please explain answer if it vague, especially on #13. appreciate
any help. thank you
Question 8 (2 points) Listen 1) Fermat's principle says that light, when traveling, only takes the path of least time from point a to point b. Is this true? No. Light moves in every direction, but mos

Answers

Answer 1

Fermat's principle states that light travels along the path that takes the least time from one point to another.

However, it is important to note that this principle is not always strictly true in every situation. While light generally follows the path of least time, there are cases where it can deviate from this path.

The behavior of light is governed by the principles of optics, which involve the interaction of light with various mediums and objects. In some scenarios, light can undergo phenomena such as reflection, refraction, diffraction, and interference, which can affect its path and travel time.

For example, when light passes through different mediums with varying refractive indices, it can bend or change direction, deviating from the path of least time. Additionally, when light encounters obstacles or encounters multiple possible paths, interference effects can occur, causing deviations from the shortest path.

Therefore, while Fermat's principle provides a useful framework for understanding light propagation, it is not an absolute rule in every situation. The actual path taken by light depends on the specific conditions and properties of the medium through which it travels.

Learn more about light here: brainly.com/question/31064438

#SPJ11


Related Questions

In the following three scenarios, an object is located on one side of a converging lens. In each case, you must determine if the lens forms an image of this object. If it does, you also must determine the following.whether the image is real or virtual
whether the image is upright or inverted
the image's location, q
the image's magnification, M
The focal length is
f = 60.0 cm
for this lens.
Set both q and M to zero if no image exists.
Note: If q appears to be infinite, the image does not exist (but nevertheless set q to 0 when entering your answers to that particular scenario).
(a)
The object lies at position 60.0 cm. (Enter the value for q in cm.)
q= cmM=
Select all that apply to part (a).
realvirtualuprightinvertedno image
(b)
The object lies at position 7.06 cm. (Enter the value for q in cm.)
q= cmM=
Select all that apply to part (b).
realvirtualuprightinvertedno image
(c)
The object lies at position 300 cm. (Enter the value for q in cm.)
q= cmM=
Select all that apply to part (c).
realvirtualuprightinvertedno image

Answers

The image is real, it is inverted. Here's how you can determine whether a lens forms an image of an object, whether the image is real or virtual, upright or inverted, the image's location (q), and the image's magnification (M).

In the following scenarios, an object is placed on one side of a converging lens. Here are the solutions:

(a) The object is located at a distance of 60.0 cm from the lens. Given that f = 60.0 cm, the lens's focal length is equal to the distance between the lens and the object. As a result, the image's location (q) is equal to 60.0 cm. The magnification (M) is determined by the following formula:

M = - q / p

= f / (p - f)

In this case, p = 60.0 cm, so:

M = - 60.0 / 60.0 = -1

Thus, the image is real, inverted, and the same size as the object. So the answers for part (a) are:q = -60.0 cmM = -1real, inverted

.(b) The object is located 7.06 cm away from the lens. For a converging lens, the distance between the lens and the object must be greater than the focal length for a real image to be created. As a result, a virtual image is created in this scenario. Using the lens equation, we can calculate the image's location and magnification.

q = - f . p / (p - f)

q = - (60 . 7.06) / (7.06 - 60)

q = 4.03cm

The magnification is calculated as:

M = - q / p

= f / (p - f)

M = - 4.03 / 7.06 - 60

= 0.422

As the image is upright and magnified, it is virtual. Thus, the answers for part (b) are:

q = 4.03 cm

M = 0.422 virtual, upright.

(c) The object is located at a distance of 300 cm from the lens. Since the object is farther away than the focal length, a real image is formed. Using the lens equation, we can calculate the image's location and magnification.

q = - f . p / (p - f)

q = - (60 . 300) / (300 - 60)

q = - 50 cm

The magnification is calculated as:

M = - q / p

= f / (p - f)M

= - (-50) / 300 - 60

= 0.714

As the image is real, it is inverted. Thus, the answers for part (c) are:

q = -50 cmM = 0.714real, inverted.

To know more about lens visit:

https://brainly.com/question/29834071

#SPJ11

Prove the formulae below
• Optical line of sight
d=3.57h
• Effective, or radio, line of sight
d=3.57Kh
d = distance between antenna and horizon (km)
h = antenna height (m)
K = adjustment factor to account for refraction, rule of thumb K = 4/3

Answers

The formulas provided, the optical line of sight (d = 3.57h) and the effective line of sight (d = 3.57Kh), can be proven using the concept of refraction and basic trigonometry.

The optical line of sight formula, d = 3.57h, is derived based on the assumption that light travels in straight lines. When an antenna is at height h, the distance d to the horizon is the line of sight along a straight line. This formula is valid for situations where the effects of atmospheric refraction are negligible.

On the other hand, the effective line of sight formula, d = 3.57Kh, takes into account the adjustment factor K, which accounts for the effects of atmospheric refraction. Refraction occurs when light bends as it passes through different media with varying refractive indices. In the atmosphere, the refractive index varies with factors such as temperature, pressure, and humidity.

By introducing the adjustment factor K, which is commonly approximated as 4/3, the effective line of sight formula compensates for the bending of light due to atmospheric refraction. This allows for more accurate calculations of the distance d between the antenna and the horizon.

Both formulas are derived using basic trigonometry and the concept of similar triangles. By considering the height of the antenna and the line of sight to the horizon, the ratios of the sides of the triangles can be established, leading to the formulas d = 3.57h and d = 3.57Kh.

It's important to note that while these formulas provide useful approximations, they are not exact and may vary depending on atmospheric conditions.

To know more about optical line refer here:

https://brainly.com/question/28169256#

#SPJ11

A flat copper ribbon 0.330 mm thick carries a steady current of 54.0 A and is located in a uniform 1.30 T magnetic field directed perpendicular to the plane of the ribbon. If a Hall voltage of 9.60 µV is measured across the ribbon, what is the charge density of the free electrons? m-3 What effective number of free electrons per atom does this result indicate?

Answers

The charge density of free electrons is 1.38 × 10²² m-³. The effective number of free electrons per atom of copper is 1.38 × 10²² / 29= 4.76 × 10²⁰ atoms/m³.

Given data : Thickness of the flat copper ribbon = 0.330 mm is 0.33 × 10⁻³ m, Current through the ribbon = 54.0 A, Magnetic field = 1.30 T, Hall voltage = 9.60 µV is 9.60 × 10⁻⁶ V. Let's calculate the charge density of free electrons

Q = IBdV/∆V Where I = current through the wire, B = magnetic field strength, d = thickness of the wire, ∆V = Hall voltage. We know that the charge of an electron is 1.6 × 10⁻¹⁹ Coulombs. Therefore, we can find the number density of electrons per cubic meter by taking the ratio of the current density to the electronic charge:m-³

Number density of free electrons = J/e

Charge density = number density × electronic charge.

Charge density = J/e

= 1.6 × 10⁻¹⁹ × J

Therefore, J = ∆V/B

Let's calculate J.J = ∆V/Bd

= 0.33 × 10⁻³ m∆V

= 9.60 × 10⁻⁶ Vb

= 1.30 TJ

= ∆V/BJ

= (9.60 × 10⁻⁶)/(1.30 × 0.33 × 10⁻³)

= 220.2 A/m²

Now, number density of free electrons = J/e

= 220.2/1.6 × 10⁻¹⁹

= 1.38 × 10²² electrons/m³

Therefore, the charge density of free electrons is 1.38 × 10²² m-³. The effective number of free electrons per atom of copper is 1.38 × 10²² / 29= 4.76 × 10²⁰ atoms/m³.

To know more about Charge density visit-

brainly.com/question/17063413

#SPJ11

What is the magnetic force exerted on the particle at that instant? (Express your answer in vector form.) FB​=

Answers

The magnetic force exerted on the particle at that instant is equal to 0.012 N in the +z direction.

The magnetic force on a charged particle is given by the Lorentz force law:

F = q(v x B)

where:

F is the force

q is the charge of the particle

v is the velocity of the particle

B is the magnetic field

In this case, the charge of the particle is 1.602 × 10^-19 C, the velocity of the particle is (3.00 m/s)i + (4.00 m/s)j + (5.00 m/s)k, and the magnetic field is (0.500 T)k.

Plugging these values into the Lorentz force law, we get:

F = (1.602 × 10^-19 C) × [(3.00 m/s)i + (4.00 m/s)j + (5.00 m/s)k] x (0.500 T)k

= 0.012 N

The direction of the magnetic force is perpendicular to the plane formed by the velocity vector and the magnetic field vector. In this case, the plane formed by the velocity vector and the magnetic field vector is the x-y plane. Therefore, the direction of the magnetic force is +z.

Learn more about magnetic force here:

brainly.com/question/10353944

#SPJ11

What is the magnetic force exerted on the particle at that instant? (Express your answer in vector form.)

Light is travelling from medium A (refractive index 1.4) to medium B (refractive index 1.5). If the incident angle is 38.59. what would be refracted angle in medium B? Express your answer in degrees.

Answers

The refracted angle in medium B is approximately 36.03 degrees.

To determine the refracted angle in medium B, we can use Snell's law, which relates the incident angle (θ1), refracted angle (θ2), and the refractive indices of the two mediums.

Snell's law is given by:

n1 * sin(θ1) = n2 * sin(θ2)

The refractive index of medium A (n1) is 1.4 and the refractive index of medium B (n2) is 1.5, and the incident angle (θ1) is 38.59 degrees, we can substitute these values into Snell's law to solve for the refracted angle (θ2).

Using the equation, we have:

1.4 * sin(38.59°) = 1.5 * sin(θ2)

Rearranging the equation to solve for θ2, we get:

θ2 = arcsin((1.4 * sin(38.59°)) / 1.5)

Evaluating this expression using a calculator, we find that the refracted angle (θ2) in medium B is approximately 36.03 degrees.

learn more about " refracted angle":- https://brainly.com/question/14760207

#SPJ11

Exercise 31.27 You have a 191 – 12 resistor, a 0.410 - H inductor, a 5.01 - uF capacitor, and a variable- frequency ac source with an amplitude of 3.07 V. You connect all four elements together to form a series circuita) At what frequency will the current in the circuit be greatest?
b) What will be the current amplitude at this frequency?
c) What will be the current amplitude at an angular frequency of 403 rad/s?
d) At this frequency, will the source voltage lead or lag the current?

Answers

A series circuit is an electrical circuit configuration where the components are connected in a single path such that the current flows through each component in succession.

a) The current in the circuit will be greatest at a frequency of approximately 1.03 kHz.

b) The current amplitude at the resonant frequency is approximately 0.0159 A.

c) The current amplitude at an angular frequency of 403 rad/s is approximately 0.00762 A.

d) At the frequency of 403 rad/s, the source voltage will lag the current.

A series circuit is an electrical circuit configuration in which the components (such as resistors, inductors, capacitors, etc.) are connected in a sequential manner, such that the same current flows through each component. In a series circuit, the components have a single pathway for the flow of electric current.

To answer the given questions, we will use the formulas and concepts from AC circuit analysis. Let's solve each part step by step:

a) To find the frequency at which the current in the circuit will be greatest, we can calculate the resonant frequency using the formula:

Resonant frequency:

[tex](f_{res}) = 1 / (2\pi \sqrt(LC))[/tex]

Substituting the values into the formula:

[tex]f_{res} = 1 / (2\pi \sqrt(0.410 H * 5.01 * 10^{-6}F))\\f_{res} = 1.03 kHz[/tex]

Therefore, the current in the circuit will be greatest at a frequency of approximately 1.03 kHz.

b) To calculate the current amplitude at the resonant frequency, we can use the formula:

Current amplitude:

[tex](I) = V / Z[/tex]

Where:

V = Amplitude of the AC source voltage (given as 3.07 V)

Z = Impedance of the series circuit

The impedance of a series RLC circuit is given by:

[tex]Z = \sqrt(R^2 + (\omega L - 1 / \omega C)^2)[/tex]

Converting the frequency to angular frequency:

[tex]\omega = 2\pi f = 2\pi * 1.03 * 10^3 rad/s[/tex]

Substituting the values into the impedance formula:

[tex]Z = \sqrt((191 \Omega)^2 + ((2\pi * 1.03 *10^3 rad/s) * 0.410 H - 1 / (2\pi * 1.03 * 10^3 rad/s * 5.01 * 10^{-6} F))^2)[/tex]

Calculating the impedance (Z):

[tex]Z = 193 \Omega[/tex]

Now, substitute the values into the current amplitude formula:

[tex]I = 3.07 V / 193 \Omega\\I = 0.0159 A[/tex]

Therefore, the current amplitude at the resonant frequency is approximately 0.0159 A.

c) To find the current amplitude at an angular frequency of 403 rad/s, we can use the same current amplitude formula as in part b. Substituting the given angular frequency (ω = 403 rad/s) and calculating the impedance (Z) using the same impedance formula:

[tex]Z = \sqrt((191 \Omega)^2 + ((403 rad/s) * 0.410 H - 1 / (403 rad/s * 5.01 * 10^{-6} F))^2)[/tex]

Calculating the impedance (Z):

[tex]Z = 403 \Omega[/tex]

Now, substitute the values into the current amplitude formula:

[tex]I = 3.07 V / 403 \Omega\\I = 0.00762 A[/tex]

Therefore, the current amplitude at an angular frequency of 403 rad/s is approximately 0.00762 A.

d) To determine if the source voltage leads or lags the current at a frequency of 403 rad/s, we need to compare the phase relationship between the voltage and the current.

In a series RL circuit like this, the voltage leads the current when the inductive reactance (ωL) is greater than the capacitive reactance (1 / ωC). Conversely, the voltage lags the current when the capacitive reactance is greater.

Let's calculate the values:

Inductive reactance:

[tex](XL) = \omega L = (403 rad/s) * (0.410 H) = 165.23 \Omega[/tex]

Capacitive reactance:

[tex](XC) = 1 / (\omega C) = 1 / ((403 rad/s) * (5.01* 10^{-6} F)) = 498.06 \Omega[/tex]

Since XC > XL, the capacitive reactance is greater, indicating that the source voltage lags the current.

Therefore, at a frequency of 403 rad/s, the source voltage will lag the current.

For more details regarding the series circuit, visit:

https://brainly.com/question/14997346

#SPJ4

nursing interventions for a child with an infectious
disease?
why is the tympanic membrane important to
visualize?

Answers

Nursing care for a child with an infectious disease involves implementing isolation measures, monitoring vital signs, administering medications, providing comfort, and promoting hygiene practices. Visualizing the tympanic membrane is crucial to identify middle ear infections associated with certain diseases.

Pathogenic microorganisms, including viruses, bacteria, fungi, and parasites, are responsible for causing infectious diseases. Pediatric infectious diseases are frequently encountered by nurses, and as a result, nursing interventions are critical in improving the care of children with infectious diseases.

Nursing interventions for a child with an infectious disease

Here are a few nursing interventions for a child with an infectious disease that a nurse might suggest:

Implement isolation precautions: A nurse should implement isolation precautions, such as wearing personal protective equipment, washing their hands, and not having personal contact with the infected child, to reduce the spread of infectious diseases.

Observe the child's vital signs: A nurse should keep track of the child's vital signs, such as pulse rate, blood pressure, respiratory rate, and temperature, to track their condition and administer proper treatment.Administer antibiotics: Depending on the type of infectious disease, the nurse may administer the appropriate antibiotic medication to the child.

Administer prescribed medication: The nurse should give the child any medications that the physician has prescribed, such as antipyretics, to reduce fever or analgesics for pain relief.

Provide comfort measures: The nurse should offer comfort measures, such as providing appropriate toys and games, coloring books, and other activities that help the child's development and diversion from their illness.

Tympanic membrane: Tympanic membrane is also known as the eardrum. It is a thin membrane that separates the ear canal from the middle ear. The tympanic membrane is critical to visualize since it allows a nurse to see if there are any signs of infection in the middle ear, which may occur as a result of an infectious disease. Furthermore, visualizing the tympanic membrane might assist the nurse in determining if the child has any hearing loss or issues with their hearing ability.

Learn more about tympanic membrane at: https://brainly.com/question/15739997

#SPJ11

A beam of x rays that have wavelength λ impinges on a solid surface at a 30∘ angle above the surface. These x rays produce a strong reflection. Suppose the wavelength is slightly decreased. To continue to produce a strong reflection, does the angle of the x-ray beam above the surface need to be increased, decreased, or maintained at 30∘?'

Answers

In order to maintain a strong reflection from the solid surface, the angle of the x-ray beam above the surface needs to be maintained at 30°.

The angle of incidence (the angle between the incident beam and the normal to the surface) determines the angle of reflection (the angle between the reflected beam and the normal to the surface). As per the law of reflection, the angle at which a beam of light or radiation approaches a surface is the same as the angle at which it is reflected.

When the wavelength of the x-rays is slightly decreased, it does not affect the relationship between the angle of incidence and the angle of reflection. Therefore, in order to continue producing a strong reflection, the angle of the x-ray beam above the surface should be maintained at 30°.

To learn more about wavelength: https://brainly.com/question/10750459

#SPJ11

In a solid state Physics lab, protons are fired across 500KV in a particle
accelerator. How fast would a proton end up traveling?
A) 2020m/s B) 2.02 x 10^3m/s C) 9.58 x 10'^13m/s
D) 9.79 x 10^6m/s

Answers

The proton would end up traveling at a speed of approximately 2.02 x 10^3 m/s.

To calculate the final speed of the proton, we can use the equation for the kinetic energy of a particle accelerated through a potential difference (voltage):

K.E. = qV

where K.E. is the kinetic energy, q is the charge of the particle, and V is the potential difference.

The kinetic energy can also be expressed in terms of the particle's mass (m) and velocity (v):

K.E. = (1/2)mv^2

Setting these two equations equal to each other, we have:

(1/2)mv^2 = qV

Rearranging the equation to solve for velocity, we get:

v^2 = 2qV/m

Taking the square root of both sides, we find:

v = √(2qV/m)

In this case, we are dealing with a proton, which has a charge of q = 1.6 x 10^-19 coulombs (C), and a mass of m = 1.67 x 10^-27 kilograms (kg). The potential difference across the accelerator is given as V = 500,000 volts (V).

Plugging in these values, we have:

v = √[(2 * 1.6 x 10^-19 C * 500,000 V) / (1.67 x 10^-27 kg)]

Simplifying the expression within the square root:

v = √[(1.6 x 10^-19 C * 10^6 V) / (1.67 x 10^-27 kg)]

v = √[9.58 x 10^6 m^2/s^2]

v ≈ 2.02 x 10^3 m/s

Therefore, the proton would end up traveling at a speed of approximately 2.02 x 10^3 m/s.

To learn more about proton click here:

brainly.com/question/12535409

#SPJ11

At what temperature will the root mean square speed of carbon dioxide(CO2) be 450 m/s?( z=8 and n=8 for Oxygen atoms, z =6, n=6 for carbon)

Answers

Based on the given information at approximately 1.624 x [tex]10^{6}[/tex] Kelvin, the root mean square speed of carbon dioxide (CO2) will be 450 m/s.

To calculate the temperature at which the root mean square (rms) speed of carbon dioxide (CO2) is 450 m/s, we can use the kinetic theory of gases. The root mean square speed can be related to temperature using the formula:

v_rms =  [tex]\sqrt{\frac{3kT}{m} }[/tex]

where:

v_rms is the root mean square speed

k is the Boltzmann constant (1.38 x [tex]10^{-23}[/tex] J/K)

T is the temperature in Kelvin

m is the molar mass of CO2

The molar mass of CO2 can be calculated by summing the atomic masses of carbon and oxygen, taking into account their respective quantities in one CO2 molecule.

Molar mass of carbon (C) = 12.01 g/mol

Molar mass of oxygen (O) = 16.00 g/mol

So, the molar mass of CO2 is:

Molar mass of CO2 = (12.01 g/mol) + 2 × (16.00 g/mol) = 44.01 g/mol

Now we can rearrange the formula to solve for temperature (T):

T = [tex]\frac{m*vrms^{2} }{3k}[/tex]

Substituting the given values:

v_rms = 450 m/s

m = 44.01 g/mol

k = 1.38 x [tex]10^{-23}[/tex] J/K

Converting the molar mass from grams to kilograms:

m = 44.01 g/mol = 0.04401 kg/mol

Plugging in the values and solving for T:

T = [tex]\frac{0.04401*450^{2} }{3*1.38*10^{-23} }[/tex]

Calculating the result:

T ≈ 1.624 x [tex]10^{6}[/tex] K

Therefore, at approximately 1.624 x [tex]10^{6}[/tex] Kelvin, the root mean square speed of carbon dioxide (CO2) will be 450 m/s.

Learn more about kinetic here:

https://brainly.com/question/999862

#SPJ11

11. (10 points total) An object is placed 12 cm to the left of a convex mirror. The image has a magnification of 1/4. a) (2 points) Is the image upright or inverted? (Please explain or show work.) b) (2 points) Is the image real or virtual? (Please explain or show work.) c) (3 points) What is the image distance? d) (3 points) What is the focal length of the mirror? I

Answers

The answers to the given question are: a) The image is upright. b) The image is virtual. c) The image distance is 48 cm. d) The focal length of the mirror is 1 cm.

a) The image formed by a convex mirror is always virtual, erect and smaller in size than the object. As given, magnification = 1/4, which is positive. Hence the image is erect or upright.

b) The convex mirror always forms a virtual image, because the reflected rays never intersect, and the image cannot be obtained on the screen. So, the image is virtual.

c) We know that:Image distance(v) = - u/m

Where u is the object distance. m is the magnification of the image. Here, Object distance (u) = -12 cm

Magnification (m) = 1/4

Putting the values in the above formula, we get,

Image distance (v) = - (-12) / 1/4= 12 * 4 = 48 cm

So, the image distance is 48 cm.

d) We know that: Magnification(m) = -v/u

Also, Magnification(m) = -f/v

Where f is the focal length of the convex mirror.

Putting the value of image distance v = 48 cm, and magnification m = 1/4 in the above formula, we get,

focal length (f) = - v * m / u= - 48 * (1/4) / (-12)= 1 cm

So, the focal length of the mirror is 1 cm.

Therefore, the answers to the given question are:

a) The image is upright.

b) The image is virtual.

c) The image distance is 48 cm.

d) The focal length of the mirror is 1 cm.

Learn more about focal length at: https://brainly.com/question/1031772

#SPJ11

Two objects, A and B, start from rest. Object A starts with acceleration 1.6 m/s^2 and 4.0 seconds later after A, object B starts in the same direction with acceleration 3.4 m/s^2. How long will it take for object B to reach object A from the moment when A started to accelerate?
A car moving with over-speed limit constant speed 31.8 m/s passes a police car at rest. The police car immediately takes off in pursuit, accelerating with 9.6 m/s^2. How far from initial point police car will reach the speeder?

Answers

It will take approximately 2.747 seconds for Object B to reach Object A from the moment when Object A started to accelerate.

To find the time it takes for Object B to reach Object A, we need to consider the time it takes for Object A to reach its final velocity. Given that Object A starts from rest and has an acceleration of 1.6 m/s^2, it will take 4.0 seconds for Object A to reach its final velocity. During this time, Object A will have traveled a distance of (1/2) * (1.6 m/s^2) * (4.0 s)^2 = 12.8 meters.After the 4.0-second mark, Object B starts accelerating with an acceleration of 3.4 m/s^2. To determine the time it takes for Object B to reach Object A, we can use the equation of motion:

distance = initial velocity * time + (1/2) * acceleration * time^2

Since Object B starts from rest, the equation simplifies to:

distance = (1/2) * acceleration * time^2

Substituting the known values, we have:

12.8 meters = (1/2) * 3.4 m/s^2 * time^2

Solving for time, we find:
time^2 = (12.8 meters) / (1/2 * 3.4 m/s^2) = 7.529 seconds^2

Taking the square root of both sides, we get: time ≈ 2.747 seconds

Therefore, it will take approximately 2.747 seconds for Object B to reach Object A from the moment when Object A started to accelerate.

To learn more about accelerate:

https://brainly.com/question/32899180

#SPJ11

In the following circuit calculate the total resistance, the total current, current, and voltage of each resistor if the voltage from the power supply is 10 V and R1=100Ω,R2=150Ω,R3=100Ω,R4=50Ω,R5=150Ω,R6=100Ω, R7=100Ω,R8=150Ω,R9=100Ω, and R10=50Ω​

Answers

The total resistance in the given circuit is 100 Ω. The total current flowing through the circuit is 0.1 A. The current and voltage across each resistor can be calculated based on Ohm's law and the principles of series.

To calculate the total resistance, we need to determine the equivalent resistance of the circuit. In this case, we have a combination of series and parallel resistors.

Calculate the equivalent resistance of R1, R2, and R3 in parallel.

1/Rp = 1/R1 + 1/R2 + 1/R3

1/Rp = 1/100 + 1/150 + 1/100

1/Rp = 15/300 + 10/300 + 15/300

1/Rp = 40/300

Rp = 300/40

Rp = 7.5 Ω

Calculate the equivalent resistance of R4, R5, and R6 in parallel.

1/Rp = 1/R4 + 1/R5 + 1/R6

1/Rp = 1/50 + 1/150 + 1/100

1/Rp = 6/300 + 2/300 + 3/300

1/Rp = 11/300

Rp = 300/11

Rp = 27.27 Ω (rounded to two decimal places)

Calculate the equivalent resistance of R7, R8, and R9 in parallel.

1/Rp = 1/R7 + 1/R8 + 1/R9

1/Rp = 1/100 + 1/150 + 1/100

1/Rp = 15/300 + 10/300 + 15/300

1/Rp = 40/300

Rp = 300/40

Rp = 7.5 Ω

Calculate the total resistance (Rt) of the circuit by adding the resistances in series (R10 and the parallel combinations of R1, R2, R3, R4, R5, R6, R7, R8, and R9).

Rt = R10 + (Rp + Rp + Rp)

Rt = 50 + (7.5 + 27.27 + 7.5)

Rt = 100 Ω

The total resistance of the circuit is 100 Ω.

Calculate the total current (It) flowing through the circuit using Ohm's law.

It = V/Rt

It = 10/100

It = 0.1 A

The total current flowing through the circuit is 0.1 A.

Calculate the current flowing through each resistor using the principles of series and parallel resistors.

The current flowing through R1, R2, and R3 (in parallel) is the same as the total current (0.1 A).

The current flowing through R4, R5, and R6 (in parallel) can be calculated using Ohm's law:

V = I * R

V = 0.1 * 27.27

V ≈ 2.73 V

The current flowing through R7, R8, and R9 (in parallel) is the same as the total current (0.1 A).

The current flowing through R10 is the same as the total current (0.1 A).

To learn more about voltage -

brainly.com/question/17441042

#SPJ11

A battery having terminal voltage Vab =1.3 V delivers a current 1.5 A. Find the internal resistance (in W) of the battery if the emf,ε = 1.6 V.

Answers

In order to find the internal resistance of the battery, we'll use the formula:ε = V + Irwhere ε is the emf (electromotive force), V is the terminal voltage, I is the current, and r is the internal resistance.

So we have:ε = V + Ir1.6 = 1.3 + 1.5r0.3 = 1.5r Dividing both sides by 1.5, we get:r = 0.2 ΩTherefore, the internal resistance of the battery is 0.2 Ω. It's worth noting that this calculation assumes that the battery is an ideal voltage source, which means that its voltage doesn't change as the current changes. In reality, the voltage of a battery will typically decrease as the current increases, due to the internal resistance of the battery.

To know more about resistance visit:

https://brainly.com/question/29427458

#SPJ11

A charge of +77 µC is placed on the x-axis at x = 0. A second charge of -40 µC is placed on the x-axis at x = 50 cm. What is the magnitude of the electrostatic force on a third charge of 4.0 µC placed on the x-axis at x = 41 cm? Give your answer in whole numbers.

Answers

The magnitude of the electrostatic force on the third charge is 81 N.

The electrostatic force between two charges can be calculated using Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

Calculate the distance between the third charge and the first charge.

The distance between the third charge (x = 41 cm) and the first charge (x = 0) can be calculated as:

Distance = [tex]x_3 - x_1[/tex] = 41 cm - 0 cm = 41 cm = 0.41 m

Calculate the distance between the third charge and the second charge.

The distance between the third charge (x = 41 cm) and the second charge (x = 50 cm) can be calculated as:

Distance = [tex]x_3-x_2[/tex] = 50 cm - 41 cm = 9 cm = 0.09 m

Step 3: Calculate the electrostatic force.

Using Coulomb's law, the electrostatic force between two charges can be calculated as:

[tex]Force = (k * |q_1 * q_2|) / r^2[/tex]

Where:

k is the electrostatic constant (k ≈ 9 × 10^9 Nm^2/C^2),

|q1| and |q2| are the magnitudes of the charges (77 µC and 4.0 µC respectively), and

r is the distance between the charges (0.41 m for the first charge and 0.09 m for the second charge).

Substituting the values into the equation:

Force = (9 × 10^9 Nm^2/C^2) * |77 µC * 4.0 µC| / (0.41 m)^2

Calculating this expression yields:

Force ≈ 81 N

Therefore, the magnitude of the electrostatic force on the third charge is approximately 81 N.

Learn more about electrostatic force

brainly.com/question/9774180

#SPJ11

A diver on a diving board is undergoing simple harmonic motion. Her mass is 57.0 kg and the period of her motion is 0.900s. The next diver is a male whese period of simple harmonic oscillation is 1.15 5. What is his mass (in kg) the mass of the board is negligible?

Answers

The mass of the male diver is approximately 73.12 kg.

The period of simple harmonic motion is given by the formula:

T = 2π√(m/k),

where T is the period, m is the mass, and k is the spring constant.

In this case, the mass of the board is negligible, so we can assume that the period is only dependent on the diver's mass.

Let's assume the spring constant remains constant for both divers. Therefore, we can set up the following equation

T_female = 2π√(m_female/k) (equation 1)

T_male = 2π√(m_male/k) (equation 2)

Given:

T_female = 0.900 s

T_male = 1.155 s

Dividing equation 1 by equation 2, we get:

T_female / T_male = √(m_female/m_male)

Squaring both sides of the equation, we have:

(T_female / T_male)^2 = m_female / m_male

Rearranging the equation, we find:

m_male = m_female * (T_male / T_female)^2

Substituting the given values, we have:

m_male = 57.0 kg * (1.155 s / 0.900 s)^2

m_male ≈ 57.0 kg * 1.2816

m_male ≈ 73.12 kg

Therefore, the mass of the male diver is approximately 73.12 kg.

Learn more about mass from the given link

https://brainly.com/question/86444

#SPJ11

1. What is the distance between the gratings of a slit that produces a second order maximum for the first Balmer line at an angle of 15°
2. The electron can be considered as a standing wave around the nucleus with a De Broglie wavelength of λ. Write down and expression for the electrostatic potential energy of the electron and hence obtain an expression for the speed in terms of the mass m, charge e, and the orbital radius r and hence obtain an expression for the speed v of the electron around the nucleus

Answers

In the first question, the distance between the gratings producing a second-order maximum for the first Balmer line at an angle of 15° is sought. In the second question, the expression for the electrostatic potential energy of an electron in a standing wave around the nucleus is requested, followed by the derivation of an expression for the speed of the electron in terms of mass, charge, and orbital radius.

For the first question, to find the distance between the gratings, we can use the formula for the position of the maxima in a diffraction grating: d*sin(θ) = m*λ, where d is the distance between the slits, θ is the angle of the maximum, m is the order of the maximum, and λ is the wavelength. Given that the maximum is the second order (m = 2) and the angle is 15°, we can rearrange the formula to solve for d: d = (2*λ) / sin(θ).

Moving on to the second question, the electrostatic potential energy of the electron in a standing wave around the nucleus can be given by the formula U = -(k * e^2) / r, where U is the potential energy, k is the Coulomb's constant, e is the charge of the electron, and r is the orbital radius. To obtain an expression for the speed v of the electron, we can use the expression for the kinetic energy, K = (1/2) * m * v^2, and equate it to the negative of the potential energy: K = -U. Solving for v, we find v = sqrt((2 * k * e^2) / (m * r)).

Learn more about Potential energy:

https://brainly.com/question/24284560

#SPJ11

Consider a cube whose volume is 125 cm? In its interior there are two point charges q1 = -24 picoC and q2 = 9 picoC. q1 = -24 picoC and q2 = 9 picoC. The electric field flux through the surface of the cube is:
a. 1.02 N/C
b. 2.71 N/C
c. -1.69 N/C
d. -5.5 N/C

Answers

Answer:

The answer is c. -1.69 N/C.

Explanation:

The electric field flux through a surface is defined as the electric field multiplied by the area of the surface and the cosine of the angle between the electric field and the normal to the surface.

In this case, the electric field is due to the two point charges, and the angle between the electric field and the normal to the surface is 90 degrees.

The electric field due to a point charge is given by the following equation:

E = k q / r^2

where

E is the electric field strength

k is Coulomb's constant

q is the charge of the point charge

r is the distance from the point charge

In this case, the distance from the two point charges to the surface of the cube is equal to the side length of the cube, which is 5 cm.

The charge of the two point charges is:

q = q1 + q2 = -24 picoC + 9 picoC = -15 picoC

Therefore, the electric field at the surface of the cube is:

E = k q / r^2 = 8.988E9 N m^2 C^-1 * -15E-12 C / (0.05 m)^2 = -219.7 N/C

The electric field flux through the surface of the cube is:

\Phi = E * A = -219.7 N/C * 0.015 m^2 = -1.69 N/C

Learn more about Electric Field.

https://brainly.com/question/33261319

#SPJ11

Consider a hydrogen atom placed in a region where is a weak external elec- tric field. Calculate the first correction to the ground state energy. The field is in the direction of the positive z axis ε = εk of so that the perturbation to the Hamiltonian is H' = eε x r = eεz where e is the charge of the electron.

Answers

To calculate the first correction to the ground state energy of a hydrogen atom in a weak external electric-field, we need to consider the perturbation to the Hamiltonian caused by the electric field.

The perturbation Hamiltonian is given by H' = eεz, where e is the charge of the electron and ε is the electric field strength. In first-order perturbation theory, the correction to the ground state energy (E₁) can be calculated using the formula:

E₁ = ⟨Ψ₀|H'|Ψ₀⟩

Here, Ψ₀ represents the unperturbed ground state wavefunction of the hydrogen atom.

In the case of the given perturbation H' = eεz, we can write the ground state wavefunction as Ψ₀ = ψ₁s(r), where ψ₁s(r) is the radial part of the ground state wavefunction.

Substituting these values into the equation, we have:

E₁ = ⟨ψ₁s(r)|eεz|ψ₁s(r)⟩

Since the electric field is in the z-direction, the perturbation only affects the z-component of the position operator, which is r = z.

Therefore, the first correction to the ground state energy can be calculated as:

E₁ = eε ⟨ψ₁s(r)|z|ψ₁s(r)⟩

To obtain the final result, the specific form of the ground state wavefunction ψ₁s(r) needs to be known, as it involves the solution of the Schrödinger equation for the hydrogen atom. Once the wavefunction is known, it can be substituted into the equation to evaluate the correction to the ground state energy caused by the weak external electric field.

To learn more about electric-field , click here : https://brainly.com/question/30544719

#SPJ11

When two electric charges are held a distance r apart, the electrostatic force between them is FE​. The distance between the charges is then changed to 11​0r. (Enter numerical value only) The new electrostatic force between the charges is xFE​. Solve for x Answer:

Answers

The new electrostatic force between two electric charges, when the distance between them is changed to 110 times the original distance, is x times the initial force.

Let's assume the initial electrostatic force between the charges is FE and the distance between them is r. According to Coulomb's law, the electrostatic force (FE) between two charges is given by the equation:

FE = k * (q1 * q2) / r^2

Where k is the electrostatic constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.

Now, if the distance between the charges is changed to 110 times the original distance (110r), the new electrostatic force can be calculated. Let's call this new force xFE.

xFE = k * (q1 * q2) / (110r)^2

To simplify this equation, we can rearrange it as follows:

xFE = k * (q1 * q2) / (110^2 * r^2)

= (k * (q1 * q2) / r^2) * (1 / 110^2)

= FE * (1 / 110^2)

Therefore, the new electrostatic force (xFE) is equal to the initial force (FE) multiplied by 1 divided by 110 squared (1 / 110^2).

To learn more about electrostatic force click here:

brainly.com/question/31042490

#SPJ11

A circuit consists of an 110- resistor in series with a 5.0-μF capacitor, the two being connected between the terminals of an ac generator. The voltage of the generator is fixed. At what frequency is the current in the circuit one-half the value that exists when the frequency is very large? Note: The ac current and voltage are rms values and power is an average value unless indicated otherwise

Answers

The peak value of the current supplied by the generator is approximately 2.07 Amperes.

To determine the peak value of the current supplied by the generator, we can use the relationship between voltage, current, and inductance in an AC circuit.

The peak current (I_peak) can be calculated using the formula:

I_peak = V_rms / (ω * L),

where:

V_rms is the root mean square (RMS) value of the voltage (in this case, 9.0 V),

ω is the angular frequency of the AC signal (in radians per second), and

L is the inductance of the inductor (in henries).

To convert the given frequency (690 Hz) to angular frequency (ω), we can use the formula:

ω = 2πf,

where:

f is the frequency.

Substituting the values into the formula, we have:

ω = 2π * 690 Hz ≈ 4,335.48 rad/s.

Now, let's calculate the peak current:

I_peak = (9.0 V) / (4,335.48 rad/s * 10 × 10^(-3) H).

Simplifying the expression:

I_peak ≈ 2.07 A.

Therefore, the peak value of the current supplied by the generator is approximately 2.07 Amperes.

To learn more about current, refer below:

brainly.com/question/13076734

#SPJ4

An object oscillates with an angular frequency ω = 5 rad/s. At t = 0, the object is at x0 = 6.5 cm. It is moving with velocity vx0 = 14 cm/s in the positive x-direction. The position of the object can be described through the equation x(t) = A cos(ωt + φ).
A) What is the the phase constant φ of the oscillation in radians? (Caution: If you are using the trig functions in the palette below, be careful to adjust the setting between degrees and radians as needed.)
B) Write an equation for the amplitude A of the oscillation in terms of x0 and φ. Use the phase shift as a system parameter.
C) Calculate the value of the amplitude A of the oscillation in cm.

Answers

An object oscillates with an angular frequency [tex]ω = 5 rad/s. At t = 0[/tex], the object is at [tex]x0 = 6.5 cm.[/tex]It is moving with velocity vx0 = 14 cm/s in the positive x-direction.

The position of the object can be described through the equation x(t) = A cos(ωt + φ).The phase constant φ of the oscillation in radiansThe formula used for the displacement equation is,[tex]x(t) = A cos(ωt + φ)[/tex]Given that, ω = 5 rad/s, x0 = 6.5 cm, and vx0 = 14 cm/sSince the velocity is given.

Therefore it is assumed that the particle is moving with simple harmonic motion starting from x0. Hence the phase constant φ can be obtained from the displacement equation by substituting the initial values,[tex]x0 = A cos (φ)6.5 = A cos (φ)On solving,φ = cos-1 (x0 / A)[/tex]The equation for the amplitude .

To know more about velocity visit:

https://brainly.com/question/24259848

#SPJ11

1.3 (4 points) In the figure shown, there is friction (0 << 1) between the drum and the supporting rod underneath. Choose ALL correct statements. R For large enough F, drum will lift and rotate For small enough F, there will be no motion Not enough information No matter how small F, there will be some motion

Answers

The correct statement is: For large enough force F, the drum will lift and rotate.

The figure described in the question depicts a drum resting on a supporting rod. Friction exists between the drum and the rod. We need to analyze the effect of an applied force F on the drum's motion.

When a sufficiently large force F is applied, it overcomes the frictional force between the drum and the rod. As a result, the drum will start to lift and rotate. The applied force provides enough torque to overcome the frictional torque and initiate motion.

For small enough forces, there will be no motion. If the force is too weak, it won't be able to overcome the frictional force acting on the drum. Consequently, the drum will remain stationary.

The other two statements, "Not enough information" and "No matter how small F, there will be some motion," are incorrect.

The information given is sufficient to determine that a large enough force is required for the drum to lift and rotate, and it does not guarantee that there will be motion for arbitrarily small forces. The critical factor is the balance between the applied force and the frictional force.

learn more about friction here:

https://brainly.com/question/28356847

#SPJ11

Identify the statements which could be tested by an objective experiment or observation. -People with green eyes are on average taller than people with blue eyes. -Daily meditation lowers blood pressure. -Somewhere in the universe there is an alien civilization of bird-like beings that have achieved interstellar space travel. -The best candies are made of chocolate. God allows civilizations to collapse when he becomes displeased with them. -The stock market performs better in months when the number of sunspots on the Sun's surface increase. -The most athletic individuals have an astrological sign of Capricorn, Aquarius, Pisces, Cancer or Leo. Asteroid A has 4.0 times the mass and 1.5 times the velocity of Asteroid B. If Asteroid B has a kinetic energy of 2,900,000 J then what is the kinetic energy of Asteroid A?

Answers

The statements that could be tested by an objective experiment or observation are "people with green eyes are on average taller than people with blue eyes", "daily meditation lowers blood pressure", and "the stock market performs better in months when the number of sunspots on the Sun's surface increase". The kinetic energy of Asteroid A is 4.5 J.

These statements lend themselves to empirical investigation through data collection, statistical analysis, and observation. By conducting controlled experiments, collecting relevant data, and analyzing the results, researchers can provide objective evidence to support or refute these claims.

The kinetic energy of Asteroid A is calculated by using the formula for kinetic energy:

Kinetic energy (KE) = (1/2) * mass * velocity^2

Mass of Asteroid B (mB) = 1

Velocity of Asteroid B (vB) = 1

Kinetic energy of Asteroid B (KEB) = 2,900,000 J

Mass of Asteroid A (mA) = 4.0 * mB = 4.0

Velocity of Asteroid A (vA) = 1.5 * vB = 1.5

Substituting the values into the formula:

KEA = (1/2) * mA * vA^2

= (1/2) * 4.0 * (1.5)^2

= (1/2) * 4.0 * 2.25

= 4.5 J

Therefore, the kinetic energy of Asteroid A is 4.5 J.

To know more about kinetic energy, refer to the link :

https://brainly.com/question/22174271#

#SPJ11

Determine the magnitude and direction of the electric field at a
point in the middle of two point charges of 4μC and −3.2μC
separated by 4cm?

Answers

The electric field is  14.4 N/C. To determine the magnitude and direction of the electric field at a point in the middle of two point charges, we can use the principle of superposition.

The electric field at the point will be the vector sum of the electric fields created by each charge individually.

Charge 1 (q1) = 4 μC = 4 × 10^-6 C

Charge 2 (q2) = -3.2 μC = -3.2 × 10^-6 C

Distance between the charges (d) = 4 cm = 0.04 m

The electric field created by a point charge at a distance r is given by Coulomb's Law:

E = k * (|q| / r^2)

E is the electric field,

k is the electrostatic constant (k ≈ 9 × 10^9 N m^2/C^2),

|q| is the magnitude of the charge, and

r is the distance from the charge.

Electric field created by q1:

E1 = k * (|q1| / r^2)

= (9 × 10^9 N m^2/C^2) * (4 × 10^-6 C / (0.02 m)^2)

= 9 × 10^9 N m^2/C^2 * 4 × 10^-6 C / 0.0025 m^2

= 9 × 10^9 N / C * 4 × 10^-6 / 0.0025

= 14.4 N/C

The electric field created by q1 is directed away from it, radially outward.

Learn more about magnitude here : brainly.com/question/28714281
#SPJ11

What is the magnetic flux, in Wb, for the following? A single loop of wire has perimeter (length) 1.0 m, and encloses an area of 0.0796 m2. It carries a current of 24 mA, and is placed in a magnetic field of 0.975 T so that the field is perpendicular to the plane containing the loop of wire.

Answers

The magnetic flux for the given configuration is approximately 0.07707 Weber (Wb).

The magnetic flux (Φ) is given by the formula:

Φ = B * A * cos(θ)

Where:

Φ is the magnetic flux in Weber (Wb),

B is the magnetic field strength in Tesla (T),

A is the area enclosed by the loop of wire in square meters (m²),

θ is the angle between the magnetic field and the normal to the plane of the loop.

In this case, the magnetic field is perpendicular to the plane of the loop, so θ = 0.

Therefore, the equation simplifies to:

Φ = B * A

Given:

B = 0.975 T (magnetic field strength)

A = 0.0796 m² (area enclosed by the loop)

Plugging in the values, we get:

Φ = 0.975 T * 0.0796 m² = 0.07707 Wb

Therefore, the magnetic flux for the given configuration is approximately 0.07707 Weber (Wb).

Learn more about magnetic flux from this link:

https://brainly.com/question/31870481

#SPJ11

The three finalists in a contest are brought to the centre of a large, flat field. Each is given a metre stick, a compass, a calculator, a shovel and the following three displacements: 72.4 m, 32.0° east of north;

Answers

The contestant calculates the resultant displacement by adding the three given displacements vectorially.

To determine the location of the buried keys, the contestant needs to calculate the resultant displacement by adding the three given displacements together. Here's how she can calculate it:

1. Start by converting the given displacements into their respective vector form. Each vector can be represented as a combination of horizontal (x) and vertical (y) components.

For the first displacement:

Magnitude: 72.4 m

Direction: 32.0° east of north

To find the horizontal and vertical components, we can use trigonometric functions. The eastward component can be found using cosine, and the northward component can be found using sine.

Horizontal component: 72.4 m * cos(32.0°)

Vertical component: 72.4 m * sin(32.0°)

For the second displacement:

Magnitude: 57.3 m

Direction: 36.0° south of west

To find the horizontal and vertical components, we use the same approach:

Horizontal component: 57.3 m * cos(180° - 36.0°)  [180° - 36.0° is used because it's south of west]

Vertical component: 57.3 m * sin(180° - 36.0°)

For the third displacement:

Magnitude: 17.8 m

Direction: Straight south

The horizontal component for this displacement is 0 since it's purely vertical, and the vertical component is simply -17.8 m (negative because it's south).

2. Add up the horizontal and vertical components separately for all three displacements:

Total horizontal component = Horizontal component of displacement 1 + Horizontal component of displacement 2 + Horizontal component of displacement 3

Total vertical component = Vertical component of displacement 1 + Vertical component of displacement 2 + Vertical component of displacement 3

3. Calculate the magnitude and direction of the resultant displacement using the total horizontal and vertical components:

Resultant magnitude = √(Total horizontal component^2 + Total vertical component^2)

Resultant direction = arctan(Total vertical component / Total horizontal component)

The contestant needs to calculate these values to determine the location where the keys to the new Porsche are buried.

The complete question should be:

The three finalists in a contest are brought to the center of a large, flat field. Each is given a meter stick, a compass, a calculator, a shovel, and (in a different order for each contestant) the following three displacements:

72.4 m, 32.0° east of north; 57.3 m, 36.0° south of west;17.8 m straight south.

The three displacements lead to the point where the keys to a new Porsche are buried. Two contestants start measuring immediately, but the winner first calculates where to go. What does she calculate?

To learn more about resultant displacement, Visit:

https://brainly.com/question/28882093

#SPJ11

Question 4 (Chapter 4: Uniform Acceleration & Circular Motion) (Total: 10 marks) Figure 4.1 20.0 m distance Cheetah Gazelle (a) Refer to Figure 4.1. A gazelle is located 20.0 meters away from the initial position of a prowling cheetah. On seeing the gazelle, the cheetah runs from rest with a constant acceleration of 2.70 m/s² straight towards the gazelle. Based on this, answer the following (Show your calculation): (i) Suppose the gazelle does not detect the cheetah at all as it is looking in the opposite direction. What is the velocity of the cheetah when it reaches the gazelle's position, 20.0 meters away? How long (time) will it take the cheetah to reach the gazelle's position? (2 x 2 x 2 mark) (ii) Suppose the gazelle detects the cheetah the moment the cheetah is 20.0 meters away from it. The gazelle then runs from rest with a constant acceleration of 1.50 m/s² away from the cheetah at the very same time the cheetah runs from rest with a constant acceleration of 2.70 m/s². What is the total distance the cheetah must cover in order to be able to catch the gazelle? (Hint: when the cheetah catches the gazelle, both the cheetah and the gazelle share the same time, t, but the cheetah's distance covered is 20.0 m more than the gazelle's distance covered). (4 x ½ mark) Figure 4.2 Note: V = 2πr T Carousel horse KFC 5.70 m Rotating circular base (b) Refer to Figure 4.2. A carousel horse on a vertical pole with a mass of 13.0 kg is attached to the end of a rotating circular base with a radius of 5.70 meters (from the axis of rotation in the center, O). Once switched on, the carousel horse revolves uniformly in a circular motion around this axis of rotation. If the carousel horse makes ten (10) complete revolutions every minute (60 seconds), find the centripetal force (Fe) exerted on the carousel horse (Show your calculation). (2 x 1 mark)

Answers

The final velocity of the cheetah, v is 10.39 m/s, and it will take 3.85 s to reach the gazelle's position if the gazelle does not detect the cheetah at all as it is looking in the opposite direction. The cheetah must cover 45.0 m distance to be able to catch the gazelle is 20.0 meters away from it. The centripetal force (Fe) exerted on the carousel horse is 943.22 N.

Suppose the gazelle does not detect the cheetah at all as it is looking in the opposite direction. What is the velocity of the cheetah when it reaches the gazelle's position, 20.0 meters away? How long (time) will it take the cheetah to reach the gazelle's position?Initial velocity, u = 0 m/s,Acceleration, a = 2.7 m/s²Distance, s = 20 m.

The final velocity of the cheetah, v can be calculated using the following formula:v² = u² + 2as

v = √(u² + 2as)

v = √(0 + 2×2.7×20)  

√(108) = 10.39 m/s.Time taken, t can be calculated using the following formula:s = ut + (1/2)at²,

20 = 0 × t + (1/2)2.7t²,

20 = 1.35t²

t² = (20/1.35)

t²= 14.81s

t = √(14.81) = 3.85 s.

Suppose the gazelle detects the cheetah the moment the cheetah is 20.0 meters away from it. The gazelle then runs from rest with a constant acceleration of 1.50 m/s² away from the cheetah at the very same time the cheetah runs from rest with a constant acceleration of 2.70 m/s².

What is the total distance the cheetah must cover in order to be able to catch the gazelle? (Hint: when the cheetah catches the gazelle, both the cheetah and the gazelle share the same time, t, but the cheetah's distance covered is 20.0 m more than the gazelle's distance covered).

Initial velocity, u = 0 m/s for both cheetah and gazelleAcceleration of cheetah, a = 2.7 m/s²Acceleration of gazelle, a' = 1.5 m/s²Distance, s = 20 mFinal velocity of cheetah, v = u + atFinal velocity of gazelle, v' = u + a't

Let the time taken to catch the gazelle be t, then both cheetah and gazelle will have covered the same distance.Initial velocity, u = 0 m/sAcceleration of cheetah, a = 2.7 m/s²Distance, s = 20 mFinal velocity of cheetah, v = u + atv = 2.7t.

The distance covered by the cheetah can be calculated using the following formula:s = ut + (1/2)at²s = 0 + (1/2)2.7t²s = 1.35t².

The distance covered by the gazelle, S can be calculated using the following formula:S = ut' + (1/2)a't²S = 0 + (1/2)1.5t².

S = 0.75t².When the cheetah catches the gazelle, the cheetah will have covered 20.0 m more distance than the gazelle.s = S + 20.0 m1.35t²

0.75t² + 20.0 m1.35t² - 0.75

t² = 20.0 m,

0.6t² = 20.0 m

t² = 33.3333

t = √(33.3333) = 5.7735 s,

The distance covered by the cheetah can be calculated using the following formula:s = ut + (1/2)at²s = 0 + (1/2)2.7(5.7735)² = 45.0 mTo be able to catch the gazelle, the cheetah must cover 45.0 m distance.

The final velocity of the cheetah, v is 10.39 m/s, and it will take 3.85 s to reach the gazelle's position if the gazelle does not detect the cheetah at all as it is looking in the opposite direction. The cheetah must cover 45.0 m distance to be able to catch the gazelle if the gazelle detects the cheetah the moment the cheetah is 20.0 meters away from it. The centripetal force (Fe) exerted on the carousel horse is 943.22 N.

To know more about Acceleration visit:

brainly.com/question/12550364

#SPJ11

Waves from two slits are in phase at the slits and travel to a distant screen to produce the second side maximum of the two-slit interference pattern. The difference in the distance traveled by the waves is _____

Answers

The difference in the distance traveled by the waves is half of the wavelength (λ/2). The two waves traveling from the slits will destructively interfere if the path difference between them is exactly one-half of the wavelength.

Waves from two slits are in phase at the slits and travel to a distant screen to produce the second side maximum of the two-slit interference pattern. The difference in the distance traveled by the waves is half of the wavelength.

Let us understand the concept of Young's double-slit experiment. In this experiment, two coherent light waves are made to interfere with each other in such a way that it becomes a visible interference pattern on a screen. The interference pattern results from the superposition of waves emitted by two coherent sources that are out of phase.

When light waves from two slits meet, the path difference between them can be calculated using the distance between the slits and the distance to the screen. The waves are in phase at the slits and travel to a distant screen to produce the second side maximum of the two-slit interference pattern. For the second side maximum, the path difference between the two waves from each of the slits is half of the wavelength.

Therefore, the difference in the distance traveled by the waves is half of the wavelength (λ/2). The two waves traveling from the slits will destructively interfere if the path difference between them is exactly one-half of the wavelength.

Learn more About waves from the given link

https://brainly.com/question/1173066

#SPJ11

The pendulum of a big clock is 1.449 meters long. In New York City, where the gravitational acceleration is g = 9.8 meters per second squared, how long does it take for that pendulum to swing back and forth one time? Show your work and give your answer in units of seconds

Answers

The time it takes for the pendulum to swing back and forth one time is approximately 2.41 seconds.

The time period of a pendulum, which is the time taken for one complete swing back and forth, can be calculated using the formula:

T = 2π√(L/g)

Where:

T is the time period of the pendulumL is the length of the pendulumg is the acceleration due to gravity

Let's substitute the given values:

L = 1.449 meters (length of the pendulum)

g = 9.8 meters per second squared (acceleration due to gravity)

T = 2π√(1.449 / 9.8)

T = 2π√0.1476531

T ≈ 2π × 0.3840495

T ≈ 2.41 seconds (rounded to two decimal places)

Therefore, it takes approximately 2.41 seconds for the pendulum to swing back and forth one time.

To learn more about acceleration due to gravity, Visit:

https://brainly.com/question/88039

#SPJ11

Other Questions
Solid A and solid B aremathematically similar. The ratioof the volume of A to the volumeof B is 125: 64If the surface area of A is 400 cmwhat is the surface of B? 1) Describe the psychological effects of child sexualvictimization. What would you recommend in terms of both treatmentand prevention? The Seneca tell the story of Gaqka, whose name means what? Bear Crow Stands Alone O Kicking Bird Question 5 Saved Listen According to the textbook introduction, which of the following were popular forms of literature in early colonial America? O religious works travel literature (tales of voyages and exploration) poetry all of the above Question 6 Saved Listen Christopher Columbus kept a record of his exploratory travels, excerpts of which you read in Module B. For which country was he exploring? England Spain Italy O France Calculate the reaction rate when a conversion of 85% is reached andis known that the specific speed is 6.2 dm3 / mol s CHALLENGE ACTIVITY 18.9.3: Recursion Recursion The double factorial of an odd number n is given by: N!!nin-2in-4) (1) Ex: The double factorial of the number 9 is: 91-9x7x5x3x1-945 Write a recursive function called OddDoubleFactorial that accepts a scalar integer input, N, and outputs the double factorial of N. The input to the function will always be an odd integer value Each time the function assigns a value to the output variable, the value should be saved in 8-digit ASCII format to the data file recursion check dat. The -append option should be used so the file is not overwritten with each save. Ex: If the output variable is Result then, the command is save recursion check.dat Result -ascii-append The test suite will examine this file to check the stack and ensure the problem was solved using recursion Ex: > n = 9; >> answer = OddDoubleFactorial(n) produces This tool is provided by a third party Though your activity may be recorded, a page refresh may be needed to fill the banner answer= 945 and the data file recursion check.dat contains 1.0000000E+00 3.0000000e+00 1.5000000+01 1.05000000+02 9.4580088e+82 0/2 Function 1 function Result OddDoubleFactorial(n) save recursion check.dat Result -ascii-append end Computes the double factorial of n using recursion, assumes n is add Your code goes here N Code to call your function > 1 n = 9; 2 answer OddboubleFactorial(n) Save Assessment: Required information Sheena can row a boat at 200 mihin still water. She needs to cross a river that is 1.20 mi wide with a current flowing at 1.80 mi/h. Not having her calculator ready, she guesses that to go straight across, she should head upstream at an angle of 25.0" from the direction straight across the river. What is her speed with respect to the starting point on the bank? mih Conduct research on how Apple Inc. operates.Research the company creating a powerpoint that is 8-10 slides on the informal institutions that impact this companys international business. GivenFeed flow rate, F=100 kg/hrSolvent flow rate, S=120 kg/hrMole fraction of acetone in feed, xF=0.35Mole fraction of acetone in solvent, yS=0M is the combined mixture of F and S.M is the combined mixture of F and S.xM is the mole fraction of acetone in MxM =(FxF + SyS)/(F+S)xM =(100*0.35+120*0)/(100+120)xM =0.1591Since 99% of acetone is to be removed,Acetone present in feed = FxF = 100*0.35=35 kg/hr99% goes into the extract and 1% goes into the raffinate.Component mass balance:-Therefore, acetone present in extract=Ey1= 0.99*35=34.65 kg/hrAcetone present in Raffinate=RxN=0.01*35=0.35 kg/hrTotal mass balance:-220=R+EFrom total mass balance and component mass balance, by hit trial method, R=26.457 kg/hrHence, E=220-26.457=193.543 kg/hrHence, xN = 0.35/26.457=0.01323Hence, y1 =34.65/193.543 = 0.179Equilibrium data for MIK, water, acetone mixture is obtained from "Mass Transfer, Theory and Applications" by K.V.Narayanan.From the graph, we can observe that 4 lines are required from the Feed to reach Rn passing through the difference point D.Hence the number of stages required = 4 A 18.4 kg iron mass rests on the bottom of a pool (The density of Iron is 2.86 x 10 ka/n" and the dans ty of water is 100 x 103 kg/m:) HINT (a) What is the volume of the iron (in m)? mo (6) What buoyant force acts on the Iron (in N)? (Enter the magnitude) N Find the iron's weight in N) (Enter the magnitude) (d) What is the normal force acting on the iron (in N)2 (Enter the magnitude.) Which of the following is the best definition of dualism?1.) there is a clear distinction between conscious and unconscious thought.2.) there is a clear distinction between thoughts and feeling.3.) thoughts and feelings are single phenomenon.4.) there is a clear distinction between the physical world and mental experience. The Demand And Supply Functions Of Goods 1 And Goods 2 Are As Follows. Demand Function Qd1=184P1+2P2Qd2=1+3P13P2 Supply Function Qs1=3+2P1P2Qs2=12P1+6P2 A. Determine The Market Equilibrium Price And Quantity For Both Types Of Goods! B. Do Goods 1 And Goods 2 Have A Complementary Or Substitution Relationship? Give One Example To Support Your Explanation what would be missing when a bacterial species that does not produce a capsule is subjected to capsule staining? 12. How does the voltage supplied to the resistor compare with the voltage supplied by the battery in the following diagram? o A. The voltage across the resistor is greater than the voltage of the When someone is using their authority in a way that is notappropriate, this is often referred to as_______ Task conflictPower abuse Winners curse Power stratification The internal revenue service reported the average refund in 2017 was $2,878 with a standard deviation of $520 assume the amazing refunded is normally distributed Explain how Erikson's theory varies from Sigmund Freud's in terms of personality development. Which of the following statements comparing the LGN and the retina is correct? O Both are wolved in the reconstruction as opposed to point-by-point deconstruction of visual stimuli, O Both have coils that respond to lines of a particular orientation in their receptive field. O Both get significant feedback connections (top-down influence) O Both have cells with concentric center surround receptive fields O The retina has "on-center" and "off-center" receptive fields, while the LGN only has "on center" receptive fields A psychologist designed a study to understand how the social, demographic and economic determinants of crime in Johannesburg city are preventing convicted criminals in the city to reform from their life of crime. Data on convicted criminals in a number of felony cases within the city was collected. Information on each convict includes socioeconomic status, criminal history, and weapon usage, relationship to victim, trial procedures, and disposition. Demographic information for each convict includes sex, and race. What is the APPROPRIATE measure of central tendency to summarise the demographic information? OA. Standard deviation OB. Mode OC. Interquartile range OD. Median OE. Mean Your a new volunteer at the local animal rescues. Its a greatorganization but they have no technical skills! You want to helpanimals get adopted by making their presentation look better. What do you understand by quantum confinement? Explain differentquantum structureswith density of states plot?