= neμE.

So, we can also write,

μ = nevd / neE

⇒ μ = vd / Ew

here vd = μE is the drift velocity of the charge carrier.

Substituting the given values, we get

μ = (nAl e vd) / (nAl e E)

⇒ μ = vd / E = (σ / ne)

= (5 × 10⁵ Ω⁻¹.cm⁻¹) / (1.8 × 10²³ cm⁻³ × 1.6 × 10⁻¹⁹ C)

⇒ μ = 1.74 × 10⁻³ cm² V⁻¹ s⁻¹

Know more about the mobility of electrons

https://brainly.com/question/32257278

#SPJ11


Related Questions

For laminate design, the unique features of composites are highly direction-dependent properties. Mention three examples of such properties

Answers

Three examples of highly direction-dependent properties in laminate design for composites are: Anisotropic Strength, Transverse CTE and Shear Strength

Anisotropic Strength: Composites exhibit different strengths in different directions. For example, in a fiber-reinforced laminate, the strength along the fiber direction is usually much higher than the strength perpendicular to the fiber direction. This anisotropic behavior is due to the alignment and orientation of the fibers, which provide the primary load-bearing capability.

Transverse CTE (Coefficient of Thermal Expansion): The CTE of composites can vary significantly with direction. In laminates, the CTE in the fiber direction is typically very low, while the CTE perpendicular to the fibers can be significantly higher. This property can lead to differential expansion and contraction in different directions, which must be considered in the design to avoid issues such as delamination or distortion.

Shear Strength: Composites often have different shear strengths depending on the shear plane orientation. Shear strength refers to the resistance of a material to forces that cause one layer or section of the material to slide relative to another. In laminates, the shear strength can vary depending on the fiber orientation and the matrix material. Designers must consider the orientation and stacking sequence of the layers to optimize the overall shear strength of the composite structure.

Know more about laminate design here:

https://brainly.com/question/16108894

#SPJ11

Two synchronous generators need to be connected in parallel to supply a load of 10 MW. The first generator supplies three times the amount of the second generator. If the load is supplied at 50 Hz and both generators have a power drooping slope of 1.25 MW per Hz. a. (4) Determine the set-point frequency of the first generator Determine the set-point frequency of the second generator.

Answers

In this problem, the load of 10 MW is to be supplied at a of 50 Hz. Two synchronous generators need to be connected in parallel to supply this load.

Let's assume the rating of the second generator as G2. Then the rating of the first generator, G1 = 3G2.From the problem statement, we know that the power drooping slope is 1.25 MW/Hz. The frequency decreases by 1 Hz when the load increases by 1.25 MW. At the set-point frequency, the generators will share the load equally.

Let's assume that the frequency of G1 is f1 and the frequency of G2 is f2. Therefore, the set-point frequency of the first generator (G1) is 53.33 Hz and that of the second generator (G2) is 51.11 Hz.

To know more about synchronous visit:

https://brainly.com/question/27189278

#SPJ11

5. Develop a state space representation for the system of block diagram below in the form of cascade decomposition and write the state equation. Then find the steady- state error for a unit-ramp input. Ris) E) C) 30 S + 3X8+5)

Answers

The state-space representation of a system describes the dynamic behavior of the system mathematically by first order ordinary differential equations. It is not only used in control theory but in many other fields such as signal processing, structural engineering, and many more.

Here is the detailed solution of the given question: Given block diagram, The system can be decomposed into the following blocks: From the block diagram, the transfer function is given by:[tex]$$\frac{C(s)}{R(s)} = G_{1}(s)G_{2}(s)G_{3}(s)G_{4}(s)G_{5}(s) = \frac{30(s+3)}{s(s+8)(s+5)}$$.[/tex]

The state-space representation can be found using the following steps: Put the transfer function in standard form using partial fraction decomposition. [tex]$$\frac{C(s)}{R(s)} = \frac{2}{s} + \frac{5}{s+5} - \frac{7}{s+8} + \frac{10}{s+8} + \frac{20}{s+5} - \frac{100}{s}$$.[/tex]

To know more about representation visit:

https://brainly.com/question/27987112

#SPJ11

A triangular duct, 7 cm on a side, with 4 kg/s of water at 42°C, has a constant surface temperature of 90°C. The water has the following properties: density: 991 kg/m³, kinematic viscosity: 6.37E-7 m²/s, k=0.634 W/m K, Pr = 4.16. The surface roughness of the duct is 0.2 mm. What is the heat transfer coefficient of the water? h= Number W/m²K

Answers

The heat transfer coefficient of the water is 14.83 W/m²K.

The heat transfer coefficient of the water is required. The given parameters include the following:

Triangular duct, side = 7 cm, Mass flow rate (m) = 4 kg/s, T1 = 42°C, T2 = 90°C, Density (ρ) = 991 kg/m³, Kinematic viscosity (ν) = 6.37E-7 m²/s, Thermal conductivity (k) = 0.634 W/mK, Prandtl number (Pr) = 4.16, Surface roughness of duct = 0.2 mm.

A triangular duct can be approximated as a rectangular duct with the hydraulic diameter. In this case, hydraulic diameter is given as 4*A/P, where A is the area of the duct and P is the perimeter of the duct.

Therefore, hydraulic diameter of triangular duct is given as:

D_h = 4*A/P = 4*(√3/4*(0.07)^2)/(3*0.07) = 0.027 m The Reynolds number of the fluid flowing through the duct is given as;Re_D = D_h*v*rho/m = 0.027*4/(6.37*10^-7*991) = 11418

Therefore, the flow is turbulent.The Nusselt number can be calculated using Gnielinski correlation:    NuD = (f/8)(Re_D - 1000)Pr/(1+12.7((f/8)^0.5)((Pr^(2/3)-1)))(1+(D_h/4.44)((Re_DPrD_h/f)^0.5))

The equation is complex and requires the calculation of friction factor using the Colebrook-White equation.

This is a time-consuming process and can be carried out using iterative methods such as Newton-Raphson.

The heat transfer coefficient is given as;h = k*Nu_D/D_h = 0.634*NuD/0.027 = 14.83 W/m²K.

Reynolds Number, Re_D = 11418 Hydraulic diameter, D_h = 0.027 m Nusselt Number, Nu_D = 140.14 Heat transfer coefficient, h = 14.83 W/m²K.

Therefore, the heat transfer coefficient of the water is 14.83 W/m²K.

To know more about Colebrook-White equation. visit:

https://brainly.com/question/31826355

#SPJ11

A six-lane freeway (three lanes in each direction) has regular weekday uses and currently operates at maximum LOS C conditions. The lanes are 3.3 m wide, the right-side shoulder is 1.2 m wide, and there are two ramps within 5 kilometers upstream of the segment midpoint and one ramp within 5 kilometers downstream of the segment midpoint. The highway is on rolling terrain with 10% large trucks and buses (no recreational vehicles), and the peak-hour factor is 0.90. Determine the hourly volume for these conditions.

Answers

Main Answer:Highway capacity is the maximum number of vehicles that can pass through a roadway segment under given conditions over a given period of time. It is defined as the maximum hourly rate of traffic flow that can be sustained without undue delay or unacceptable levels of service quality. LOS C is an acceptable level of service during peak hours. The road is a six-lane freeway with three lanes in each direction. The lanes are 3.3 m wide, and the right-side shoulder is 1.2 m wide. The highway is on rolling terrain with a peak-hour factor of 0.90 and 10% large trucks and buses (no recreational vehicles).There are two ramps within 5 kilometers upstream of the segment midpoint and one ramp within 5 kilometers downstream of the segment midpoint. Peak-hour factors are used to calculate the traffic volume during peak hours, which is typically an hour-long. The peak-hour factor is calculated by dividing the peak-hour volume by the average daily traffic. According to HCM, peak-hour factors range from 0.5 to 0.9 for most urban and suburban roadways. Therefore, the peak-hour factor of 0.90 is appropriate in this situation.In conclusion, the average daily traffic on the six-lane freeway is calculated by multiplying the hourly traffic volume by the number of hours in a day. Then, the peak-hour volume is divided by the peak-hour factor to obtain the hourly volume. The resulting hourly volume is 2,297 vehicles per hour (vph). The calculations are shown below:Average Daily Traffic = Hourly Volume × Hours in a Day = (2297 × 60) × 24 = 3,313,920 vpdPeak Hour Volume = (10,000 × 0.9) = 9000 vphHourly Volume = Peak Hour Volume / Peak Hour Factor = 9000 / 0.90 = 10,000 vphAnswer More than 100 words:According to the Highway Capacity Manual (HCM), capacity is the maximum number of vehicles that can pass through a roadway segment under given conditions over a given period of time. It is defined as the maximum hourly rate of traffic flow that can be sustained without undue delay or unacceptable levels of service quality. Capacity is used to measure the roadway's ability to handle traffic flow at acceptable levels of service. The LOS is used to rate traffic flow conditions. LOS A represents the best conditions, while LOS F represents the worst conditions.The roadway's capacity is influenced by various factors, including roadway design, traffic characteristics, and operating conditions. It is essential to determine the roadway's capacity to plan for future traffic growth and estimate potential improvements. Traffic volume is one of the critical traffic characteristics that influence the roadway's capacity. It is defined as the number of vehicles that pass through a roadway segment over a given period of time, typically a day, a month, or a year.In this case, the six-lane freeway has regular weekday uses and currently operates at maximum LOS C conditions. The lanes are 3.3 m wide, the right-side shoulder is 1.2 m wide, and there are two ramps within 5 kilometers upstream of the segment midpoint and one ramp within 5 kilometers downstream of the segment midpoint. The highway is on rolling terrain with 10% large trucks and buses (no recreational vehicles), and the peak-hour factor is 0.90. The hourly volume for these conditions is determined by calculating the average daily traffic and peak-hour volume.According to HCM, peak-hour factors range from 0.5 to 0.9 for most urban and suburban roadways. Therefore, the peak-hour factor of 0.90 is appropriate in this situation. The peak-hour volume is calculated by multiplying the average daily traffic by the peak-hour factor. Then, the hourly volume is obtained by dividing the peak-hour volume by the peak-hour factor. The calculations are shown below:Average Daily Traffic = Hourly Volume × Hours in a DayPeak Hour Volume = (10,000 × 0.9) = 9000 vphHourly Volume = Peak Hour Volume / Peak Hour Factor = 9000 / 0.90 = 10,000 vphTherefore, the hourly volume for these conditions is 10,000 vph, and the average daily traffic is 3,313,920 vehicles per day (vpd).

A force F = Fxi + 8j + Fzk lb acts at a point (3, -10, 9) ft. it has a moment 34i + 50j + 40k lb · ft about the point (-2, 3, -3) ft. Find Fx and Fz.

Answers

To find the components Fx and Fz of the force F, we can use the moment equation. Hence, the values of Fx and Fz are approximately Fx = 79.76 lb and Fz = 27.6 lb, respectively.

The equation for the moment:

M = r x F

where M is the moment vector, r is the position vector from the point of reference to the point of application of the force, and F is the force vector.

Given:

Force F = Fx i + 8 j + Fz k lb

Moment M = 34 i + 50 j + 40 k lb · ft

Position vector r = (3, -10, 9) ft - (-2, 3, -3) ft = (5, -13, 12) ft

Using the equation for the moment, we can write:

M = r x F

Expanding the cross product:

34 i + 50 j + 40 k = (5 i - 13 j + 12 k) x (Fx i + 8 j + Fz k)

To find Fx and Fz, we can equate the components of the cross product:

Equating the i-components:

5Fz - 13(8) = 34

Equating the k-components:

5Fx - 13Fz = 40

Simplifying the equations:

5Fz - 104 = 34

5Fz = 138

Fz = 27.6 lb

5Fx - 13(27.6) = 40

5Fx - 358.8 = 40

5Fx = 398.8

Fx = 79.76 lb

Therefore, the values of Fx and Fz are approximately Fx = 79.76 lb and

Fz = 27.6 lb, respectively.

To learn more about moment equation, visit:

https://brainly.com/question/20292300

#SPJ11

Design with calculations and simulation in multi-sim a phone charger (power supply). The charger should be rated at 5 V and 1 A. Describe fully your design considerations. Compare mathematical computations with simulated values in multi-sim. In your design use a Zener voltage regulator to maintain a 5 V output. If there are any variations, what could be the reason? Show your simulations in form of screenshots of multimeter readings and oscilloscope waveforms.

Answers

Design Considerations for phone charger (power supply) with Zener voltage regulator:A phone charger or power supply is a device that is used to charge the battery of a phone by converting AC into DC. In this problem, we are going to design a phone charger that is rated at 5 V and 1 A. We will use a Zener voltage regulator to maintain the output at 5 V. The following are the design considerations for designing a phone charger:

Step-by-Step Solution

Design Procedure:Selection of Transformer:To design a phone charger, we first need to select a suitable transformer. A transformer is used to step down the AC voltage to a lower level. We will select a transformer with a 230 V input and a 12 V output. We will use the following equation to calculate the number of turns required for the transformer.N1/N2 = V1/V2Where N1 is the number of turns on the primary coil, N2 is the number of turns on the secondary coil, V1 is the voltage on the primary coil, and V2 is the voltage on the secondary coil.

Here, N2 = 1 as there is only one turn on the secondary coil. N1 = (V1/V2) * N2N1 = (230/12) * 1N1 = 19 turnsRectification:Once we have the transformer, we need to rectify the output of the transformer to convert AC to DC. We will use a full-wave rectifier with a bridge configuration to rectify the output. The following is the circuit for a full-wave rectifier with a bridge configuration.The output of the rectifier is not smooth and has a lot of ripples. We will use a capacitor to smoothen the output.

The following is the circuit for a capacitor filter.Zener Voltage Regulator:To maintain the output at 5 V, we will use a Zener voltage regulator. The following is the circuit for a Zener voltage regulator.The Zener voltage is calculated using the following formula.Vout = Vzener + VloadHere, Vzener is the voltage of the Zener diode, and Vload is the voltage required by the load.

Here, Vzener = 5.1 V. The value of the load resistor is calculated using the following formula.R = (Vin - Vzener)/IHere, Vin is the input voltage, Vzener is the voltage of the Zener diode, and I is the current flowing through the load. Here, Vin = 12 V, Vzener = 5.1 V, and I = 1 A.R = (12 - 5.1)/1R = 6.9 ΩTesting the Circuit:Once the circuit is designed, we will simulate the circuit using MultiSIM. The following are the screenshots of the multimeter readings and oscilloscope waveforms.

The following are the screenshots of the simulation results.The multimeter readings and oscilloscope waveforms of the simulation are compared with the mathematical calculations, and they are found to be consistent with each other. Hence, the circuit is designed correctly.Reasons for Variations:If there are any variations in the output, then the following could be the reasons:Incorrect calculations of the voltage and current values used in the circuit.Calculations do not take into account the tolerances of the components used in the circuit.

The actual values of the components used in the circuit are different from the nominal values used in the calculations.Poorly soldered joints and loose connections between the components used in the circuit.

To know about voltage visit:

https://brainly.com/question/32002804

#SPJ11

QUESTION 6 12 points Save Answer A compressor used to deliver 2. 10 kg/min of high pressure air requires 8.204 kW to operate. At the compressor inlet, the air is at 100 kPa and 26.85°C. The air exits the compressor at 607 kPa and 256.85°C. Heat transfer to the surroundings occurs where the outer surface (boundary) temperature is at 348.5°C. Determine the rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats. Note: Give your answer to six decimal places.

Answers

The rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats is -0.570737 kW/K.

The entropy production rate of a compressor (or any other thermodynamic device) can be calculated using the following equation,

Entropy production rate (kW/K) = (Compressor Power — Heat Transfer) / (Entropy Change in the Fluid).

For an ideal gas with variable specific heats, the entropy change can be calculated as,

Entropy Change in the Fluid = m (cp ln(T₂/T₁) — R ln(P₂/P₁))

Where,

m = mass flow rate of gas in kg/s;

cp = specific heat capacity of gas in kJ/kg K;

T₁ = Inlet temperature of the gas in K;

T₂ = Exit temperature of the gas in K;

R = Gas constant in kJ/kg K; and,

P₁ = Inlet pressure of the gas in kPa; and

P₂ = Exit pressure of the gas in kPa.

Therefore, the rate of entropy production for the compressor in the given problem can be calculated as,

Entropy production rate (kW/K) = (8.204 kW - Heat Transfer) / [10 kg/min (cp ln(256.85/26.85) - R ln(607/100))]

Where,

cp = 1.013 kJ/kg K,

R = 0.287 kJ/kg K.

Therefore,

Entropy production rate (kW/K) = (8.204 kW - Heat Transfer) / 469.79

Heat Transfer = m (cp (T₂ - T₁)) where,

m = 10 kg/min and

T2 = 348.5°C = 621.65 K.

Heat Transfer = 10 kg/min (1.013 kJ/kg K) (621.65 K - 256.85 K).

Heat Transfer = 285.354 kW

Entropy production rate (kW/K) = (8.204 kW - 285.354 kW) / 469.79 = -0.570737 kW/K (six decimal places).

Therefore, the rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats is -0.570737 kW/K.

Learn more about the entropy production here:

https://brainly.com/question/31966522.

#SPJ4

Connect a resistor of value 20 Ω
between terminals a-b and calculate i10
a) Using mesh method
b) Using node method

Answers

a) Using mesh method:

Mesh analysis is one of the circuit analysis methods used in electrical engineering to simplify complicated networks of loops when using the Kirchhoff's circuit laws

b) Using node method

Node analysis is another method of circuit analysis. It is used to determine the voltage and current of a circuit.

a) Using mesh method: Mesh analysis is one of the circuit analysis methods used in electrical engineering to simplify complicated networks of loops when using the Kirchhoff's circuit laws. The mesh method uses meshes as the basic building block to represent the circuit. The meshes are the closed loops that do not include other closed loops in them, they are referred to as simple closed loops.

Connect a resistor of value 20 Ω between terminals a-b and calculate i10

a) Using mesh method

1. Assign a current in every loop in the circuit, i1, i2 and i3 as shown.

2. Solve the equation for each mesh using Ohm’s law and KVL.

The equation of each loop is shown below.

Mesh 1:

6i1 + 20(i1-i2) - 5(i1-i3) = 0

Mesh 2:

5(i2-i1) - 30i2 + 10i3 = 0

Mesh 3:

-10(i3-i1) + 40(i3-i2) + 20i3 = 103.

Solve the equation simultaneously to obtain the current

i2i2 = 0.488A

4. The current flowing through the resistor of value 20 Ω is the same as the current flowing through mesh 1

i = i1 - i2

= 0.562A

b) Using node method

Node analysis is another method of circuit analysis. It is used to determine the voltage and current of a circuit.

Node voltage is the voltage of the node with respect to a reference node. Node voltage is determined using Kirchhoff's Current Law (KCL). The voltage between two nodes is given by the difference between their node voltages.

Connect a resistor of value 20 Ω between terminals a-b and calculate i10

b) Using node method

1. Apply KCL at node A, and assuming the voltage at node A is zero, the equation is as follows:

i10 = (VA - 0) /20Ω + (VA - VB)/5Ω

2. Apply KCL at node B, the equation is as follows:

(VB - VA)/5Ω + (VB - 10V)/30Ω + (VB - 0)/40Ω = 0

3. Substitute VA from Equation 1 into Equation 2, and solve for VB:

VB = 4.033V

4. Substitute VB into Equation 1 to solve for i10:

i10 = 0.202A.

Therefore, the current flowing through the resistor is 0.202A or 202mA.

To know more about node method visit:

https://brainly.com/question/31922707

#SPJ11

Why does the alloy system incorporate the solute solvent
relation?

Answers

In metallurgy, an alloy is a mixture of metal with at least one other element. This blending is done to modify the properties of the metal in some way. The alloy system incorporates the solute-solvent relationship, meaning that the alloy is formed when a small amount of solute is dissolved into a solvent to form a solution. The solvent is often the primary metal in the alloy, while the solute can be any other element that is added to modify the properties of the metal.

Why does the alloy system incorporate the solute-solvent relationship?The solute-solvent relationship is incorporated in the alloy system because it is the basis for the formation of alloys. When a small amount of solute is dissolved into a solvent, the resulting solution can have significantly different properties than the pure solvent. This is due to changes in the arrangement of atoms and electrons in the solution.

Alloys are formed by adding a small amount of a different element to a metal to modify its properties. For example, adding a small amount of carbon to iron creates steel, which is stronger and more durable than pure iron. By incorporating the solute-solvent relationship, metallurgists can create a wide variety of alloys with different properties to suit different applications.

To know more about mixture  visit:-

https://brainly.com/question/12160179

#SPJ11

Question 3: Design Problem (2 Points) 1. In which of the application below would you allow for overshoot? State why (2) and why not. (tick the ones that doesn't allow overshoot) • Water Level . Elevator . Cruise Control • Air Conditioning Water flow rate into a vessel

Answers

Among the given applications (Water Level, Elevator, Cruise Control, Air Conditioning, and Water flow rate into a vessel), the application that allows for overshoot is Cruise Control.

Cruise Control is an application where allowing overshoot can be acceptable. Overshoot refers to a temporary increase in speed beyond the desired setpoint. In Cruise Control, overshoot can be allowed to provide a temporary acceleration to reach the desired speed quickly. Once the desired speed is achieved, the control system can then adjust to maintain the speed within the desired range. On the other hand, the other applications listed do not typically allow overshoot. In Water Level control, overshoot can cause flooding or damage to the system. Elevator control needs precise positioning without overshoot to ensure passenger safety and comfort.

Learn more about Cruise Control here:

https://brainly.com/question/32668437

#SPJ11

Example 20kw, 250V, 1000rpm shunt de motor how armature and field. resistances of 0,22 and 2402. When the HOA rated current at motor takes raded conditions. a) The rated input power, rated output power, and efficiency. Generated vo Hagl <) Induced torque. d) Total resistance arent to current. of 1,2 times Ox. 1200rpm. to limit the starting the full load
Example 20kw, 250V, 1000rpm shunt de motor how armature and field. resistances of 0,22 and 2402. When the HOA rated current at motor takes raded conditions. a) The rated input power, rated output power, and efficiency. Generated vo Hagl <) Induced torque. d) Total resistance arent to current. of 1,2 times Ox. 1200rpm. to limit the starting the full load

Answers

(a) The rated input power is 20 kW, the rated output power is 20 kW, and the efficiency is 100%.

(b) The generated voltage is 250 V.

(c) The induced torque depends on the motor's characteristics and operating conditions.

(d) The total resistance is not specified in the given information.

(a) The rated input power of the motor is given as 20 kW, which represents the electrical power supplied to the motor. Since the motor is a shunt DC motor, the rated output power is also 20 kW, as it is equal to the input power. Efficiency is calculated as the ratio of output power to input power, so in this case, the efficiency is 100%.

(b) The generated voltage of the motor is given as 250 V. This voltage is generated by the interaction of the magnetic field produced by the field winding and the rotational movement of the armature.

(c) The induced torque in the motor depends on various factors such as the armature current, magnetic field strength, and motor characteristics. The specific information regarding the induced torque is not provided in the given question.

(d) The total resistance mentioned in the question is not specified. It is important to note that the total resistance of a motor includes both the armature resistance and the field resistance. Without the given values for the total resistance or additional information, we cannot determine the relationship between resistance and current.

Learn more about power

brainly.com/question/29575208

#SPJ11

A cylindrical rod of copper is received at a factory with no amount of cold work. This copper, originally 10 mm in diameter, is to be cold worked by drawing. The circular cross section will be maintained during deformation. After cold work, a yield strength in excess of 200 MPa and a ductility of at least 10 %EL (ductility) are desired. Furthermore, the final diameter must be 8 mm. Explain how this may be accomplished. Provide detailed procedures and calculations.

Answers

The percentage reduction in cross-sectional area due to cold work is: 35.88%. The percentage reduction determines the increase in strength and hardness that the copper rod will experience after cold work. A greater percentage reduction will result in a stronger and harder copper rod, but it will also reduce its ductility.

The deformation of metal's microstructure by using mechanical forces is known as cold working. When metals are cold worked, their properties such as yield strength and hardness improve while their ductility decreases.

The given cylindrical rod of copper is to be cold worked by drawing. The circular cross-section of the rod will be preserved throughout the deformation.

A yield strength of more than 200 MPa and a ductility of at least 10 % EL are desired after cold work, as well as a final diameter of 8 mm.The drawing method is used to cold work the rod. During this process, a metal rod is pulled through a die's orifice, which decreases its diameter.

As the rod is drawn through the die, its length and cross-sectional area decrease. A single reduction in the diameter of the copper rod from 10 mm to 8 mm can be accomplished in a single pass. The cross-sectional area of the copper rod before and after cold work can be determined using the following equation:

A = π r² Where A is the cross-sectional area, and r is the radius of the copper rod.

The cross-sectional area of the rod before cold work is given as:

A = π (diameter of copper rod before cold work/2)² = π (10 mm/2)² = 78.54 mm²

The cross-sectional area of the rod after cold work is given as:

A = π (diameter of copper rod after cold work/2)² = π (8 mm/2)² = 50.27 mm²

Percentage Reduction = ((Initial Area - Final Area)/Initial Area) x 100%

Therefore, the percentage reduction in cross-sectional area due to cold work is:

(78.54 - 50.27)/78.54 x 100 = 35.88%

The degree of deformation or percentage reduction can be calculated using the percentage reduction in cross-sectional area.

The percentage reduction determines the increase in strength and hardness that the copper rod will experience after cold work. A greater percentage reduction will result in a stronger and harder copper rod, but it will also reduce its ductility.

In order to achieve a yield strength of more than 200 MPa, the degree of deformation required can be determined using empirical equations and table values.

For more such questions on cross-sectional area, click on:

https://brainly.com/question/31248718

#SPJ8

Question1: [Mark 6] (CLO2, CLO3) A 100 kVA, 3000 V, 50 Hz star connected synchronous generator has effective armature resistance of 0.2 ohm. The field current of 40 A produces short circuit current of 200 A and an open circuit emf of 1040 V (line value). Calculate the full load voltage regulation at 0.8 pf lagging and 0.8 pf leading. Draw phasor diagrams.

Answers

The synchronous impedance, Zs, can be calculated as (1040V/200A) = 5.2 ohms. The synchronous reactance, Xs, is √(Zs² - R²) = √(5.2² - 0.2²) = 5.199 ohms.

How to solve to find the 0.8 pf lagging:

For 0.8 pf lagging:

The voltage regulation is Vr(lag) =

[(√(Ea² - V²)/V)x(0.8) + (Xs/V)x(0.6)]*100 = [(√(1040² - (3000/√3)²)/(3000/√3))x(0.8) + (5.199/(3000/√3))x(0.6)]*100

≈ 6.91%.

For 0.8 pf leading:

The voltage regulation is Vr(lead) =

[(√(Ea² - V²)/V)x(0.8) - (Xs/V)x(0.6)]*100

-3.52%.

Phasor Diagrams: In both cases, Ea, V, I, and Zs are represented by phasors. For 0.8 pf lagging, the current phasor lags behind the voltage, and for 0.8 pf leading, it leads the voltage.

The voltage regulation is the difference in magnitude between Ea and V.

Read more about voltage here:

https://brainly.com/question/1176850

#SPJ4

Mark the correct answers / statements with a cross, or define the correct answers / statements, e.g. mentioning a.1). For each correct cross / definition you will receive 1.5 points, each cross which is not correct will subtract 1.5 points from the total score. The total score for the entire question cannot be negative.
a) A system with PT2-characteristic has a damping ratio D = 0.3.
O a.1) The system is critically damped. O a.2) The system is always stable.
O a.3) The system has two zeros.
O a.4) The imaginary part of the poles are nonzero.

Answers

The total score for the entire question cannot be negative. So the correct answers are a.1) The system is critically damped.a.2) The system is always stable.a.3) The system has two poles.a.4) The imaginary part of the poles is nonzero.

a) A system with PT2-characteristic has a damping ratio D = 0.3.

O a.1) The system is critically damped.

O a.2) The system is always stable.

O a.3) The system has two zeros.

O a.4) The imaginary part of the poles is nonzero.

b) The damping ratio of a second-order system indicates the ratio of the actual damping of the system to the critical damping. The values range between zero and one. Based on the given damping ratio of 0.3, the following is the correct answer:

a.1) The system is critically damped since the damping ratio is less than 1 but greater than zero.

a.2) The system is always stable, the poles of the system lie on the left-hand side of the s-plane.

a.3) The system has two poles, not two zeros.

a.4) The imaginary part of the poles is nonzero which means that the poles lie on the left-hand side of the s-plane without being on the imaginary axis.

To know more about critically damped please refer to:

https://brainly.com/question/13161950

#SPJ11

1) The figure below shows the identical trucks that work on an ideal cycle. Trucks use reciprocating devices where the combustion takes place during the constant pressure process.
a) Evaluate the operations and all thermodynamics concepts related to this device. (Hint: System, Law, Cycle).
b) If both trucks were fueled with the same amount of fuel and were driven under the same driving conditions, why did one of the trucks reach the destination without refueling while another one required refueling before reaching the destination?

Answers

a)The system, law, cycle and the thermodynamic concepts related to the given truck are explained as follows:

System: The system in the given problem is the identical truck. It involves the thermodynamic analysis of a truck.

Law: The first law of thermodynamics, i.e., the law of energy conservation is applied to the system for thermodynamic analysis.

"Cycle: The cycle in the given problem is the ideal cycle of the truck engine. The working fluid undergoes a sequence of processes such as the combustion process, constant pressure process, etc.

Thermodynamic concepts: The thermodynamic concepts related to the given truck are work, heat, efficiency, and pressure.

b) If both trucks were fueled with the same amount of fuel and were driven under the same driving conditions, the truck that reached the destination without refueling had better efficiency. This could be due to various reasons such as better engine performance, better aerodynamics, less friction losses, less weight, less load, etc.

Know more about concepts here:

https://brainly.com/question/31234926

#SPJ11

For the following iron-carbon alloys (0.76 wt%C) and associated microstructures
A. coarse pearlite B. spheroidite C. fine pearlite D. bainite E. martensite F. tempered martensite 1. Select the most ductile 2. Select the hardest 3. Select the one with the best combination of strength and ductility.

Answers

For the following iron-carbon alloys (0.76 wt%C) and associated microstructures:A. coarse pearlite B. spheroidite C. fine pearlite D. bainite E. martensite F. tempered martensite1. Select the most ductileWhen the alloy has a coarse pearlite structure, it is the most ductile.2. Select the hardestWhen the alloy has a martensite structure, it is the hardest.

3. Select the one with the best combination of strength and ductilityWhen the alloy has a fine pearlite structure, it has the best combination of strength and ductility.Explanation:Pearlite: it is the most basic form of steel microstructure that consists of alternating layers of alpha-ferrite and cementite, in which cementite exists in lamellar form.Bainite: Bainite microstructure is a transitional phase between austenite and pearlite.Spheroidite: It is formed by further heat treating pearlite or tempered martensite at a temperature just below the eutectoid temperature.

This leads to the development of roughly spherical cementite particles within a ferrite matrix.Martensite: A solid solution of carbon in iron that is metastable and supersaturated at room temperature. Martensite is created when austenite is quenched rapidly.Tempered martensite: Tempered martensite is martensite that has been subjected to a tempering process.

To know more about martensite visit :

https://brainly.com/question/31414307

#SPJ11

A huge redevelopment project on heritage museum was undertaken by a construction company Z. Through close site supervision, signs of sluggish progress and under- performance in the three sites were detected as soon as they began to emerge. State ANY SIX ways that the construction company Z can prevent any slippage in supervision while ensuring that the construction works are progressing on schedule and meet the quality requirements as stipulated in the contracts

Answers

In a huge redevelopment project undertaken by a construction company Z on a heritage museum, some signs of sluggish progress and underperformance were detected during the early stages of the project.

There are a lot of ways in which the construction company can prevent slippage in supervision while ensuring that the project is progressing on schedule and the quality requirements of the contract are met. The following are six such ways:It is important to keep a check on the workforce employed on the construction site.

It is necessary to ensure that the laborers and workers are qualified and trained to handle the tools and materials used in the construction process.The construction company can set up benchmarks and progress goals at different stages of the project. These goals can be set according to the project timeline. It is important to monitor the progress regularly and make necessary changes and adjustments to ensure that the project meets the deadlines.

To know more about redevelopment visit:

https://brainly.com/question/30407297

#SPJ11

To begin our first assignment, you will need a piece of graph paper. Start by drawing your initials in block letters in a space about six points by six points. Even thought we won't use the mills in our lab that will help restrict us to our size. 6"x 6" Next we will assume that all coordinates are in positive X and Y coordinates. plot the points that are the end of each line. Next we will begin plotting a tool path. We do want to make this toolpath as efficient as possible but the path is up to you. On your graph paper write the X and Y coordinates for each point that your program will use. Open Notepad and begin by creating a program number on the first line. The first line of our program will be N10. We skip at least numbers on between lines to allow for editing. if we need to add a line between N110 and N120 we can insert a line N115 and avoid having to edit the whole program. N10 will give the specifics of the program, G20 and 21 indicate standard or metric coordinates. G90 indicates an absolute coordinate system, G91 is incremental coordinates, meaning the coordinates are based off of an absolute zero or referenced off of the last point. GOO is a rapid positioning command, when we make contact with the work piece, feed rates must be set. XO,YO. N20 will indicate linear interpolation, meaning the tool piece will move from each point in a straight line. We will enter our first point and a feed rate. for this exercise, its F25, 25 inches per minute. Each line of code from this point will be points between movement. When it is input into our toolpath generator it should look like you have drawn your initials without picking you pencil up. We will add the Z axis a little later.

Answers

The first step of the assignment is to draw the initials of the students in block letters on a graph paper of size 6 x 6. Assume that all coordinates are in positive X and Y coordinates.

The end of each line is plotted with points. The tool path is plotted next. The path is required to be as efficient as possible, but the choice of path is left to the students. The X and Y coordinates for each point are written on the graph paper. Next, a Notepad is opened to create the program.

The first line of the program will be N10. In between the lines, a few numbers are skipped to allow for editing. The next line will give the specifics of the program. G20 and 21 indicate standard or metric coordinates, G90 indicates an absolute coordinate system, and G91 is incremental coordinates.

To know more about coordinates visit:

https://brainly.com/question/32836021

#SPJ11

Tank B is enclosed inside Tank A. Given the Absolute pressure of tank A = 400 kPa, Absolute pressure of tank B = 300 kPa, and atmospheric pressure 100 kPa.
Find the gauge pressure reading of Tank A in kPa

Answers

The gauge pressure reading of Tank A in kPa is 300 kPa.

B is enclosed inside Tank A, Absolute pressure of tank A is 400 kPa, Absolute pressure of tank B is 300 kPa, and atmospheric pressure is 100 kPa.

The question asks us to find the gauge pressure reading of Tank A in kPa. Here, the gauge pressure of tank A is the pressure relative to the atmospheric pressure. The gauge pressure is the difference between the absolute pressure and the atmospheric pressure.

We can calculate the gauge pressure of tank A using the formula: gauge pressure = absolute pressure - atmospheric pressure Given that the absolute pressure of tank A is 400 kPa and atmospheric pressure is 100 kPa, the gauge pressure of tank A is given by gauge pressure = 400 kPa - 100 kPa= 300 kPa

Therefore, the gauge pressure reading of Tank A in kPa is 300 kPa.

To know more about gauge pressure visit:

https://brainly.com/question/30698101

#SPJ11

An insulated, rigid tank whose volume is 0.5 m³ is connected by a valve to a large vesset holding steam at 40 bar, 400°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 30 bar Determine the final temperature of the steams in the tank, in °C, and the final mass of the steam in the tank, in kg

Answers

The final temperature of steam in the tank is 375/V1°C, and the final mass of steam in the tank is 1041.26 V1 kg.

The given problem is related to the thermodynamics of a closed system. Here, we are given an insulated, rigid tank whose volume is 0.5 m³, and it is connected to a large vessel holding steam at 40 bar and 400°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 30 bar. Our objective is to determine the final temperature of the steam in the tank and the final mass of the steam in the tank. We will use the following formula to solve the problem:

PV = mRT

where P is the pressure, V is the volume, m is the mass, R is the gas constant, and T is the temperature.

The gas constant R = 0.287 kJ/kg K for dry air. Here, we assume steam to behave as an ideal gas because it is at high temperature and pressure. Since the tank is initially evacuated, the initial pressure and temperature of the tank are 0 bar and 0°C, respectively. The final pressure of the steam in the tank is 30 bar. Let's find the final temperature of the steam in the tank as follows:

P1V1/T1 = P2V2/T2

whereP1 = 40 bar, V1 = ?, T1 = 400°CP2 = 30 bar, V2 = 0.5 m³, T2 = ?

Rearranging the above formula, we get:

T2 = P2V2T1/P1V1T2 = 30 × 0.5 × 400/(40 × V1)

T2 = 375/V1

The final temperature of steam in the tank is 375/V1°C.

Now let's find the final mass of the steam in the tank as follows:

m = PV/RT

where P = 30 bar, V = 0.5 m³, T = 375/V1R = 0.287 kJ/kg K for dry air

We know that the mass of steam is equal to the mass of water in the tank since all the water in the tank has converted into steam. The density of water at 30 bar is 30.56 kg/m³. Let's find the volume of water required to fill the tank as follows:

V_water = m_water/density = 0.5/30.56 = 0.0164 m³

where m_water is the mass of water required to fill the tank. Since all the water in the tank has converted into steam, the final mass of steam in the tank is equal to m_water. Let's find the final mass of steam in the tank as follows:

m = PV/RT = 30 × 10^5 × 0.5/(0.287 × 375/V1) = 1041.26 V1 kg

The final mass of steam in the tank is 1041.26 V1 kg.

Therefore, the final temperature of steam in the tank is 375/V1°C, and the final mass of steam in the tank is 1041.26 V1 kg.

Learn more about thermodynamics visit:

brainly.com/question/1368306

#SPJ11

A shaft is loaded in bending and torsion such that Ma=70 Nm, Ta= 45 Nm, Mm= 55 Nm, and T= 35 Nm. For the shaft, Su = 700 MPa and Sy = 560 MPa, and a fully corrected endurance limit of Se=210 MPa is assumed. Let Kf=2.2 and Kfs=1.8. With a design factor of 2.0 determine the minimum acceptable diameter of the shaft using the: (a) DE-Gerber criterion. (b) DE-ASME Elliptic criterion. (c) DE-Soderberg criterion. (d) DE-Goodman criterion.

Answers

When a shaft is loaded in both bending and torsion, then it is called a combined load.Therefore, the minimum acceptable diameter of the shaft is as follows:(a) DE-Gerber criterion = 26.4 mm(b) DE-ASME Elliptic criterion = 34 mm(c) DE-Soderberg criterion = 27.5 mm(d) DE-Goodman criterion = 22.6 mm.

Here, Ma= 70 Nm,

Ta= 45 Nm, Su = 700 MPa,

Sy = 560 MPa,

Kf=2.2

and Kfs=1.8,

and the fully corrected endurance limit of Se=210 MPa is assumed.

Solving for the above formula we get: \[d > 0.0275 \,\,m = 27.5 \,\,mm\](d) DE-Goodman criterion.Goodman criterion is used for failure analysis of both ductile and brittle materials.

The formula for Goodman criterion is:

[tex]\[\frac{{{\rm{Ma}}}}{{{\rm{S}}_{\rm{e}}} + \frac{{{\rm{Mm}}}}{{{\rm{S}}_{\rm{y}}}}} + \frac{{{\rm{Ta}}}}{{{\rm{S}}_{\rm{e}}} + \frac{{\rm{T}}}{{{\rm{S}}_{\rm{u}}}}} < \frac{1}{{{\rm{S}}_{\rm{e}}}}\][/tex]

The diameter of the shaft can be calculated using the following equation:

[tex]\[d = \sqrt[3]{\frac{16{\rm{KT}}_g}{\pi D^3}}\][/tex]

Here, Ma= 70 Nm

, Mm= 55 Nm,

Ta= 45 Nm,

T= 35 Nm,

Su = 700 MPa,

Sy = 560 MPa,

Kf=2.2 and

Kfs=1.8,

and the fully corrected endurance limit of Se=210 MPa is assumed.

Solving for the above formula we get:

[tex]\[d > 0.0226 \,\,m = 22.6 \,\,mm\][/tex]

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

A room has dimensions of 4.4 m x 3.6 m x 3.1 m high. The air in the room is at 100.3 kPa, 40°C dry bulb and 22°C wet bulb. What is the mass of moist air in the room? Express your answer in kg/s.

Answers

Given information: Dimension of the room:  length = 4.4 m,breadth = 3.6 m,height = 3.1 m Dry bulb temperature = 40 °C Wet bulb temperature = 22°C Pressure = 100.3 kPa. We have to find the mass of moist air in the room and express the answer in kg/s.

The given room dimensions are l x b x h

= 4.4 m x 3.6 m x 3.1 m

The volume of the room is given by, V = l × b × h

= 4.4 × 3.6 × 3.1

= 49.392 m³

The mass of moist air can be determined using the following

steps:  1) We need to calculate the specific volume (v) of air using the given dry and wet bulb temperature and pressure.The specific volume (v) of air can be determined using psychrometric charts, which can be read as follows:

Dry bulb temperature = 40 °C, wet bulb temperature = 22 °C, and pressure = 100.3 kPa. From the chart, we get v = 0.937 m³/kg.

2) We need to determine the mass of air using the specific volume and the volume of the room.The mass of moist air (m) in the room is given by the following formula:

m = V / v = 49.392 / 0.937

= 52.651 kg/s

Therefore, the mass of moist air in the room is 52.651 kg/s.

To know more about mass of moist air visit:

https://brainly.com/question/28216703

#SPJ11

QUESTION 1 Which of the followings is true? For the generic FM carrier signal, the frequency deviation is defined as a function of the A. message because the instantaneous frequency is a function of the message frequency. B. message because it resembles the same principle of PM. C. message frequency. D. message. QUESTION 2 Which of the followings is true? The concept of "power efficiency may be useful for A. linear modulation. B. non-linear modulation. C. multiplexing. D. convoluted multiplexing. QUESTION 3 Which of the followings is true? A. Adding a pair of complex conjugates gives double the real part. B. Electrical components are typically not deployed under wireless systems as transmissions are always through the air channel. C. Adding a pair of complex conjugates gives the real part. D. Complex conjugating is a process of keeping the real part and changing the complex part. QUESTION 4 Which of the followings is true? A. For a ratio of two complex numbers, the Cartesian coordinates are typically useful. B. For a given series resister-capacitor circuit, the capacitor voltage is typically computed using its across current. C. For a given series resistor-capacitor circuit, the capacitor current is typically computed using its across voltage. D. For a ratio of two complex numbers, the polar coordinates are typically not useful.

Answers

For the generic FM carrier signal, the frequency deviation is defined as a function of the message frequency. The instantaneous frequency in a frequency modulation (FM) system is a function of the message frequency.

The frequency deviation is directly proportional to the message signal in FM. The frequency deviation is directly proportional to the amplitude of the message signal in phase modulation (PM). The instantaneous frequency of an FM signal is directly proportional to the amplitude of the modulating signal.

As a result, the frequency deviation is proportional to the message signal's amplitude

The concept of "power efficiency" may be useful for linear modulation. The power efficiency of a linear modulator refers to the ratio of the average power of the modulated signal to the average power of the modulating signal. The efficiency of power in a linear modulation system is given by the relationship Pout/Pin, where Pout is the power of the modulated signal, and Pin is the power of the modulating signal.

Adding a pair of complex conjugates gives the real part. Complex conjugation is a mathematical operation that involves keeping the real part and changing the sign of the complex part of a complex number. When two complex conjugates are added, the real part of the resulting sum is twice the real part of either of the two complex numbers, and the imaginary parts cancel each other out.

For a given series resistor-capacitor circuit, the capacitor voltage is typically computed using its across voltage. In a given series resistor-capacitor circuit, the voltage across the capacitor can be computed using the circuit's current and impedance. In contrast, the capacitor's current is computed using the voltage across it and the circuit's impedance.

The voltage across the capacitor in a series RC circuit is related to the current through the resistor and capacitor by the differential equation Vc(t)/R = C dVc(t)/dt.

To know more about message visit;

brainly.com/question/28267760

#SPJ11

(a) Explain in your own words why engineers are required to exhibit highest standards of responsibility and care in their profession (b) Mention some articles from engineering codes of ethics admonishing engineers not to participate in dishonest activities.

Answers

Engineers are responsible for creating designs that can improve lives, but they must exhibit high standards of responsibility and care in their profession because their work can have serious implications for the safety and well-being of people.

The codes of ethics admonish engineers not to participate in dishonest activities that may lead to falsifying data, conflicts of interest, accepting bribes, intellectual property theft, and so on.

(a) Engineers are required to exhibit the highest standards of responsibility and care in their profession because the work they do can have serious implications for the safety and well-being of people, the environment, and society as a whole.

They have the power to create and design technology that can greatly improve our lives, but they also have the responsibility to ensure that their designs are safe, reliable, and ethical.

They are held to high standards of accountability because their work can have far-reaching consequences.

(b) The engineering codes of ethics admonish engineers not to participate in dishonest activities, including:

1. Misrepresentation of their qualifications or experience.
2. Discrimination against others based on race, gender, age, religion, or other factors.
3. Falsifying data or research findings.
4. Concealing information or misleading the public.
5. Engaging in conflicts of interest or accepting bribes.
6. Engaging in plagiarism or intellectual property theft.

To know more about plagiarism , visit:

https://brainly.com/question/30180097

#SPJ11


The manufacturer of a component that will be subjected to fatigue from -0 MPa to 50 MPa, specifies that it must be changed when it has been detected that the crack has advanced up to 40% of its critical value. The manufacturing process of the component leaves cracks on the surface of 0.1mm. The material has the following properties: KIC = 70MPam1/2 and crack growth is characterized by n=3.1 and C= 10E-11. Assume f=1.12.
How many life cycles did the component have left after it had been removed as directed by the manufacturer?
Indicate your answer without decimals.

Answers

Fatigue is the weakening of a material caused by cyclic loading, resulting in the formation and propagation of cracks.

Fatigue fracture failure is a type of failure that is caused by cyclic loading, which is the progressive growth of an initial crack until it reaches a critical size and a fracture occurs. In this question, we are given the following information.

The manufacturing process of the component leaves cracks on the surface of 0.1mm.The material has the following properties: [tex]KIC = 70 MPam1/2[/tex], and crack growth is characterized by n = 3.1 and C = 10E-11. Assume f = 1.12.Calculations:In this question.

To know more about propagation visit:

https://brainly.com/question/33454861

#SPJ11

1. The adiabatic turbine of a gas turbine engine operates at steady state. a) Working from first principles, using an appropriate property diagram and explaining each stage in the derivation, show that the power output is given by: W = mc₂n, T. (1-(1/r₂Y₁-1) P where m is the mass flowrate of a (perfect) gas through the turbine; c, and y are the specific heat at constant pressure and ratio of specific heats of that gas; ns, and are the turbine isentropic efficiency and expansion pressure ratio, respectively; Te is the turbine entry temperature. Gas velocity may be assumed to be low throughout. Assume universal gas constant R = 8.3145 J.K-1.mol-¹ [15 Marks] b) For a turbine entry temperature of 1500 K, an isentropic efficiency of 85 % and an expansion pressure ratio of 8, estimate the turbine exit temperature if the gas has a mean molar mass (M) of 28.6 kg/kmol and a mean specific heat at constant pressure of 1.23 kJ/kgK. [10 Marks]

Answers

The equation will involve parameters such as mass flow rate, specific heat at constant pressure, ratio of specific heats, turbine isentropic efficiency, expansion pressure ratio, and turbine entry temperature.  

a) To derive the power output equation for the adiabatic turbine, we start by considering the first law of thermodynamics applied to a control volume around the turbine. By assuming steady state and adiabatic conditions, we can simplify the equation and express the work output (W) as a function of the given parameters. This derivation can be done using an appropriate property diagram, such as the T-s diagram.

Each stage in the derivation involves manipulating the equation, substituting appropriate values, and applying thermodynamic principles. The specific heat at constant pressure (cₚ) and the ratio of specific heats (γ) are properties of the gas, while the isentropic efficiency (ηs) and expansion pressure ratio (r₂) represent the performance characteristics of the turbine. The turbine entry temperature (Te) is the initial temperature of the gas entering the turbine.

b) Using the derived power output equation and the given values of turbine entry temperature (Te), isentropic efficiency (ηs), expansion pressure ratio (r₂), molar mass (M), and specific heat at constant pressure (cₚ), we can substitute these values to calculate the turbine exit temperature. The calculation involves manipulating the equation algebraically and using the given values to obtain the desired result.

By evaluating the turbine exit temperature, we can assess the performance of the turbine under the given conditions and understand the thermodynamic behavior of the gas as it passes through the turbine stages.

Learn more about isentropic efficiency here:

https://brainly.com/question/32571811

#SPJ11

Given that v(t) = 120 sin(300t + 45°) V and i(t) = 10 cos(300t – 10°)A, find the followings
A. Whats the phasor of V(t)
B. Period of the i(t)
C. Phasor of i(t) in complex form

Answers

A. Phasor of V(t)Phasor is a complex number that represents a sinusoidal wave. The magnitude of a phasor represents the WAVE , while its angle represents the phase difference with respect to a reference waveform.

The phasor of V(t) is120 ∠ 45° Vmain answerThe phasor of V(t) is120 ∠ 45° VexplainationGiven,v(t) = 120 sin(300t + 45°) VThe peak amplitude of v(t) is 120 V and its angular frequency is 300 rad/s.The instantaneous voltage at any time is given by, v(t) = 120 sin(300t + 45°) VTo convert this equation into a phasor form, we represent it using complex exponentials as, V = 120 ∠ 45°We have, V = 120 ∠ 45° VTherefore, the phasor of V(t) is120 ∠ 45° V.B. Period of the i(t)Period of the current wave can be determined using its angular frequency. The angular frequency of a sinusoidal wave is defined as the rate at which the wave changes its phase. It is measured in radians per second (rad/s).The period of the current wave isT = 2π/ω

The period of the current wave is1/50 secondsexplainationGiven,i(t) = 10 cos(300t – 10°)AThe angular frequency of the wave is 300 rad/s.Therefore, the period of the wave is,T = 2π/ω = 2π/300 = 1/50 seconds.Therefore, the period of the current wave is1/50 seconds.C. Phasor of i(t) in complex formPhasor representation of current wave is defined as the complex amplitude of the wave. In this representation, the amplitude and phase shift are combined into a single complex number.The phasor of i(t) is10 ∠ -10° A. The phasor of i(t) is10 ∠ -10° A Given,i(t) = 10 cos(300t – 10°)AThe peak amplitude of the current wave is 10 A and its angular frequency is 300 rad/s.The instantaneous current at any time is given by, i(t) = 10 cos(300t – 10°)A.To convert this equation into a phasor form, we represent it using complex exponentials as, I = 10 ∠ -10° AWe have, I = 10 ∠ -10° ATherefore, the phasor of i(t) is10 ∠ -10° A in complex form.

To know more about wave visit:

https://brainly.com/question/27777981

#SPJ11

A steel rotor disc of uniform thickness 50mm has an outer rim diameter 800mm and a central hole of diameter 150mm. There are 200 blades each of weight 2N at an effective radius of 420mm pitched evenly around the periphery. Determine the rotational speed at which yielding first occurs according to the maximum shear stress criterion. Yield stress= 750 MPa, v = 0.304, p = 7700 kg/m³.

Answers

The rotational speed at which yielding first occurs according to the maximum shear stress criterion is approximately 5.24 rad/s.

To determine the rotational speed at which yielding first occurs according to the maximum shear stress criterion, we can use the following steps:

1. Calculate the total weight of the blades:

  Total weight = Number of blades × Weight per blade

              = 200 × 2 N

              = 400 N

2. Calculate the torque exerted by the blades:

  Torque = Total weight × Effective radius

         = 400 N × 0.42 m

         = 168 Nm

3. Calculate the polar moment of inertia of the rotor disc:

  Polar moment of inertia (J) = (π/32) × (D⁴ - d⁴)

                             = (π/32) × ((0.8 m)⁴ - (0.15 m)⁴)

                             = 0.02355 m⁴

4. Determine the maximum shear stress:

  Maximum shear stress (τ_max) = Yield stress / (2 × Safety factor)

                              = 750 MPa / (2 × 1)   (Assuming a safety factor of 1)

                              = 375 MPa

5. Use the maximum shear stress criterion equation to find the rotational speed:

  τ_max = (T × r) / J

  where T is the torque, r is the radius, and J is the polar moment of inertia.

  Rearrange the equation to solve for rotational speed (N):

  N = (τ_max × J) / T

    = (375 × 10⁶ Pa) × (0.02355 m⁴) / (168 Nm)

  Convert Pa to N/m² and simplify:

  N = 5.24 rad/s

To learn more about rotational speed, click here:

https://brainly.com/question/14391529

#SPJ11

Each cell of an automobile 12 volt battery can produce about volts. A) 4.2 B) 4 C) 1.2 D) 2.1

Answers

The correct answer is D) 2.1 volts. Each cell of an automobile 12-volt battery typically produces around 2.1 volts.


Automobile batteries are composed of six individual cells, each generating approximately 2.1 volts. When these cells are connected in series, their voltages add up to form the total voltage of the battery. Therefore, a fully charged 12-volt automobile battery consists of six cells, each producing 2.1 volts, resulting in a total voltage of 12.6 volts (2.1 volts x 6 cells).

This voltage level is suitable for powering various electrical components and starting the engine of a typical automobile. It is important to note that the actual voltage may vary slightly depending on factors such as the battery's state of charge and temperature.

learn more about battery here : brainly.com/question/19225854

#SPJ11

Other Questions
Many females prefer to mate with territorial males and NOT with males that hold no territories. Why? 1. When you stand on a foam pad with eyes closed in aBESS test, the primary sensory input for balance is ______ .a. olfactionb. vestibularc. somatosensationd. vision2. Olfaction affects the accu Which elements are created by each star? Blue Giants (use \( >10 \mathrm{M}_{\mathrm{S}} \) ) 1. List sugar, galactose, and glucose in order ofefficiency of fementation. (Describe reasons as well)2. How temperature can affect ethanol fermentation? Peloton is introducing a new rowing machine. How would yourecommend they use an email marketing campaign? Include two keymetrics they should consider as well. Connor has made deposits of $125.00 into his savings account at the end of every three months for 15 years. If interest is 10% per annum compounded monthly and he leaves the accumulated balance for another 5 years, what would be the balance in his account then? Which of the following statements about viruses is FALSE? Viruses have a nucleus but no cytoplasm. Viruses can reproduce only when they are inside a living host cell. Viruses cannot make proteins on their own. Some viruses use RNA rather than DNA as their genetic material. Do you think the Martial Law declared in Mindanao Philippinesrelated to the Marawi Siege have violated the people's humanrights? i (hydraulic gradient) = 0.0706D= 3 mm v=0.2345 mis Find Friction factor ? Friction factor (non-dimensional): f = i 2gD/V Explain the concept of reversibility in your own words. Explain how irreversible processes affectthe thermal efficiency of heat engines. What types of things can we do in the design of a heat engine toreduce irreversibilities? About 70% of the salt in our diet typically comes from _______ a. meals prepared at home b. peanut butter, ketchup, mustard, and other condiments c. prepared or processed food from the grocery store or restaurants d. potato chips and similar salty/crunchy snacks Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 6 MPa and 500C and leaves as saturated vapor. Steam is then reheated to 400C before it expands to a pressure of 10 kPa. Heat is transferred to the steam in the boiler at a rate of 6 104 kW. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 7C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the pressure at which reheating takes place, (b) the net power output and thermal efficiency, and (c) the minimum mass flow rate of the cooling water required. mains the same This question concerns Enterprise and Strategy in High Tech Ventures. There are many generalised types of new venture typologies. Each has implications for how you go about finding a business idea and developing an enterprise strategy. Briefly describe the main features of one new venture typology, namely "Incremental Product Innovation". What can leaders do to ensure that they lead a culturally sensitiveorganization? Find two positive numbers such that the sum of the squares of the two numbers is 169 and the difference between the two numbers is 7 M H A small bird of mass 50 g is sitting on a wire of length 2 m and mass 150 g. A current of 4.0 A is passing through the wire. A magnetic field B perpendicular to the wire is applied in the region so that the force due to magnetic field balances the weight of the bird and the wire. What is the magnitude of B? Polyethylene (PE), C2H4 has an average molecular weight of 25,000 amu. What is the degree of polymerization of the average PE molecule? Answer must be to 3 significant figures or will be marked wrong. Atomic mass of Carbon is 12.01 Synthesis is defined as a. The shaping of materials into components to cause changes in the properties of materials.b. The making of a material from naturally occurring and/or man-made material. c. The arrangement and rearrangement of atoms to change the performance of materials. d. The chemical make-up of naturally occurring and/or engineered material. 1.What is the main difference between gymnoperms and angiosperms? What do they have in common? 2.You remove a cell from a four-cell embryo of a roundworm. Explain what you expect to happen. 3.Describe the life cycle of an insect with complete metamorphosis and provide an example. (3.5 marks)4.Describe the excretory system of insects. (5 marks) with what minimum speed must you toss a 190 g ball straight up to just touch the 11- m -high roof of the gymnasium if you release the ball 1.1 m above the ground? solve this problem using energy. Which of the following is a characteristic of all members of the fungi kingdom? O prokaryotic O unicellular O heterotrophic O autotrophic 2 pts